首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 28 February, 2006 Tiab earthquake (Mw 6.0), is the first earthquake to have occurred in the transition zone between the Zagros continental collision and the Makran subduction zone for which the aftershock sequence is recorded by a temporary local seismic network. The epicentral distribution of the aftershocks is diffuse and we cannot define a simple alignment at the surface. The depth of the aftershocks increases gently northward and they are primarily concentrated between 15 and 21 km depth, implying a deeper seismogenic layer than the Zagros. Very low-angle thrust faulting deduced from this local study supports thrusting of the Arabian plate beneath central Iran at the southeastern end of the Zagros as suggested previously based on teleseismic data. The focal mechanism of the main shock indicates a thrust mechanism similar to that of other strong earthquakes in this region, while most of the focal mechanisms of the aftershocks are dominantly strike-slip. We propose that the strike-slip mechanisms belong to right-lateral fault systems that accommodate differential motion at the transition between the Zagros collision zone and the Makran subduction zone. If so, this suggests that the convergence between Arabia and central Iran is at present accommodated along the transition zone by a partitioning process.  相似文献   

2.
A swarm of earthquakes of magnitudes up to M L = 3.8 stroke the region of West Bohemia/Vogtland (border area between Czechia and Germany) in October 2008. It occurred in the Novy Kostel focal zone, where also all recent earthquake swarms (1985/1986, 1997, and 2000) took place, and was striking by a fast sequence of macroseismically observed earthquakes. We present the basic characteristics of this swarm based on the observations of a local network WEBNET (West Bohemia seismic network), which has been operated in the epicentral area, on the Czech territory. The swarm was recorded by 13 to 23 permanent and mobile WEBNET stations surrounding the swarm epicenters. In addition, a part of the swarm was also recorded by strong-motion accelerometers, which represent the first true accelerograms of the swarm earthquakes in the region. The peak ground acceleration reached 0.65 m/s2. A comparison with previous earthquake swarms indicates that the total seismic moments released during the 1985/1986 and 2008 swarms are similar, of about 4E16 Nm, and that they represent the two largest swarms that occurred in the West Bohemia/ Vogtland region since the M L = 5.0 swarm of 1908. Characteristic features of the 2008 swarm are its short duration (4 weeks) and rapidity and, consequently, the fastest seismic moment release compared to previous swarms. Up to 25,000 events in the magnitude range of 0.5 < M L < 3.8 were detected using an automatic picker. A total of nine swarm phases can be distinguished in the swarm, five of them exceeding the magnitude level of 2.5. The magnitude–frequency distribution of the complete 2008 swarm activity shows a b value close to 1. The swarm hypocenters fall precisely on the same fault portion of the Novy Kostel focal zone that was activated by the 2000 swarm (M L ≤ 3.2) in a depth interval from 6 to 11 km and also by the 1985/1986 swarm (M L ≤ 4.6). The steeply dipping fault planes of the 2000 and 2008 swarms seem to be identical considering the location error of about 100 m. Furthermore, focal mechanisms of the 2008 swarm are identical with those of the 2000 swarm, both matching an average strike of 170° and dip of 80° of the activated fault segment. An overall upward migration of activity is observed with first events at the bottom and last events at the top of the of the activated fault patch. Similarities in the activated fault area and in the seismic moments released during the three largest recent swarms enable to estimate the seismic potential of the focal zone. If the whole segment of the fault plane was activated simultaneously, it would represent an earthquake of M L ~5. This is in good agreement with the estimates of the maximum magnitudes of earthquakes that occurred in the West Bohemia/Vogtland region in the past.  相似文献   

3.
The 14 February 2006 Phodong (Sikkim) earthquake of moderate magnitude (Mw 5.3) triggered several aftershocks that were recorded by a local seismic network. The thrust earthquake is part of the continuing earthquake activity in the Himalayan seismic belt region that occurs on the detachment or ramp under the Higher Himalaya. The aftershocks of the earthquake occurred in increased stress regions caused by the earthquake rupture. Triggering of aftershocks by such a moderate magnitude earthquake implies that the faults in the Himalaya are critically stressed and even a small change of stress, about 0.001–0.002 MPa, can trigger earthquakes on such faults.  相似文献   

4.
本文使用祁连山主动源台网和甘肃省数字测震台网记录到的地震资料,应用双差定位方法和遗传算法对2019年甘肃张掖M5.0地震及其余震进行重定位,获得了30个地震事件的重定位结果,双差定位显示主震位置为38.502°N,100.254°E,震源深度14.7 km。重定位结果显示余震分布在昌马—俄博断裂,较为集中,震源深度主要分布在5~15 km范围内,余震序列沿SW—NE向空间分布。  相似文献   

