首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth??s atmosphere using piecewise reflectionless profiles. The Earth??s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth??s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations.  相似文献   

2.
Abstract

The study of the mechanisms controlling the stratification in closed fluid regions is an important branch of geophysical fluid dynamics. Part of this subject can be handled with a simple linear model, consisting of a buoyancy layer at the non-horizontal boundaries of a container and an advective-diffusive interior coupled by volume continuity. The model is valid under the following conditions: firstly, the buoyancy-frequency characterizing the solution must be sufficiently large to give rise to a flow pattern of boundary layer type and, secondly, the non-horizontal walls must not have too large thermal conductivity.

The main purpose of the present paper is to summarise previous work done by the authors in this field and to present some consequences of their theory not previously discussed.

Three important cases are discussed; certain stationary solutions, the decay of a given stratification and the build up of a stratification in a homogeneous fluid. The experimental results concerning the afore-mentioned cases are presented.  相似文献   

3.
Records of the coastal mareographs during the December 26, 2004, tsunami are used to study the fine structure of the tsunami wave power spectra. It is shown that a series of maxima is observed in their spectra near the source in a range of internal gravity wave frequencies of 0.2–1.2 mHz, which coincides with the frequencies of the natural oscillations of the Earth. This experimental finding enables us to propose a possible physical mechanism for the formation of tsunami waves as a result of oscillations in the sea bottom at these frequencies. Internal gravity waves in the Earth’s atmosphere excited in this way are found in the variations of the total electron content that resulted from this powerful earthquake.  相似文献   

4.
In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy–Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker–Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy–Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.  相似文献   

5.
The coal-bearing strata of the deep Upper Paleozoic in the GS Sag have high hydrocarbon potential. Because of the absence of seismic data, we use electromagnetic (MT) and gravity data jointly to delineate the distribution of deep targets based on well logging and geological data. First, a preliminary geological model is established by using three-dimensional (3D) MT inversion results. Second, using the formation density and gravity anomalies, the preliminary geological model is modified by interactive inversion of the gravity data. Then, we conduct MT-constrained inversion based on the modified model to obtain an optimal geological model until the deviations at all stations are minimized. Finally, the geological model and a seismic profile in the middle of the sag is analysed. We determine that the deep reflections of the seismic profile correspond to the Upper Paleozoic that reaches thickness up to 800 m. The processing of field data suggests that the joint MT–gravity modeling and constrained inversion can reduce the multiple solutions for single geophysical data and thus improve the recognition of deep formations. The MT-constrained inversion is consistent with the geological features in the seismic section. This suggests that the joint MT and gravity modeling and constrained inversion can be used to delineate deep targets in similar basins.  相似文献   

6.
7.
An efficient method for inferring Manning’s n coefficients using water surface elevation data was presented in Sraj et al. (Ocean Modell 83:82–97 2014a) focusing on a test case based on data collected during the Tōhoku earthquake and tsunami. Polynomial chaos (PC) expansions were used to build an inexpensive surrogate for the numerical model GeoClaw, which were then used to perform a sensitivity analysis in addition to the inversion. In this paper, a new analysis is performed with the goal of inferring the fault slip distribution of the Tōhoku earthquake using a similar problem setup. The same approach to constructing the PC surrogate did not lead to a converging expansion; however, an alternative approach based on basis pursuit denoising was found to be suitable. Our result shows that the fault slip distribution can be inferred using water surface elevation data whereas the inferred values minimize the error between observations and the numerical model. The numerical approach and the resulting inversion are presented in this work.  相似文献   

