首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Supernova 2002ic was an atypical Type Ia supernova (SN Ia) with evidence for substantial amounts of hydrogen associated with the system. Contrary to previous claims, we show that its unusual properties can be understood within the framework of one of the most favoured progenitor models, the so-called supersoft channel. This requires that the donor star was initially relatively massive  (∼3 M)  and that the system experienced a delayed dynamical instability, leading to a large amount of mass-loss from the system in the last few 104 yr before the explosion. This can produce the inferred hydrogen-rich circumstellar environment, most likely with a disc-like geometry. However, in order for this model to be feasible, it requires a larger accretion efficiency on to the white dwarf than is assumed in present parametrizations. If this is confirmed, it would most likely increase estimates for the frequency of the single-degenerate channel. Based on population synthesis simulations we estimate that not more than 1 in 100 SNe Ia should belong to this subgroup of SNe Ia.  相似文献   

2.
By assuming an aspherical stellar wind with an equatorial disc from a red giant, we investigate the production of Type Ia supernovae (SNe Ia) via a symbiotic channel. We estimate that the Galactic birthrate of SNe Ia via the symbiotic channel is between  1.03 × 10−3  and  2.27 × 10−5 yr−1  , while the delay time of SNe Ia has a wide range from ∼0.07 to 5 Gyr. The results are greatly affected by the outflow velocity and mass-loss rate of the equatorial disc. Using our model, we discuss the progenitors of SN 2002ic and SN 2006X.  相似文献   

3.
4.
The white dwarf stars WD 1614+136 and WD 1353+409 are not sufficiently massive to have formed through single-star evolution. However, observations to date have not yet found any evidence for binarity. It has therefore been suggested that these stars are the result of a merger. In this paper we place an upper limit of ≈ 50 km s−1 on the projected rotational velocities of both stars. This suggests that, if these stars are the results of a merger, efficient angular momentum loss with accompanying mass loss must have occurred. If the same process occurs following the merging of more massive white dwarf stars, the predicted rate of Type Ia supernovae due to merging white dwarfs may have been greatly overestimated. Further observations to determine binarity in WD 1614+136 and WD 1353+409 are therefore encouraged.  相似文献   

5.
6.
Type Ia supernovae(SNe Ia)play an important role in the study of cosmic evolution,especially in cosmology.There are several progenitor models for SNe Ia proposed in the past years.By considering the effect of accretion disk instability on the evolution of white dwarf(WD)binaries,we performed detailed binary evolution calculations for the WD+red-giant(RG)channel of SNe Ia,in which a carbon-oxygen WD accretes material from a RG star to increase its mass to the Chandrasekhar mass limit.According to these calcu...  相似文献   

7.
We report the discovery of the nearby  ( d = 24 pc)  HD 75767 as an eight billion year old quadruple system consisting of a distant M dwarf pair, HD 75767 C–D, in orbit around the known short-period   P = 10.25 d  single-lined binary HD 75767 A–B, the primary of which is a solar-like G star. On the reasonable assumption of synchronous orbital rotation as well as rotational and orbital coplanarity for the inner pair, we get   M B= 0.96 M  for the unseen HD 75767 B, that is, the case of a massive white dwarf. Upon future evolution, mass transfer towards HD 75767 B will render the   M A= 0.96 M  G-type primary, now a turnoff star, to become a helium white dwarf of   M A∼ 0.33 M  . Depending on the mass accretion rate, accretion efficiency and composition of the massive white dwarf, this in turn may result in a collapse of HD 75767 B with the formation of a millisecond pulsar, i.e. the creation of a low-mass binary pulsar (LMBP), or, instead, a Type Ia supernova explosion and the complete disruption of HD 75767 B. Irrespective of which scenario applies, we point to the importance of the distant M dwarfs as the likely agents for the formation of the inner, short-period HD 75767 A–B pair, and hence a path that particularly avoids preceding phases of common envelope evolution.  相似文献   