5.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

6.
杨萍  张辉  冯建刚 《地震工程学报》2017,39(1):150-153,185
采用CAP(Cut and Paste)方法反演了2015年11月23日青海祁连MS5.2主震的震源机制解,其最佳双力偶解:节面Ⅰ走向109°、倾角58°、滑动角21°,节面Ⅱ走向8°、倾角72°、滑动角146°,矩震级MW5.16,矩心震源深度约为9 km。结合震区的活动构造,判定发震断层面为节面Ⅰ,推测托勒山北缘活动断裂中段为此次地震的发震断裂。  相似文献   

7.
In October and November 2002, the Molise region (southern Italy) was struck by two moderate magnitude earthquakes within 24 hours followed by an one month long aftershocks sequence. Soon after the first mainshock (October 31st, 10.32 UTC, Mw 5.7), we deployed a temporary network of 35 three-component seismic stations. At the time of occurrence of the second main event (November 1st, 15.08 UTC, Mw 5.7) the eight local stations already installed allowed us to well constrain the hypocentral parameters. We present the location of the two mainshocks and 1929 aftershocks with 2 < ML < 4.2. Earthquake distribution reveals a E-trending 15 km long fault system composed by two main segments ruptured by the two mainshocks. Aftershocks define two sub-vertical dextral strike-slip fault segments in agreement with the mainshock fault plane solutions. P- and T-axes retrieved from 170 aftershocks focal mechanisms show a coherent kinematics: with a sub-horizontal NW and NE-trending P and T-axes, respectively. For a small percentage of focal mechanisms (∼ 10%) a rotation of T axes is observed, resulting in thrust solutions. The Apenninic active normal fault belt is located about 80 km westward of the 2002 epicentral area and significant seismicity occurs only 20-50 km to the east, in the Gargano promontory. Seismic hazard was thought to be small for this region because neither historical earthquake are reported in the Italian seismic catalogue or active faults were previously identified. In this context, the 2002 seismic sequence highlights the existence of trans-pressional active tectonics in between the extensional Apenninic belt and the Apulian foreland.  相似文献   

8.
The October 21, 1766 earthquake is the most widely felt event in the seismic history of Trinidad and Venezuela. Previous works diverged on the interpretation of the historical data available for this event. They associated the earthquake either with the Lesser Antilles subduction zone, with strike-slip motion along El Pilar fault, or with intraplate deformation at the edge of Guyana shield. Isoseismal areas are proposed after a new search and analysis of primary and secondary sources of historical information. Two of the largest earthquakes of the twentieth century which occurred in the region, the 1968 (M S 6.4, h = 103 km), and the 1997 (M W 6.9, h = 25 km) events, for which both intensity data and instrumentally determined source parameters are available, are used to calibrate the isoseismal areas and to interpret them in terms of source depth and magnitude. It is concluded that the large extent of intensity values higher than V is diagnostic of the depth (85 ± 20 km) of the 1766 source, and of local amplifications of ground motion due to soft soil conditions and to strong contrasts of impedance at the edge of Guyana shield. It is proposed that the event occurred either in slab, or close to the bottom lithospheric interface between the Caribbean and South American plates (∼11°N; ∼62.5°W). The value of the magnitude is estimated at 6.5 < M S < 7.5 depending on the source depth and on the decay of ground motion as a function of distance. Deep and intermediate depth earthquakes can induce important casualties in Trinidad, Venezuela, and Guyana, possibly more damaging than those induced by shallower earthquakes along the strike of El Pilar Fault.  相似文献   

9.
2017年9月4日河北临城发生ML4.4地震,这是邢台地区自2003年以来发生的唯一一次ML4以上地震.震后大量余震沿条带分布,揭示了一条前人未发现的隐伏断层(根据其经过的地点称之为齐家庄-东双井断裂).为研究该隐伏断层的几何形状和滑动性质,首先基于河北数字地震台网资料对地震序列进行精定位,利用精定位地震数据拟合发震断...  相似文献   

