首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elemental and Sr–Nd isotopic data on metatexites, diatexites, orthogneisses and charnockites from the central Ribeira Fold Belt indicate that they are LILE-enriched weakly peraluminous granodiorites. Harker and Th–Hf–La correlation trends suggest that these rocks represent a co-genetic sequence, whereas variations on CaO, MnO, Y and HREE for charnockites can be explained by garnet consumption during granulitic metamorphism.Similar REE patterns and isotopic results of ?Nd565 = ?5.4 to ?7.3 and 87Sr/86Sr565 = 0.706–0.711 for metatexites, diatexites, orthogneisses and charnockites, as well as similar TDM ages between 2.0 and 1.5 Ga are consistent with evolution from a relatively homogeneous and enriched common crustal (metasedimentary) protolith.Results suggest a genetic link between metatexites, diatexites, orthogneisses and charnockites and a two-step process for charnockite development: (a) generation of the hydrated igneous protoliths by anatexis of metasedimentary rocks; (b) continuous high-grade metamorphism that transformed the “S-type granitoids” (leucosomes and diatexites) into orthogneisses and, as metamorphism and dehydration progressed, into charnockites.  相似文献   

2.
The Guarguaraz Complex, in western Argentina, comprises a metasedimentary assemblage, associated with mafic sills and ultramafic bodies intruded by basaltic dikes, which are interpreted as Ordovician dismembered ophiolites. Two kinds of dikes are recognized, a group associated with the metasediments and the other ophiolite-related. Both have N-MORB signatures, with εNd between +3.5 and +8.2, indicating a depleted source, and Grenville model ages between 0.99 and 1.62 Ga. A whole-rock Sm–Nd isochron yielded an age of 655 ± 76 Ma for these mafic rocks, which is compatible with cianobacteria and acritarchae recognized in the clastic metasedimentary platform sequences, that indicate a Neoproterozoic (Vendian)–Cambrian age of deposition.The Guarguaraz metasedimentary–ophiolitic complex represents, therefore, a remnant of an oceanic basin developed to the west of the Grenville-aged Cuyania terrane during the Neoproterozoic. The southernmost extension of these metasedimentary sequences in Cordón del Portillo might represent part of this platform and not fragments of the Chilenia terrane. An extensional event related to the fragmentation of Rodinia is represented by the mafic and ultramafic rocks. The Devonian docking of Chilenia emplaced remnants of ocean floor and slices of the Cuyania terrane (Las Yaretas Gneisses) in tectonic contact with the Neoproterozoic metasediments, marking the Devonian western border of Gondwana.  相似文献   

3.
The major and trace element characteristics of black shales from the Lower Cretaceous Paja Formation of Colombia are broadly comparable with those of the average upper continental crust. Among the exceptions are marked enrichments in V, Cr, and Ni. These enrichments are associated with high organic carbon contents. CaO and Na2O are strongly depleted, leading to high values for both the Chemical Index of Alteration (77–96) and the Plagioclase Index of Alteration (86–99), which indicates derivation from a stable, intensely weathered felsic source terrane. The REE abundances and patterns vary considerably but can be divided into three main groups according to their characteristics and stratigraphic position. Four samples from the lower part of the Paja Formation (Group 1) are characterized by LREE-enriched chondrite-normalized patterns (average LaN/YbN = 8.41) and significant negative Eu anomalies (average Eu/Eu1 = 0.63). A second group of five samples (Group 2), also from the lower part, have relatively flat REE patterns (average LaN/YbN = 1.84) and only slightly smaller Eu anomalies (average Eu/Eu1 = 0.69). Six samples from the middle and upper parts (Group 3) have highly fractionated patterns (average LaN/YbN = 15.35), resembling those of Group 1, and an identical average Eu/Eu1 of 0.63. The fractionated REE patterns and significant negative Eu anomalies in Groups 1 and 3 are consistent with derivation from an evolved felsic source. The flatter patterns of Group 2 shale and strongly concave MREE-depleted patterns in two additional shales likely were produced during diagenesis, rather than reflecting more mafic detrital inputs. An analysis of a single sandstone suggests diagenetic modification of the REE, because its REE pattern is identical to that of the upper continental crust except for the presence of a significant positive Eu anomaly (Eu/Eu1 = 1.15). Felsic provenance for all samples is suggested by the clustering on the Th/Sc–Zr/Sc and GdN/YbN–Eu/Eu1 diagrams. Averages of unmodified Groups 1 and 3 REE patterns compare well with cratonic sediments from the Roraima Formation in the Guyana Shield, suggesting derivation from a continental source of similar composition. In comparison with modern sediments, the geochemical parameters (K2O/Na2O, LaN/YbN, LaN/SmN, Eu/Eu1, La/Sc, La/Y, Ce/Sc) suggest the Paja Formation was deposited at a passive margin. The Paja shales thus represent highly mature sediments recycled from deeply weathered, older, sedimentary/metasedimentary rocks, possibly in the Guyana Shield, though Na-rich volcanic/granitic rocks may have contributed to some extent.  相似文献   