8.
Summary. Type Ia Supernovae are in many aspects still enigmatic objects. Their observational and theoretical exploration is in full swing, but we still have plenty to learn about these explosions. Recent years have already witnessed a bonanza of supernova observations. The increased samples from dedicated searches have allowed the statistical investigation of Type Ia Supernovae as a class. The observational data on Type Ia Supernovae are very rich, but the uniform picture of a decade ago has been replaced by several correlations which connect the maximum luminosity with light curve shape, color evolution, spectral appearance, and host galaxy morphology. These correlations hold across almost the complete spectrum of Type Ia Supernovae, with a number of notable exceptions. After 150 days past maximum, however, all observed objects show the same decline rate and spectrum. The observational constraints on explosion models are still rather sparse. Global parameters like synthesized nickel mass, total ejecta mass and explosion energetics are within reach in the next few years. These parameters bypass the complicated calculations of explosion models and radiation transport. The bolometric light curves are a handy tool to investigate the overall appearance of Type Ia Supernovae. The nickel masses derived this way show large variations, which combined with the dynamics from line widths, indicate that the brighter events are also coming from more massive objects. The lack of accurate distances and the uncertainty in the correction for absorption are hampering further progress. Improvements in these areas are vital for the detailed comparison of luminosities and the determination of nickel masses. Coverage at near-infrared wavelengths for a statistical sample of Type Ia Supernovae will at least decrease the dependence on the absorption. Some of the most intriguing features of Type Ia Supernovae are best observed at these wavelengths, like the second peak in the light curve, the depression in the J band, and the unblended [Feii] lines in the ashes. Received 24 January 2000 / Published online 8 May 2000  相似文献   

9.
Type Ia supernovae(SNe Ia)play a key role in measuring cosmological parameters,in which the Phillips relation is adopted.However,the origin of the relation is still unclear.Several parameters are suggested,e.g.the relative content of carbon to oxygen(C/O)and the central density of the white dwarf(WD)at ignition.These parameters are mainly determined by the WD's initial mass and its cooling time,respectively.Using the progenitor model developed by Meng & Yang,we present the distributions of the initial WD mass and the cooling time.We do not find any correlation between these parameters.However,we notice that as the range of the WD's mass decreases,its average value increases with the cooling time.These results could provide a constraint when simulating the SN Ia explosion,i.e.the WDs with a high C/O ratio usually have a lower central density at ignition,while those having the highest central density at ignition generally have a lower C/O ratio.The cooling time is mainly determined by the evolutionary age of secondaries,and the scatter of the cooling time decreases with the evolutionary age.Our results may indicate that WDs with a long cooling time have more uniform properties than those with a short cooling time,which may be helpful to explain why SNe Ia in elliptical galaxies have a more uniform maximum luminosity than those in spiral galaxies.  相似文献   

10.
Ia型超新星起源于碳氧白矮星在质量接近钱德拉塞卡极限时的热核爆炸,并被广泛地用作宇宙学距离的标准烛光.然而, Ia型超新星的前身星系统和爆炸机制还存在很多不明确的地方.近几十年来, Ia型超新星的星周环境得到了越来越多的关注.星周介质的空间分布性质为探究Ia型超新星的物理起源提供了重要线索.同时星周尘埃的散射会在Ia型超新星晚期的光变曲线、光谱和偏振等方面产生可观测效应.光谱上正常的Ia型超新星可以分成两类:喷射物速度正常和高速Ia型超新星.对比两者的光变曲线可以发现高速Ia型超新星在光极大后几个月内有明显颜色偏蓝的超出.该蓝色超出可以通过星周介质中的尘埃散射拟合得到.同时, Ia型超新星晚期光谱的拟合可以限制星周尘埃的颗粒大小等性质,晚期的偏振信号可以有效地限制星周尘埃的空间分布.拟合结果表明针对Ia型超新星晚期的多次图像偏振观测是揭示其星周尘埃环境特征的重要手段.  相似文献   

11.
One of the complexities in modelling integrated spectra of stellar populations is the effect of interacting binary stars besides Type Ia supernovae (SNeIa). These include common envelope systems, cataclysmic variables, novae, and are usually ignored in models predicting the chemistry and spectral absorption line strengths in galaxies. In this paper, predictions of chemical yields from populations of single and binary stars are incorporated into a galactic chemical evolution model to explore the significance of the effects of these other binary yields. Effects on spectral line strengths from different progenitor channels of SNeIa are also explored. Small systematic effects are found when the yields from binaries, other than SNeIa, are included, for a given star formation history. These effects are, at present, within the observational uncertainties on the line strengths. More serious differences can arise in considering different types of SNIa models, their rates and contributions.  相似文献   

12.
We investigate whether the recently observed population of high-velocity white dwarfs can be derived from a population of binaries residing initially within the thin disc of the Galaxy. In particular, we consider binaries where the primary is sufficiently massive to explode as a Type II supernova. A large fraction of such binaries are broken up when the primary then explodes as a supernova, owing to the combined effects of the mass loss from the primary and the kick received by the neutron star on its formation. For binaries where the primary evolves to fill its Roche lobe, mass transfer from the primary leads to the onset of a common envelope phase during which the secondary and the core of the primary spiral together as the envelope is ejected. Such binaries are the progenitors of X-ray binaries if they are not broken up when the primary explodes. For those systems that are broken up, a large number of the secondaries receive kick velocities ∼100–200 km s−1 and subsequently evolve into white dwarfs. We compute trajectories within the Galactic potential for this population of stars and relate the birth rate of these stars over the entire Galaxy to those seen locally with high velocities relative to the local standard of rest (LSR) . We show that for a reasonable set of assumptions concerning the Galactic supernova rate and the binary population, our model produces a local number density of high-velocity white dwarfs compatible with that inferred from observations. We therefore propose that a population of white dwarfs originating in the thin disc may make a significant contribution to the observed population of high-velocity white dwarfs.  相似文献   