10.
采用CAP方法反演2010年玉树7.1级地震序列前震、主震及余震19个ML≥4.0事件的震源机制解,19个结果以走滑类型为主,前震、主震的震源机制解十分接近,反映出前震、主震之间密切的联系;震源深度集中在7~12 km,震源最浅(4.5 km)与最深(34 km)的两个余震事件具有明显的逆冲性质,表现出明显的边界特征;19个事件的震中分布在甘孜-玉树断裂北支玉树-隆宝断裂上,目前已经证明该断裂即为玉树地震的发震构造。自SE-NW沿玉树-隆宝断裂走向拉一剖面,观察震源深度沿剖面的变化情况,可看出玉树-隆宝断裂西北段震源深度要大于东南段,该段主要是余震活动的中后期,因此在地震活动的中后期,余震向地壳深部扩展,断裂累积的应变能得到更进一步的释放;P轴方位角优势分布集中在220°~230°,T轴方位优势分布集中在310°~320°,两个优势分布互相垂直性与单个事件的沙滩球应力轴一样,说明玉树地震的震源机制解类型较为简单;玉树周边地区应力场分布比较均匀,并不像汶川周边地区那么复杂,本次玉树地震为巴颜喀拉地块与羌塘块体边界处甘孜-玉树断裂应变能量的正常释放。  相似文献   

11.
The Tafilalt region, located at the eastern end of the Anti-Atlas chain in Morocco, was shaken on 23 and 30 October 1992 by two moderate earthquakes of magnitude mb ∼ 5 and intensity ∼ VI MSK64, which caused two deaths and great damage in the area between Erfoud and Rissani. The review of data available on the seismic crisis allowed us to improve the knowledge on the macroseismic, instrumental and source parameters of the earthquakes. The main results of the present study are: (1) location of the epicentres with the help of data from a close portable network allowed us to propose new epicentral coordinates at 31.361° N, 4.182° W (23 October) and 31.286° N, 4.347° W (30 October); both events have focal depths of 2 km; (2) the shock of 30 October was followed by a series of 305 aftershocks, most of which were located west of Rissani; the 61 best-constrained events had focal depths of 5 to 19 km and magnitudes 0.7 to 3; (3) the largest damage was located in an area between the two epicentres within the Tafilalt valley and was probably amplified by site effects due to the proximity of the water table within the Quaternary sediments; (4) focal mechanisms of the main events correspond to strike-slip faulting with fault planes oriented N–S (left lateral) and E–W (right lateral); the only mechanism available for the aftershocks also corresponds to strike-slip faulting; (5) spectral analysis shows that the scalar seismic moment (Mo) of the first event is slightly larger than the second; the corresponding values of Mw are 5.1 and 5.0, respectively; (6) the dimensions of the faults for a circular fault model are 7.7 ± 1.4 and 7.4 ± 1.2 km, respectively; the average displacement is 4 cm for the first event and 3.7 cm for the second; the stress drop is 0.4 and 0.3 MPa, respectively, in agreement with standard values; (7) the Coulomb Stress test performed for both earthquakes suggests a relationship between both events only when the used location is at the limit of the horizontal uncertainty; (8) finally, the occurrence of these shocks suggests that the Anti-Atlas is undergoing tectonic deformation in addition to thermal uplift as suggested by recent publications.  相似文献   

12.
A mildly damaging earthquake of magnitude 4.5 and intensity VI occurred 20 km east of the Idukki reservoir, Kerala in southern India. With a network of 5 seismic stations, the aftershocks which continued for 3 1/2 months were monitored. The hypocentral parameters, b value,M 1/M 0 ratio indicate that this earthquake sequence does not qualify to be categorized as induced. The trend of the aftershocks, composite fault plane solution and local tectonics point towards reactivation of a NW-SE fault along the Kallar river. The existence of such a fault is also supported by gravity studies.  相似文献   

13.
Receiver functions are widely employed to detect P-to-S converted waves and are especially useful to image seismic discontinuities in the crust. In this study we used the P receiver function technique to investigate the velocity structure of the crust beneath the Northwest Zagros and Central Iran and map out the lateral variation of the Moho boundary within this area. Our dataset includes teleseismic data (M b ≥ 5.5, epicentral distance from 30° to 95°) recorded at 12 three-component short-period stations of Kermanshah, Isfahan and Yazd telemetry seismic networks. Our results obtained from P receiver functions indicate clear Ps conversions at the Moho boundary. The Moho depths were firstly estimated from the delay time of the Moho converted phase relative to the direct P wave beneath each network. Then, we used the P receiver function inversion to find the properties of the Moho discontinuity such as depth and velocity contrast. Our results obtained from PRF are in good agreement with those obtained from the P receiver function modeling. We found an average Moho depth of about 42 km beneath the Northwest Zagros increasing toward the Sanandaj-Sirjan Metamorphic Zone and reaches 51 km, where two crusts (Zagros and Central Iran) are assumed to be superposed. The Moho depth decreases toward the Urmieh-Dokhtar Cenozoic volcanic belt and reaches 43 km beneath this area. We found a relatively flat Moho beneath the Central Iran where, the average crustal thickness is about 42 km. Our P receiver function modeling revealed a shear wave velocity of 3.6 km/s in the crust of Northwest Zagros and Central Iran increasing to 4.5 km/s beneath the Moho boundary. The average shear wave velocity in the crust of UDMA as SSZ is 3.6 km/s, which reaches to 4.0 km/s while in SSZ increases to 4.3 km/s beneath the Moho.  相似文献   