4.
Major, trace and rare earth element (REE) compositions of upper Proterozoic metavolcanic and metasedimentary rocks from the Tsaliet and Tembien Groups in the Werri district of northern Ethiopia were determined to examine their tectonic setting of eruption, provenance and source area weathering conditions. Tsaliet Group metavolcanic rocks in the Werri area have sub-alkaline chemistry characterized by low to intermediate SiO2 contents, high Al2O3, low MgO and very low Cr and Ni. High field strength element (HFSE) abundances are highly variable. ∑REE abundances vary from 66.7 to 161.3 ppm, and chondrite-normalized REE patterns are moderately fractionated, with LaN/YbN values of between 3.1 and 9.0. Europium anomalies are variable (Eu/Eu* 0.80–1.21) but are generally positive (average Eu/Eu* 1.06). On tectonic discrimination diagrams, most samples have either volcanic-arc chemistry or fall in the overlap field with mid-oceanic ridge basalt (MORB). However, primitive mantle-normalized trace element abundances are comparable with sub-alkaline basalts from developed island arcs. 147Sm/144Nd ratios range from 0.1167 to 0.1269 (n = 3), yielding initial εNd(800 Ma) of +3.8 to +4.9 and mean TDM model age of 0.96 Ga, indicative of derivation from juvenile Neoproterozoic mantle. Metasediments from three locations (Werri1, Werri2 and Tsedia) in the Werri and Tsedia Slates have similar Al2O3, TiO2 and HFSE contents but variable and low Na2O, CaO and K2O. Cr and Ni are slightly enriched in the Werri2 and Tsedia suites. SiO2 is very variable, with average values of 70.75, 72.2 and 66.4 wt.% in the Werri1, Werri2 and Tsedia suites, respectively. ∑REE abundances in the metasediments (14.74–108.1) are lower than in the metavolcanics, and are slightly less fractionated, with LaN/YbN ratios of 0.8–5.9. Europium anomalies vary (Eu/Eu* 0.80–1.21) but are insignificant on average (Eu/Eu* 0.96). High values for the Chemical Index of Alteration (generally 70–90), and Plagioclase Index of Alteration (>75) in the Werri metasediments indicate moderate to severe chemical weathering in their source. Average major and trace element compositions of the metasediments and their REE patterns are comparable with the metavolcanics. 147Sm/144Nd ratios of the metasediments range from 0.1056 to 0.1398 (n = 4), with initial εNd(800 Ma) of +3.4 to +5.0 and mean TDM model age of 0.97 Ga, indicating derivation from juvenile Neoproterozoic crust similar to the underlying metavolcanics, with minimal (4–10%) contribution from older crust. The most sensitive tectonic setting discriminators indicate the Werri metasediments represent developed oceanic island arc sediments. The chemical similarity of the Werri metavolcanics to the nearby Adwa metavolcanics, Nakfa terrane in Eritrea, and volcanic units in central Saudi Arabia imply that juvenile Neoproterozoic Arabian Nubian Shield crust extended south at least as far as the Werri area of northern Ethiopia. The comparable geochemistry of the metasediments and their underlying lithologies attests to their derivation from this juvenile crustal material.  相似文献   

5.
The Sergipano Belt is the outcome of collision between the Pernambuco–Alagoas Massif and the São Francisco Craton during Neoproterozoic assembly of West Gondwana. Field relationships and U–Pb geochronology of granites intruded in garnet micaschists of the Macururé Domain are used to constrain the main collisional event (D2) in the belt. The granites are divided into two groups, the pre-collisional granites (pre- to early-D2) and the syn-collisional granites (syn- to tardi-D2), the latter were emplaced as sheets along the S2 axial plane foliation or they were collected at the hinge zones of F2 folds. A U–Pb SHRIMP zircon age of 628 ± 12 Ma was obtained for the pre-collisional Camará tonalite. Two U–Pb TIMS titanite ages were obtained for the syn-collisional granites, 584 ± 10 Ma for the Angico granite and 571 ± 9 Ma for the Pedra Furada granite, and these ages are close to the garnet-whole rock Sm–Nd isochron of 570 Ma found for the peak of metamorphism in the Sergipano Belt. The ages of the Camará tonalite (628 Ma) and the Pedra Furada granite (571 Ma) mark respectively the maximum age for beginning of the D2 event and minimum age for the end in the Macururé Domain. Using these ages, the main Neoproterozoic D2 collisional event has been in operation in the Sergipano Belt for at least 57 million years. Correlation with coeval granitoids farther north in the Borborema Province indicate that while in the Sergipano Belt the syn-D2 granites (ca. 590–570 Ma) were emplaced under compression, in the Borborema Province they emplaced under extensional conditions related to regional strike-slip shear zones. These contrasting emplacement settings for contemporaneous Neoproterozoic granitoids are explained by a combination of continent–continent collision and extrusion tectonics.  相似文献   