8.
The results of a model study of the acoustic gravity wave (AGW) propagation from the Earth’s surface to the upper atmospheric altitudes have been considered. Numerical calculations have been performed using a nonhydrostatic model of the atmosphere, which takes into account nonlinear and dissipative processes originating when waves propagate upward. The model source of atmospheric disturbances has been specified in an area localized on the Earth’s surface. The disturbance source frequency spectrum includes harmonics at frequencies of 0.5ωg-1.5ωgg is the Brunt-Väisälä frequency near the Earth’s surface). The calculations indicated that AGW propagation and dissipation over the source result in the fact that the region of large-scale spatial disturbances of the upper atmosphere mean state is formed at ~200 km altitudes. This region substantially affects AGW propagation and results in waveguide propagation of AGWs with periods shorter than the Väisälä-Brunt period at the altitude of a disturbed atmosphere. The dissipation of AGWs propagating in such a waveguide results in a waveguide horizontal expansion. The extension of the disturbed region of the mean state of the upper atmosphere and, consequently, the waveguide length can reach ~1000 km, if the AGW ground source operates for ~1 h. The physical mechanism by which large-scale disturbances are formed in the upper atmosphere, based on the propagation and dissipation of AGWs with periods shorter than the Väisälä-Brunt period in the upper atmosphere, explains why these disturbances are rapidly generated and localized above AGW sources located on the Earth’s surface or in the lower atmosphere.  相似文献   

9.
Comparative analysis of coseismic and postseismic variations of the Earth’s gravity field is carried for the regions of three giant earthquakes (Andaman-Sumatra, December 26, 2004, magnitude M w = 9.1; Maule-Chile, February 27, 2010, M w = 8.8, and Tohoku-Oki, March 11, 2011, M w = 9.0) with the use of GRACE satellite data. Within the resolution of GRACE models, the coseismic changes of gravity caused by these seismic events manifest themselves by large negative anomalies located in the rear of the subduction zone. The real data are compared with the synthetic anomalies calculated from the rupture surface models based on different kinds of ground measurements. It is shown that the difference between the gravity anomalies corresponding to different rupture surface models exceeds the uncertainties of the GRACE data. There-fore, the coseismic gravity anomalies are at least suitable for rejecting part of the models that are equivalent in the ground data. Within the first few months after the Andaman-Sumatra earthquake, a positive gravity anomaly started to grow above the deep trench. This anomaly rapidly captured the area of the back-arc basin and largely compensated the negative coseismic anomaly. The processes of viscoelastic stress relaxation do not fully allow for these rapid changes of gravity. According to the calculations, even with a sufficiently low viscosity of the upper mantle, relaxation only covers about a half of the observed change of the field. In order to explain the remaining temporal variations, we suggested the process of downdip propagation of the coseismic rupture surface. The feasibility of such a process was supported by numerical simulations. The sum of the gravity anomalies caused by this process and the anomaly generated by the processes of viscoelastic relaxation accounts well for the observed changes of the gravity field in the region of the earthquake. The similar postseismic changes of gravity were also detected for the region of the Tohoku-Oki earthquake. Just as in the case discussed above, this earthquake was also followed by a rapid growth of a positive postseismic anomaly, which partially counterbalanced the negative coseismic anomaly. The time variations of the gravity field in the region of the Maule-Chile earthquake differ from the pattern of changes observed in the island arcs described above. The postseismic gravity variations are in this case concentrated in a narrower band above the deep trench and shelf, and they do not spread over the continental territory, where the negative coseismic anomaly is located. These discrepancies reflect the difference in the geodynamical settings of the studied earthquakes.  相似文献   

10.
Ocean Dynamics - The complicated pattern of the chaotic ocean surface depends strongly on the interaction between wind and waves. An accurate representation of momentum and energy exchange at...  相似文献   

11.
The Earth’s free core nutation (FCN) is a retrograde eigenmode which is attributed to the interaction between the solid mantle and the liquid core of the rotational elliptical Earth.  相似文献   

12.
The capabilities of the continuous wavelet transform (CWT) and the multiresolution analysis (MRA) are presented in this work to measure vertical gravity wave characteristics. Wave properties are extracted from the first data set of Rayleigh lidar obtained between heights of 30 km and 60 km over La Reunion Island (21°S, 55°E) during the Austral winter in 1994 under subtropical conditions. The altitude-wavelength representations deduced from these methods provide information on the time and spatial evolution of the wave parameters of the observed dominant modes in vertical profiles such as the vertical wavelengths, the vertical phase speeds, the amplitudes of temperature perturbations and the distribution of wave energy. The spectra derived from measurements show the presence of localized quasi-monochromatic structures with vertical wavelengths <10 km. Three methods based on the wavelet techniques show evidence of a downward phase progression. A first climatology of the dominant modes observed during the Austral winter period reveals a dominant night activity of 2 or 3 quasi-monochromatic structures with vertical wavelengths between 1/2 km from the stratopause, 3/4 km and 6/10 km observed between heights of 30 km and 60 km. In addition, it reveals a dominant activity of modes with a vertical phase speed of –0.3 m/s and observed periods peaking at 3/4 h and 9 h. The characteristics of averaged vertical wavelengths appear to be similar to those observed during winter in the southern equatorial region and in the Northern Hemisphere at mid-latitudes.  相似文献   