14.
Source mechanism and source parameters of May 28, 1998 earthquake,Egypt   总被引:1,自引:0,他引:1  
On May 28, 1998, a moderate size earthquake of mb 5.5 occurred offshore the northwestern part of Egypt (latitude 31.45°N and longitude 27.64°E). It was widely felt in the northern part of Egypt. Being the largest well-recorded event in the area for which seismic data from the global digital network are available, it provides an excellent opportunity to study the tectonic process and present day stress field occurring along the offshore Egyptian coast. The source parameters of this event are determined using three different techniques: modeling of surface wave spectral amplitudes, regional waveform inversion, and teleseismic body waveform inversion. The results show a high-angle reverse fault mechanism generally trending NNW–SSE. The P-axis trends ENE–WSW consistently with the prevailed compression stress along the southeastern Hellenic arc and southwestern part of the Cyprean arc. This unexpected mechanism is most probably related to a positive inversion of the NW trending offshore normal faults and confirms an extension of the back thrusting effects towards the African margin. The estimated focal depth ranges from 22 to 25 km, indicating a lower crustal origin earthquake owing to deep-seated tectonics. The source time function indicates a single source with rise time and total rupture duration of 2 and 5 s, respectively. The seismic moment (M o) and the moment magnitude (M w) determined by the three techniques are 1.03 × 1017 Nm, 5.28; 1.24 × 1017 Nm, 5.33; and 1.68 × 1017 Nm, 5.42; respectively. The calculated fault radius, stress drop, and the average dislocation assuming a circular fault model are 7.2 km, 0.63 Mpa, and 0.11 m, respectively.  相似文献   

15.
研究了发生在海西断裂天祝拉分盆地1996年6月1日5.4级地震的震源机制,利用位于天祝-古浪地区的数字式微震监测台网纪录的余震的精确定位确定了本次地震的发震断层,研究表明这次地震是天祝拉分盆地中垂直于主断裂的近南北向断裂所形成,根据破裂模型和海原西断裂的应力积累状况,讨论了海原西断裂近期的大震危险性。  相似文献   

16.
We relocated M8.0 Wenchuan earthquake and 2706 aftershocks with M⩾2.0 using double-difference algorithm and obtained relocations of 2553 events. To reduce the influence of lateral variation in crustal and upper mantle velocity structure, we used different velocity models for the east and west side of Longmenshan fault zone. In the relocation process, we added seismic data from portable seismic stations close to the shocks to constrain focal depths. The precisions in E-W, N-S, and U-D directions after relocation are 0.6, 0.7, and 2.5 km respectively. The relocation results show that the aftershock epi-centers of Wenchuan earthquake were distributed in NE-SW direction, with a total length of about 330 km. The aftershocks were concentrated on the west side of the central fault of Longmenshan fault zone, excluding those on the north of Qingchuan, which obviously deviated from the surface fault and passed through Pingwu-Qingchuan fault in the north. The dominant focal depths of the aftershocks are between 5 and 20 km, the average depth is 13.3 km, and the depth of the relocated main shock is 16.0 km. The depth profile reveals that focal depth distribution in some of the areas is characterized by high-angle westward dipping. The rupture mode of the main shock features reverse faulting in the south, with a large strike-slip component in the north. Supported by the Basic Research Project of Institute of Geophysics, China Earthquake Administration (Grant No. DQJB08Z03)  相似文献   

17.
A shallow earthquake ofM S=6.2 occurred in the southern part of the Peloponnesus, 12 km north of the port of the city of Kalamata, which caused considerable damage. The fault plane solution of the main shock, geological data and field observations, as well as the distribution of foci of aftershocks, indicate that the seismic fault is a listric normal one trending NNE-SSW and dipping to WNW. The surface ruptures caused by the earthquake coincide with the trace of a neotectonic fault, which is located 2–3 km east of the city of Kalamata and which is related to the formation of Messiniakos gulf during the Pliocene-Quaternary tectonics. Field observations indicate that the earthquake is due to the reactivation of the same fault.A three-days aftershock study in the area, with portable seismographs, recorded many aftershocks of which 39 withM S1.7 were very well located. The distribution of aftershocks forms two clusters, one near the epicenter of the main shock in the northern part of the seismogenic volume, and the other near the epicenter of the largest aftershock (M S=5.4) in the southern part of this volume. The central part of the area lacks aftershocks, which probably indicates that this is the part of the fault which slipped smoothly during the earthquake.  相似文献   