6.
The northwestern region of Peninsular India preserves important records of Precambrian plate tectonics and the role of Indian continent within Proterozoic supercontinents. In this study, we report precise SHRIMP zircon U–Pb ages from granitoids from the Sirohi terrane located along the western fringe of the Delhi Fold Belt in Rajasthan, NW India. The data reveal a range of Neoproterozoic ages from plagiogranite of Peshua, foliated granite of Devala, and porphyritic granite of Sai with zircon crystallization from magmas at 1015 ± 4.4 Ma, 966.5 ± 3.5 and 808 ± 3.1 respectively. The plagiogranite shows high SiO2, Na2O and extremely low K2O, Rb, Ba, comparable with typical oceanic plagiogranites. These rocks possess low LREE and HREE concentrations and a relatively flat LREE–HREE slope, a well-developed negative Eu-anomaly and conspicuous Nb and Ti anomalies. Compared to the plagiogranite, the foliated Devala granite shows higher SiO2 and moderate Na2O, together with high K2O and comparatively higher Rb, Ba, Sr and REE, with steep REE profiles and a weak positive Eu anomaly. In contrast to the plagiogranite and foliated granite, the porphrytic Sai granite has comparatively lower SiO2 moderately higher Na2O, extremely high Y, Zr, Nb and elevated REE. The geochemical features of the granitoids [HFSE depletion and LILE enrichment, Nb- and Ta-negative anomalies], and their plots in the fields of Volcanic Arc Granites and those from active continental margins in tectonic discrimination diagrams suggest widespread Neoproterozoic arc magmatism with changing magma chemistry in a protracted subduction realm. Our results offer important insights into a long-lived active continental margin in NW India during early and mid Neoproterozoic, consistent with recent similar observations on Cryogenian magmatic arcs widely distributed along the margins of the East African Orogen, and challenge some of the alternate models which link the magmatism to extensional tectonics associated with Rodinia supercontinent breakup.  相似文献   

7.
Metagranitic orthogneisses are abundant in the Central Iberian Zone (CIZ). This felsic magmatism has a highly peraluminous composition (A/CNK = 1.07–1.62) defining a typical S-type granite character, common in crustal thickening environments. The studied Spanish Central System (SCS) orthogneisses yield Late Cambrian to Early Ordovician U–Pb zircon ages (496 to 481 Ma), overlapping with the available literature data (mostly from 477 to 500 Ma). These orthogneisses are intrusive into metasedimentary sequences from the northern CIZ that have been recently dated at about 536 Ma. Late Ediacaran inherited zircons are common in the SCS orthogneisses (10% to 75% of the total zircon population). Most inheritance ranges from Neoproterozoic to Late Mesoproterozoic in age (0.52 to 1.25 Ga) and shows marked positive ԐHft values (>+5). This long period of Proterozoic juvenile input is only recognized in the metasedimentary rocks of the Schist–Greywacke Complex, outcropping in the southern CIZ. The proposed linkage between the southern CIZ metasediments (as sources) and the studied orthogneisses is reinforced by their similar Nd isotopic signatures (from − 2.81 to − 4.95) and the highly peraluminous character of the orthogneisses. The intrusion of this felsic magmatism within the northern CIZ, having been generated by melting of the more distal southern CIZ metasediments, together with their recycled crustal origin, suggests crustal thickening of the northern Gondwana margin during a period of flat subduction. The orthogneisses define a large linear S-type magmatic belt cropping out for over 650 km from central Spain to Galicia. The ~ 35 Ma delay between sedimentation and granite intrusion is a typical time interval for crustal thickening models. This thickening stage evolved toward a passive margin setting, allowing the deposition of the siliciclastic Ordovician series which covered the previous terranes. Minor Floian-aged tholeiitic magmatism, giving rise to scarce metabasite outcrops in the SCS, probably postdates thickening and marks this tectonic change in central Iberia.  相似文献   