13.
A P Cygni profile with absorption at 1.05 μm was observed in three pre-maximum J -band spectra of the Type Ia supernova (SN) 1994D. The feature was not present in two post-maximum spectra. The line was attributed to He I 10830 ... or Mg II 10926 ..., based on a local thermodynamic equilibrium (LTE) treatment. The detection of He in the ejecta of a SN Ia would be useful for determining the pre-SN evolution and the explosion mechanism of SNe Ia.
In this paper, synthetic spectra are presented for both the He and Mg models. The population of the He levels has been computed in non-local thermodynamic equilibrium (NLTE), including non-thermal excitation and ionization effects resulting from the deposition of γ-rays from the decay of 56Ni and 56Co.
The J -band feature in the pre-maximum spectra can be reproduced either assuming the presence of a narrow shell, between 10000 and 12500 km s−1, containing about 0.01 M⊙ of He, or increasing the abundance of Mg by about a factor of 5 with respect to the W7 value, implying a Mg mass of about 0.08 M⊙ above 10000 km s−1. Both models are in good agreement with the optical spectrum. In particular, a strong He I 10830-... line does not imply a strong 5876-... line, because the departure coefficients of the 2p and 2s levels of He I differ by about an order of magnitude.
Unfortunately, neither model is able to reproduce the sudden disappearance of the J -band feature in the post-maximum spectra. Possible explanations are discussed.  相似文献   

14.
The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is a key to solving the mystery of dark energy. Improving the calibration of SNe Ia increases their power as cosmological standard candles. We find tentative evidence for a correlation between the late-time light-curve slope and the peak luminosity of SNe Ia in the B band; brighter SNe Ia seem to have shallower light-curve slopes between 100 and 150 d from maximum light. Using a Markov Chain Monte Carlo (MCMC) analysis in calibrating SNe Ia, we are able to simultaneously take into consideration the effect of dust extinction, the luminosity and light-curve width correlation (parametrized by  Δ m 15  ), and the luminosity and late-time light-curve slope correlation. For the available sample of 11 SNe Ia with well-measured late-time light curves, we find that correcting for the correlation between luminosity and late-time light-curve slope of the SNe Ia leads to an intrinsic dispersion of 0.12 mag in the Hubble diagram. Our results have significant implications for future supernova surveys aimed to illuminate the nature of dark energy.  相似文献   

15.
The time delay between the formation of the progenitor systems of Type Ia supernovae (SNe Ia) and their detonation is a vital discriminant between the various progenitor scenarios that have been proposed for them. We use Sloan Digital Sky Survey optical and Galaxy Evolution Explorer ( GALEX ) ultraviolet observations of the early-type host galaxies of 21 nearby SNe Ia and quantify the presence or absence of any young stellar population to constrain the minimum time delay for each supernova. We find that early-type host galaxies lack 'prompt' SNe Ia with time delays of ≲100 Myr and that ∼70 per cent SNe Ia have minimum time delays of 275 Myr–1.25 Gyr, with a median of 650 Myr, while at least 20 per cent SNe Ia have minimum time delays of at least 1 Gyr at 95 per cent confidence and two of these four SNe Ia are likely older than 2 Gyr. The distribution of minimum time delays observed matches most closely the expectation for the single-degenerate channel with a main sequence donor. Furthermore, we do not find any evidence that subluminous SNe Ia are associated with long time delays.  相似文献   

16.
Using three-dimensional hydrodynamical simulations of isolated dwarf spheroidal galaxies (dSphs), we undertake an analysis of the chemical properties of their inner regions, identifying the respective roles played by Type Ia supernovae (SNe Ia) and Type II supernovae (SNe II). The effect of inhomogeneous pollution from SNe Ia is shown to be prominent within two core radii, with the stars forming therein amounting to ∼20 per cent of the total. These stars are relatively iron-rich and α-element depleted compared to the stars forming in the rest of the galaxy. At odds with the projected stellar velocity dispersion radial profile, the actual three-dimensional one shows a depression in the central region, where the most metal-rich (i.e. [Fe/H]-rich) stars are partly segregated. This naturally results in two different stellar populations, with an anticorrelation between [Fe/H] and velocity dispersion, in the same sense as that observed in the Sculptor and Fornax dSphs. Because the most iron-rich stars in our model are also the most α depleted, a natural prediction and test of our model is that the same radial segregation effects should exist between [α/Fe] and velocity dispersion.  相似文献   