13.
The Earth's free core nutation (FCN) is a retrograde eigenrnode which is attributed to the interaction between the solid mantle and the liquid core of the rotational elliptical Earth. This mode appears as an eigenmode of nearly diurnal free wobble (NDFW) in a terrestrial reference frame with a period of about one day (XU et al, 2001). Therefore, the NDFW will lead to an obvious resonance enhancement in the diurnal tidal gravity observations, especially those of the tidal waves with frequencies closed to its eigenfrequency such as P1, K1, ψ1 and Ф1. The FCN resonance parameters can be retrieved accurately by high-precision tidal gravity observations, especially those recorded with the superconducting gravimeters (SG). The Global Geodynamics Project (GGP) organized by IUGG took it as an important content for determining the FCN resonance parameters by using gravity data. However, the results are affected by many factors such as station location, background noise, the selection of the tide-generating potential tables, ocean tide models, data processing techniques and so on. In our study, the FCN parameters will be retrieved by using the SG observations at Wuhan, and the effects of the choices of various tide-generating potential tables, oceanic models and weight functions on the estimation of the FCN parameters will be discussed in detail,  相似文献   

14.
15.
16.
Satellite gravimetry is a powerful and reliable tool for regional tectono-geodynamic zonation. The studied region contains intricate geodynamical features (high seismological indicators, active rift systems and collision processes), richest structural arrangement (existence of mosaic blocks of oceanic and continental Earth’s crust of various age), and a number of high-amplitude gravity anomalies and complex magnetic pattern. The most hydrocarbon reserves of the world and other important economic deposits occur in this region. Comprehensive analysis of satellite gravity data with application of different approaches was used to develop a sequence of maps specifying crucial properties of the region deep structure. Careful examination of numerous geological sources and their combined examination with satellite gravity (main), magnetic, GPS, seismic, seismological and some other geophysical data enabled to develop a new tectonic map of the Arabian–African region. Integrated analysis of series of gravity map transformations and certain geological indicators allowed to reveal significant geodynamic features of the region.  相似文献   

17.
Introduction The study on deep crustal faults has been one of the most vigorous subjects in seismology. In the past, 3-D deep seismic sounding and 3-D seismic tomography were usually used for this pur-pose. But it is difficult to obtain the fine structures of the faults in deep crust by these methods. Recently, seismologists in the world pay more attention to the fault zone trapped waves. Since the fault-zone trapped waves arise from coherent multiple reflections at two boundaries of the fau…  相似文献   

18.
Vertical coupling in the low-latitude atmosphere–ionosphere system driven by the 5-day Rossby W1 and 6-day Kelvin E1 waves in the low-latitude MLT region has been investigated. Three different types of data were analysed in order to detect and extract the ∼6-day wave signals. The National Centres for Environmental Prediction (NCEP) geopotential height and zonal wind data at two pressure levels, 30 and 10 hPa, were used to explore the features of the ∼6-day waves present in the stratosphere during the period from 1 July to 31 December 2004. The ∼6-day wave activity was identified in the neutral MLT winds by radar measurements located at four equatorial and three tropical stations. The ∼6-day variations in the ionospheric electric currents (registered by perturbations in the geomagnetic field) were detected in the data from 26 magnetometer stations situated at low latitudes. The analysis shows that the global ∼6-day Kelvin E1 and ∼6-day Rossby W1 waves observed in the low-latitude MLT region are most probably vertically propagating from the stratosphere. The global ∼6-day W1 and E1 waves seen in the ionospheric electric currents are caused by the simultaneous ∼6-day wave activity in the MLT region. The main forcing agent in the equatorial MLT region seems to be the waves themselves, whereas in the tropical MLT region the modulated tides are also of importance.  相似文献   