18.
An earthquake with MS5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, we collected the arrival time data from the Yunnan seismic observational bulletins during 1 January to 25 March 2011, and precisely hand-picked the arrival times from high-quality seismograms that were recorded by the temporary seismic stations deployed by our Institute of Crustal Dynamics, China Earthquake Administration. Using these arrival times, we relocated all the earthquakes including the Yingjiang mainshock and its aftershocks using the double-difference relocation algorithm. Our results show that the relocated earthquakes dominantly occurred along the ENE direction and formed an upside-down bow-shaped structure in depth. It is also observed that after the Yingjiang mainshock, some aftershocks extended toward the SSE over about 10 km. These results may indicate that the Yingjiang mainshock ruptured a conjugate fault system consisting of the ENE trending Da Yingjiang fault and a SSE trending blind fault. Such structural features could contribute to severely seismic hazards during the moderate-size Yingjiang earthquake.  相似文献   

19.
Two felt moderate-sized earthquakes with local magnitudes of 4.9 on October 11, 1999 and 4.3 on November 08, 2006 occurred southeast of Beni Suef and Cairo cities. Being well recorded by the digital Egyptian National Seismic Network (ENSN) and some regional broadband stations, they provided us with a unique opportunity to study the tectonic process and present-day stress field acting on the northern part of the Eastern Desert of Egypt. In this study, we analyze the main shocks of these earthquakes and present 15 well recorded aftershocks (0.9 ≤ ML ≤ 3.3) which have small errors on both horizontal and vertical axes. The relocation analysis using the double difference algorithm clearly reveals a NW trending fault for the 1999 earthquake. The spatial distribution of its aftershocks indicates a propagation of rupture from the SW towards the NW along a fault length ~5 km dipping nearly ~40°SW. We also determined the focal mechanisms of the two main shocks by two methods (polarities and amplitudes ratios of P, SV and SH and regional waveform inversion). Our results indicate a normal faulting mechanism with a slight shear component for the first event, while pure normal faulting for the second one. The spatial distribution of the 1999 aftershocks sequence along with the retrieved focal mechanism confirmed the NW plane as the true fault plane. While for the 2006 event, the few aftershocks do not reveal any fault geometry; its focal mechanism indicated a pure normal fault nearly trending WNW-ESE that corresponds more likely to the extension of the 1999 earthquake fault. The seismicity distribution between the two earthquake sequences reveals a noticeable gap that may be a site of a future event. The NNE-SSW extensional stress indicated by the mechanisms of these events is in agreement with the regional stress field and the rifting of the northern Red Sea in its northern branches (Gulf of Suez and Gulf of Aqaba). The source parameters (seismic moment, moment magnitude, fault radius, stress drop and displacement across the fault) were also estimated and compared based on both the regional waveform inversion and the displacement spectra and interpreted in the context of the tectonic setting. The obtained results imply a reactivation of the pre-exiting NW-SE faults as a result of extensional deformation from the northern Red Sea-Gulf of Suez rifts.  相似文献   

20.
We study the surface deformation associated with the 22 December 1999 earthquake, a moderate sized but damaging event at Ain Temouchent (northwestern Algeria) using Interferometric Satellite Aperture Radar images (InSAR). The mainshock focal mechanism solution indicates reverse faulting with a NE–SW trending rupture comparable to other major seismic events of this section of the Africa–Eurasia plate boundary. Previously, the earthquake fault parameters were, however, poorly known because no aftershocks were precisely determined and no coseismic surface ruptures were observed in the field. Using a pair of ERS data with small baseline and short temporal separation in the ascending orbit we obtained an interferogram that shows the coseismic surface displacement field despite poor coherence. The interferogram measures four fringes and displays an ellipse-shaped lobe with ∼11 cm peak line-of-sight displacement. The elastic modeling using a boundary element method (Poly3Dinv) indicate coseismic slip reaching up to 1 m at 5 km depth on the N 57° E trending, dipping 32° NW Tafna thrust fault. The geodetic estimate of seismic moment is 4.7 × 1017 N m. (Mw 5.7) in is good agreement with seismological results. The elliptical shape of the surface displacement field coincides with the NE–SW trending Berdani fault-related fold. The consistency between the geological observations and InSAR solution shed light on the precise earthquake location and related Tafna fault parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号