8.
The Borborema Province in northeastern South America is a typical Brasiliano-Pan-African branching system of Neoproterozoic orogens that forms part of the Western Gondwana assembly. The province is positioned between the São Luis-West Africa craton to the north and the São Francisco (Congo-Kasai) craton to the south. For this province the main characteristics are (a) its subdivision into five major tectonic domains, bounded mostly by long shear zones, as follows: Médio Coreaú, Ceará Central, Rio Grande do Norte, Transversal, and Southern; (b) the alternation of supracrustal belts with reworked basement inliers (Archean nuclei + Paleoproterozoic belts); and (c) the diversity of granitic plutonism, from Neoproterozoic to Early Cambrian ages, that affect supracrustal rocks as well as basement inliers. Recently, orogenic rock assemblages of early Tonian (1000–920 Ma) orogenic evolution have been recognized, which are restricted to the Transversal and Southern domains of the Province.Within the Transversal Zone, the Alto Pajeú terrane locally includes some remnants of oceanic crust along with island arc and continental arc rock assemblages, but the dominant supracrustal rocks are mature and immature pelitic metasedimentary and metavolcaniclastic rocks. Contiguous and parallel to the Alto Pajeú terrane, the Riacho Gravatá subterrane consists mainly of low-grade metamorphic successions of metarhythmites, some of which are clearly turbiditic in origin, metaconglomerates, and sporadic marbles, along with interbedded metarhyolitic and metadacitic volcanic or metavolcaniclastic rocks. Both terrane and subterrane are cut by syn-contractional intrusive sheets of dominantly peraluminous high-K calc-alkaline, granititic to granodioritic metaplutonic rocks. The geochemical patterns of both supracrustal and intrusive rocks show similarities with associations of mature continental arc volcano-sedimentary sequences, but some subordinate intra-plate characteristics are also found.In both the Alto Pajeú and Riacho Gravatá terranes, TIMS and SHRIMP U–Pb isotopic data from zircons from both metavolcanic and metaplutonic rocks yield ages between 1.0 and 0.92 Ga, which define the time span for an event of orogenic character, the Cariris Velhos event. Less extensive occurrences of rocks of Cariris Velhos age are recognized mainly in the southernmost domains of the Province, as for example in the Poço Redondo-Marancó terrane, where arc-affinity migmatite-granitic and meta-volcano-sedimentary rocks show U–Pb ages (SHRIMP data) around 0.98–0.97 Ga. For all these domains, Sm–Nd data exhibit TDM model ages between 1.9 and 1.1 Ga with corresponding slightly negative to slightly positive εNd(t) values. These domains, along with the Borborema Province as a whole, were significantly affected by tectonic and magmatic events of the Brasiliano Cycle (0.7–0.5 Ga), so that it is possible that there are some other early Tonian rock assemblages which were completely masked and hidden by these later Brasiliano events.Cariris Velhos processes are younger than the majority of orogenic systems at the end of Mesoproterozoic Era and beginning of Neoproterozoic throughout the world, e.g. Irumide belt, Kibaride belt and Namaqua-Natal belt, and considerably younger than those of the youngest orogenic process (Ottawan) in the Grenvillian System. Therefore, they were probably not associated with the proposed assembly of Rodinia. We suggest, instead, that Cariris Velhos magmatism and tectonism could have been related to a continental margin magmatic arc, with possible back-arc associations, and that this margin may have been a short-lived (<100 m.y.) leading edge of the newly assembled Rodinia supercontinent.  相似文献   

9.
The Danubian domain basement of the South Carpathians, Romania, comprises two Neoproterozoic continental crustal fragments, the Dr?g?an and Lainici-P?iu? terranes, which were sutured by the closure of an intervening oceanic domain, the Ti?ovi?a terrane. Magmatic and detrital zircons extracted from an orthogneiss, four granitoid plutons, two metasedimentary units, and a Liassic sandstone were dated by zircon U/Pb LA-ICP-MS. The F?ge?el augen gneiss from the Dr?g?an terrane basement yielded an age of 803.2 ± 4.4 Ma, the oldest well-constrained crystallization age reported from the Romanian Carpathians basement. The Tismana, ?u?i?a, Novaci and Olte? granitoid plutons, which intrude the Lainici-P?iu? terrane basement, yielded ages of 600.5 ± 4.4, 591.0 ± 3.5, 592.7 ± 4.9, and 588 ± 2.9 Ma, respectively. The Tismana granitoid age of 600 Ma and the youngest detrital zircon ages of 637–622 Ma from a metaquartzite within the Lainici-Paiu? terrane, constrain the deposition of the metaquartzite protolith to ca. 620–600 Ma. The 803 Ma age represents an old Pan-African age, whereas the younger Neoproterozoic ages suggest Pan-African/Cadomian thermotectonic events. Detrital and inherited zircon ages within the Dr?g?an and Lainici-Paiu? terranes attest to a peri-Amazonian, Avalonian-type provenance for the Dr?g?an terrane and possibly a Ganderian-type provenance for the Lainici-P?iu? terrane. The Lainici-P?iu? terrane rifted off Gondwana before the Dr?g?an terrane. Both terranes were attached to Moesia during the Early Paleozoic.  相似文献   