17.
It has been suggested that the differences among the observational Type Ia supernovae (SNIa) set can be accounted for by invoking two regimes of propagation of combustion. Normal SNIa should be produced by rapid deflagrations that rapidly propagate across a white dwarf, while dim SNIa should be a consequence of a detonation issued during the contraction phase of a pulsation induced by a very slow conductive deflagration. In this paper, we explore the observational consequences of deflagrations, the properties of which are in between both behaviours. Using different laws for the flame velocity as a function of flame radius, a number of different outcomes were found, including direct explosions ejecting small quantities of 56Ni, pulsations leading to recontraction and likely reignition of the flame, and a threshold explosion characterized by an extended gravitationally bound phase (several 103 s), in which most of the white dwarf matter was ejected by the energy input of radioactive isotopes.
Not one of these strange supernovae has been detected up to now. Nevertheless, since they are very dim and, for nucleosynthesis reasons, very rare, their existence cannot be excluded. Furthermore, the computed light curve shows that these events mimic the behaviour of peculiar Type II supernovae (SNII), for which reasons there is always the possibility that they have been misclassified as peculiar SNII whose spectrum is lacking.  相似文献   

18.
The X-ray nuclei of intermediate-redshift radio sources   总被引:2,自引:0,他引:2  
We re-assess the question of a systematic time delay between the formation of the progenitor and its explosion in a Type Ia supernova (SN Ia) using the Hubble Higher- z Supernova Search sample. While a previous analysis indicated a significant time delay, with a most likely value of 3.4 Gyr, effectively ruling out all previously proposed progenitor models, our analysis shows that the time-delay estimate is dominated by systematic errors, in particular due to uncertainties in the star formation history (SFH). We find that none of the popular progenitor models under consideration can be ruled out with any significant degree of confidence. The inferred time delay is mainly determined by the peak in the assumed SFH. We show that, even with a much larger supernova sample, the time-delay distribution cannot be reliably reconstructed without better constraints on the SFH.  相似文献   

19.
As part of the European Supernova Collaboration, we obtained extensive photometry and spectroscopy of the Type Ia supernova (SN Ia) SN 2002dj covering epochs from 11 d before to nearly two years after maximum. Detailed optical and near-infrared observations show that this object belongs to the class of the high-velocity gradient events as indicated by Si, S and Ca lines. The light curve shape and velocity evolution of SN 2002dj appear to be nearly identical to SN 2002bo. The only significant difference is observed in the optical to near-infrared colours and a reduced spectral emission beyond 6500 Å. For high-velocity gradient SNe Ia, we tentatively identify a faster rise to maximum, a more pronounced inflection in the V and R light curves after maximum and a brighter, slower declining late-time B light curve as common photometric properties of this class of objects. They also seem to be characterized by a different colour and colour evolution with respect to 'normal' SNe Ia. The usual light curve shape parameters do not distinguish these events. Stronger, more blueshifted absorption features of intermediate-mass elements and lower temperatures are the most prominent spectroscopic features of SNe Ia displaying high-velocity gradients. It appears that these events burn more intermediate-mass elements in the outer layers. Possible connections to the metallicity of the progenitor star are explored.  相似文献   

20.
We propose a new chemical evolution model aimed at explaining the chemical properties of globular clusters (GCs) stars. Our model depends upon the existence of (i) a peculiar pre-enrichment phase in the GC's parent galaxy associated with very low-metallicity Type II supernovae (SNe II) and (ii) localized inhomogeneous enrichment from a single Type Ia supernova (SN Ia) and intermediate-mass  (4–7 M)  asymptotic giant branch field stars. GC formation is then assumed to take place within this chemically peculiar region. Thus, in our model the first low-mass GC stars to form are those with peculiar abundances (i.e. O-depleted and Na-enhanced), while 'normal' stars (i.e. O-rich and Na-depleted) are formed in a second stage when self-pollution from SNe II occurs and the peculiar pollution from the previous phase is dispersed. In this study, we focus on three different GCs: NGC 6752, 6205 (M 13) and 2808. We demonstrate that, within this framework, a model can be constructed which is consistent with (i) the elemental abundance anticorrelations, (ii) isotopic abundance patterns and (iii) the extreme [O/Fe] values observed in NGC 2808 and M 13, without violating the global constraints of approximately unimodal [Fe/H] and C+N+O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号