19.
The Southeast Crater (SEC) of Mt. Etna, Italy, is renowned for its high activity, mainly long-lived eruptions consisting of sequences of individual paroxysmal episodes which have produced more than 150 eruptive events since 1998. Each episode typically forms eruption columns followed by tephra fallout over distances of up to about 100 km from the vent. One of the last sequences consisted of 25 lava fountaining events, which took place between January 2011 and April 2012 from a pit-vent on the eastern flank of the SEC and built a new scoria cone renamed New Southeast Crater. The first episode on 12–13 January 2011 produced tephra fallout which was unusually dispersed toward to the South extending out over the Mediterranean Sea. The southerly deposition of tephra permitted an extensive survey at distances between ~1 and ~100 km, providing an excellent characterization of the tephra deposit. Here, we document the stratigraphy of the 12–13 January fallout deposit, draw its dispersal, and reconstruct its isopleth map. These data are then used to estimate the main eruption source parameters. The total erupted mass (TEM) was calculated by using four different methodologies which give a mean value of 1.5?±?0.4?×?108 kg. The mass eruption rate (MER) is 2.5?±?0.7?×?104 kg/s using eruption duration of 100 min. The total grain-size (TGS) distribution, peaked at ?3 phi, ranges between ?5 and 5 phi and has a median value of ?1.4 phi. Further, for the eruption column height, we obtained respective values of 6.8–13.8 km by using the method of Carey and Sparks (1986) and 3.4?±?0.3 km by using the methods of Wilson and Walker (1987), Mastin et al. (2009), and Pistolesi et al. (2011) and considering the mean value of MER from the deposit. We also evaluated the uncertainty and reliability of TEM and TGS for scenarios where the proximal and distal samples are not obtainable. This is achieved by only using a sector spanning the downwind distances between 6 and 23 km. This scenario is typical for Etna when the tephra plume is dispersed eastward, i.e., in the prevailing wind direction. Our results show that, if the analyzed deposit has poorer sample coverage than presented in this study, the TEM (3.4?×?107 kg) is 22 % than the TEM obtained from the whole deposit. The lack of the proximal (<6 km) deposit may cause more significant differences in the TGS estimations.  相似文献   

20.
Wireline logs and vertical seismic profile data were acquired in two boreholes intersecting the main mineralized zone at the Cu–Au New Afton porphyry deposit, Canada, with the objectives of imaging lithological contacts, fault zones that may have acted as conduits that channelled the mineralization, and alteration zones. Log data provide physical rock properties for the main lithologies and alteration zones. Calliper logs reveal many faults and caved-in zones generally indicating rocks with low integrity at the borehole wall. The preponderance of these zones, as indicated by the logs, suggests that their response may dominate the seismic-reflection wavefield. Outside fault zones, compressional and shear-wave velocities exhibit significant variability due to porosity, the heterogeneity of volcanic fragmental rocks and alteration. Distributed acoustic sensing was used to acquire vertical seismic profiling data in the two boreholes surveyed with wireline logs. Straight and helically wound fibre-optic cables housed standard fibres and a fibre engineered to increase the intensity of backscattering at the distributed acoustic sensing interrogator. Standard and engineered optical fibres placed in the two boreholes were daisy-chained together to form two 5-km-long continuous fibres that were interrogated at once with two interrogators. A new generation of interrogator connected to the engineered fibres provided field data with lower noise level and higher signal-to-noise ratio. These data with higher signal-to-noise ratio from straight fibre-optic cable were processed and used for depth imaging. Depth images benefitted from new migration weights that account for the directional sensitivity of the straight fibre-optic cable and limit the extent of migration artefacts. Migration results show several reflectors with shallow dips to the northwest, some explained by faults intersecting the surveyed boreholes. The main sub-vertical lithological and alteration contacts at New Afton generated downgoing reflections that were not considered in the migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号