10.
The time frame of the three main geological events in the Neoproterozoic Cambaí Complex, juvenile São Gabriel belt in the southern Brazilian Shield is established by integrating field mapping, back-scattered electron imaging and sensitive high-resolution ion microprobe (SHRIMP II) U–Pb dating of 96 zircon crystals from nine granitic and metasedimentary rock samples. The three events are: (1) voluminous flat-lying paragneisses (Cambaizinho Complex) and orthogneisses (Vila Nova gneisses) between 735 and 718 Ma, (2) tonalite–trondhjemite association (Lagoa da Meia-Lua Suite) between 710 and 690 Ma, and (3) late granodiorite intrusions (Sanga do Jobim Suite) at 680 Ma. An additional older volcanic event (Campestre Formation) was dated at 753 Ma. These results are most significant for the reconstruction of West Gondwana.  相似文献   

11.
The origin of the Greater Himalayan Sequence in the Himalaya and the paleogeographic position of the Lhasa terrane within Gondwanaland remain controversial. In the Eastern Himalayan syntaxis, the basement complexes of the northeastern Indian plate (Namche Barwa Complex) and the South Lhasa terrane (Nyingchi Complex) can be studied to explore these issues. Detrital zircons from the metasedimentary rocks in the Namche Barwa Complex and Nyingchi Complex yield similar U–Pb age spectra, with major age populations of 1.00–1.20 Ga, 1.30–1.45 Ga, 1.50–1.65 Ga and 1.70–1.80 Ga. The maximum depositional ages for their sedimentary protoliths are ~ 1.0 Ga based on the mean ages of the youngest three detrital zircons. Their minimum depositional ages are ~ 477 Ma for the Namche Barwa Complex and ~ 499 Ma for the Nyingchi Complex. Detrital zircons from the Namche Barwa Complex and Nyingchi Complex also display similar trace-element signatures and Hf isotopic composition, indicating that they were derived from common provenance. The trace-element signatures of 1.30–1.45 Ga detrital zircons indicate that the 1.3–1.5 Ga alkalic and mafic rocks belt in the southeastern India is a potential provenance. Most 1.50–1.65 Ga zircons have positive εHf(t) values (+ 1.2 to + 9.0), and most 1.70–1.80 Ga zircons have negative εHf(t) values (− 7.1 to − 1.9), which are compatible with those of the Paleo- to Mesoproterozoic orthogneisses in the Namche Barwa Complex. Provenance analysis indicates that the southern Indian Shield, South Lhasa terrane and probably Eastern Antarctica were the potential detrital sources. Combined with previous studies, our results suggest that: (1) the Namche Barwa Complex is the northeastern extension of the Greater Himalaya Sequence; (2) the metasedimentary rocks in the Namche Barwa Complex represent distal deposits of the northern Indian margin relative to the Lesser Himalaya; (3) the South Lhasa terrane was tectonically linked to northern India before the Cambrian.  相似文献   

12.
A first study of REE + Y distribution in a variety of Neoproterozoic (Cryogenian and Ediacaran) carbonates from different settings in the Saldania, Gariep, Damara and West Congo Belts in southwestern and central Africa revealed systematic differences that can be explained by varying palaeoenvironmental factors. The majority of samples display relatively unfractionated, flat shale-normalised REE + Y patterns that cannot be ascribed solely to shale contamination but are interpreted as resulting from the incorporation of near-shore colloids, possibly related to Fe-oxihydroxide scavenging. Only few carbonate units yielded trace element distributions that conform to a typical seawater composition. Those carbonates that were affected by stratiform, syn-sedimentary hydrothermal mineralisation are distinguished by Eu anomalies. Considering the similarity in residence time between REE and carbon, the strong influence of river-born particles on the REE + Y distribution in the analysed carbonates casts considerable doubt over the usefulness of these carbonates for stratigraphic correlation of Neoproterozoic sediment successions based on carbon isotopes.  相似文献   

13.
We present results of combined in situ U–Pb dating of detrital zircons and zircon Hf and whole-rock Nd isotopic compositions for high-grade clastic metasedimentary rocks of the Slyudyansky Complex in eastern Siberia. This complex is located southwest of Lake Baikal and is part of an early Paleozoic metamorphic terrane in the eastern part of the Central Asian Orogenic Belt (CAOB). Our new zircon ages and Hf isotopic data as well as whole-rock Nd isotopic compositions provide important constraints on the time of deposition and provenance of early Paleozoic high-grade metasedimentary rocks as well as models of crustal growth in Central Asia. Ages of 0.49–0.90 Ga for detrital zircons from early Paleozoic high-grade clastic sediments indicate that deposition occurred in the late Neoproterozoic and early Paleozoic, between ca. 0.62–0.69 and 0.49–0.54 Ga. Hf isotopic data of 0.82–0.69 Ga zircons suggest Archean and Paleoproterozoic (ca. 2.7–2.8 and 2.2–2.3 Ga; Hfc = 2.5–3.9 Ga) sources that were affected by juvenile 0.69–0.82 Ga Neoproterozoic magmatism. An additional protolith was also identified. Its zircons yielded ages of 2.6–2.7 Ga, and showed high positive εHf(t) values of +4.1 to +8.0, and Hf model ages tHf(DM) = tHfc = 2.6–2.8 Ga, which is nearly identical to the crystallization ages. These isotopic characteristics suggest that the protolith was quite juvenile. The whole-rock Nd isotopic data indicate that at least part of the Slyudyansky Complex metasediments was derived from “non-Siberian” provenances. The crustal development in the eastern CAOB was characterized by reworking of the early Precambrian continental crust in the early Neoproterozoic and the late Neoproterozoic–early Paleozoic juvenile crust formation.  相似文献   

14.
《Precambrian Research》2005,136(2):159-175
Juvenile Neoproterozoic dioritic, tonalitic, trondhjemitic and granodioritic gneisses in the São Gabriel block, southern Brazil, have been identified by geochronologic studies. Age proposals for associated (ultra-)mafic metavolcanic and metasedimentary rocks, however, range from Archean to Neoproterozoic. Whole rock Sm–Nd analyses presented here support a Neoproterozoic age for these rocks. TDM model ages of the (ultra-)mafic metavolcanic rocks range between 0.65 and 1.35 Ga with ɛNd(t) positive values between 3.16 and 6.87; TDM model ages of metasedimentary and metavolcanoclastic rocks vary between 0.77 and 1.19 Ga with ɛNd(t) values between 1.2 and 6.23; tonalitic calc-alkaline gneisses show ɛNd(t) values of 4.34 and 6.3 and TDM model ages of 0.89 and 0.72 Ga, respectively. A late-kinematic granite (Santa Zélia granite) display slightly negative ɛNd(t) values (−1.6) and a higher TDM model age of about 1.4 Ga. These data support the existence of Meso/Neoproterozoic juvenile oceanic crust and island arc rocks during the Brasiliano orogenic events. The main source rocks of the metasedimentary units are previously formed juvenile rocks. The data also indicate minor assimilation of older crustal material and/or contamination of the melts by radiogenic Nd released from older rocks on the subducting slab. Existence of widespread old sialic crust in the subduction zone environment, however, can be ruled out indicating important orogenic accretion between 0.9 and 0.7 Ga. A geotectonic model for the São Gabriel block and the eastern margin of the Rio de la Plata craton comprises eastward subduction and following accretion of an intra-oceanic island arc between 0.9 and 0.8 Ga and a subsequent westward subduction with formation of an active continental margin at the eastern margin of the Rio de la Plata craton between 0.8 and 0.7 Ga. We postulate that the juvenile rocks of São Gabriel block represent relics of a Neoproterozoic ocean between the Rio de la Plata craton and a continental block (Encantadas block) possibly derived from the Kalahari craton. Subduction and arc accretion began roughly coeval with the initial stages of the break-up of Rodinia (0.9 Ga) and indicate a peripheric Rio de la Plata craton in relation to the Rodinia supercontinent with evolution from a passive margin to an active margin in the beginning of the Neoproterozoic Brasiliano orogenic events.  相似文献   

15.
The geodynamic evolution of the early Paleozoic ultrahigh-pressure metamorphic belt in North Qaidam, western China, is controversial due to ambiguous interpretations concerning the nature and ages of the eclogitic protoliths. Within this framework, we present new LA-ICP-MS U–Pb zircon ages from eclogites and their country rock gneisses from the Xitieshan terrane, located in the central part of the North Qaidam UHP metamorphic belt. Xitieshan terrane contains clearly different protolith characteristics of eclogites and as such provides a natural laboratory to investigate the geodynamic evolution of the North Qaidam UHP metamorphic terrane. LA-ICP-MS U–Pb zircon dating of three phengite-bearing eclogites and two country rock gneiss samples from the Xitieshan terrane yielded 424–427 Ma and 917–920 Ma ages, respectively. The age of 424–427 Ma from eclogite probably reflects continental lithosphere subduction post-dating oceanic lithosphere subduction at ~ 440–460 Ma. The 0.91–0.92 Ga metamorphic ages from gneiss and associated metamorphic mineral assemblages are interpreted as evidence for the occurrence of a Grenville-age orogeny in the North Qaidam UHPM belt. Using internal microstructure, geochemistry and U–Pb ages of zircon in this study, combined with the petrological and geochemical investigations on the eclogites of previous literature’s data, three types of eclogitic protoliths are identified in the Xitieshan terrane i.e. 1) Subducted early Paleozoic oceanic crust (440–460 Ma), 2) Neoproterozoic oceanic crust material emplaced onto micro-continental fragments ahead of the main, early Paleozoic, collision event (440–420 Ma) and 3) Neoproterozoic mafic dikes intruded in continental fragments (rifted away from the former supercontinent Rodinia). These results demonstrate that the basement rocks of the North Qaidam terrane formed part of the former supercontinent Rodinia, attached to the Yangtze Craton and/or the Qinling microcontinent, and recorded a complex tectono-metamorphic evolution that involved Neoproterozoic and Early Paleozoic orogenies.  相似文献   

16.
The Tumen molybdenite–fluorite vein system is hosted by carbonate rocks of the Neoproterozoic Luanchuan Group, located on the southern margin of the North China Craton (NCC) in central China. Previous studies divided the mineralization into four stages according to the crosscutting relationships between veinlets and their mineral assemblages. In this contribution, two distinctive types of fluorite mineralization are recognized: 1) the first type (Type 1) includes colourless, white or green fluorite grains present in Stage 1 veins; and 2) the second type includes Type 2a purple fluorite present in Stage 2 veins and does not coexist with sulfides, and Type 2b purple fluorite crystals associated with sulfides in Stage 2 veins. The rare earth element (REE) content in the fluorite ranges between 13.8 and 27.9 ppm in Type 1, 16.9 and 27.2 ppm in Type 2a, and 42.5 and 75.1 ppm in Type 2b, which suggests that the fluorite was precipitated from acidic fluids (given that REEs are mobile in saline HCl-bearing fluids at high temperature (~ 400 °C)). Comparing the REE chemistry of the Stage 1 against Stage 2 fluorite, the LREE/HREE ratios decrease from 9.8 to 4.0, La/Yb ratios decrease from 16.0 to 6.9 and La/Ho ratios decrease from 10.2 to 3.0, indicating that the hydrothermal process was at high-T and low-pH conditions. The Eu/Eu* ratios in the fluorite decrease from 1.11 ± 0.35 for Type 1 through 0.89 ± 0.19 for Type 2a to 0.75 ± 0.17 for Type 2b, suggesting a gradual increase in oxygen fugacity (fO2) and pH of the mineralising fluid. The Tb/Ca, Tb/La and Y/Ho ratios of the fluorite types indicate that they were formed from the interaction between magmatic fluids and carbonate wallrocks. The fluorite samples show similar REE + Y (REY) patterns to those of dolostone units in the Luanchuan Group and the nearby Neoproterozoic syenite, suggesting that the REY in the fluorite was mainly sourced from the host-rocks, although the syenite could be an additional minor source.  相似文献   

17.
Volcanogenic massive sulfide (VMS) deposits of the Eastern Pontides, Turkey, are hosted by the Maastrichtian–Eocene dacite and rhyodacite series, accompanied by lesser andesite and basalts, as well as their pyroclastic equivalents, with tholeiitic to calc-alkaline affinity. The ore mineral assemblages are chalcopyrite, sphalerite, galena, chalcocite, covellite, bornite, and tetrahedrite. Potassic-, phyllitic- (sericitic), argillic- (kaolinitic and smectitic), silicic-, propylitic- and hematitic-alteration is commonly associated with these deposits.HFSE, LILE, TRTE and REE contents show strong variability in different alteration types resulting from interaction with acid or alkaline fluids. Sample groups showed chondrite-normalized enrichment of LREE relative to HREE and sub-parallel trends, except for the hematitic- and phyllitic-alteration types. MREE are strongly depleted in the zones of most intense silicification and kaolinization. Most sample groups have strongly- to slightly-negative Eu anomalies, ranging from 0.35 to 0.88 (mean); hematitic- (1.45) and propylitic-altered rocks (1.11) have slightly- to moderately-positive anomalies. The negative Eu anomalies indicate the low temperatures of fluids (< 200 °C). In contrast, the positive Eu anomalies result from high-temperature hydrothermal conditions (> 200 °C). No Ce anomaly was observed, except for phyllitic alteration where a slight positive anomaly was noted. The chondrite-normalized trace and REE patterns of the altered rocks are similar to each other, suggesting that they were derived from a common felsic source. The alteration groups formed from acid, intermediate, and alkaline hydrothermal solutions. Some transition, base and precious metals and volatile elements were clearly enriched, especially in the hematitic-, silicic-, kaolinitic- and phyllitic-altered samples. The other elements exhibit different behaviors in different sample groups. REE behavior is relatively immobile in the silicic-, hematitic-, kaolinitic- and partially in moderately- and propylitic-altered rocks, based on mass-balance calculations. LILE and HFSE appear mobile in the altered sample groups, except in the propylitic-altered rocks. TRTE behave as relatively immobile in most of samples, except in some of the silicic- and phyllitic-altered rocks, and especially in the hematitic-altered samples. HFSE, most of the transition (W, Mo, Cu, and Sb) and some other trace elements (Pb, As, Hg, Bi, Se and Tl), are enriched in the hematitic-altered samples and in the some silicic-altered samples. The highest As, Bi, Mo, Se and Hg concentrations in the hematite-altered samples can be used to distinguish other alteration types and may be a useful indicator in a prospect-scale base metal exploration.  相似文献   

18.
In the Menderes Massif (western Taurides) a Neoproterozoic basement comprising metasediments and intrusive granites is imbricated between Paleozoic platform sediments. U–Pb–Hf zircon analyses of Menderes rock units were performed by us using LA-ICP-MS. The U–Pb detrital zircon signal of the Neoproterozoic metasediments is largely consistent with a NE African (Gondwana) provenance. The oldest unit, a paragneiss, contains significant amounts (~ 30%) of Archean-aged zircons and εHf (t) values of about a half of its Neoproterozoic zircons are negative suggesting contribution from Pan-African terranes dominated by reworking of an old crust. In the overlying, mineralogically-immature Core schist (which is still Neoproterozoic), the majority of the detrital zircons are Neoproterozoic, portraying positive εHf (t) values indicating derivation from a proximal juvenile source, resembling the Arabian–Nubian Shield.The period of sedimentation of the analyzed metasediments, is constrained between 570 and 550 Ma (Late Ediacaran). The Core schist sediments, ~ 9 km thick, accumulated in less than 20 My implying a tectonic-controlled sedimentary basin evolved adjacent to the eroded juvenile terrane. Granites, now orthogneisses, intruded the basin fill at 550 Ma, they exhibit ± 0 εHf (t = 550 Ma) and TDM ages of 1.4 Ga consistent with anatexis of various admixtures of juvenile Neoproterozoic and Late Archean detrital components. Granites in the northern Arabian–Nubian Shield are no younger than 580 Ma and their εHf (t) are usually more positive. This implies that the Menderes does not represent a straightforward continuation of the Arabian–Nubian Shield.The lower part of the pre-Carboniferous silisiclastic cover of the Menderes basement, comprises a yellowish quartzite whose U–Pb–Hf detrital zircon signal resembles that of far-traveled Ordovician sandstones in Jordan (including 0.9–1.1 Ga detrital zircons), supporting pre-Triassic paleorestorations placing the Tauride with Afro-Arabia. The detrital signal of the overlying carbonate-bearing quartzitic sequence indicates contribution from a different source: the majority of its detrital zircons yielded 550 Ma and ± 0 εHf (t = 550 Ma) values identical to that of the underlying granitic gneiss implying exposure of Menderes-like granites in the provenance.260–250 Ma lead-loss and partial resetting of the U–Pb system of certain zircons in both basement and cover units was detected. It is interpreted as a consequence of a Permian–Early Triassic thermal event preceding known Triassic granitoid intrusions.  相似文献   

19.
《Gondwana Research》2015,27(3-4):888-906
The Ongole Domain in the southern Eastern Ghats Belt of India formed during the final stages of Columbia amalgamation at ca. 1600 Ma. Yet very little is known about the protolith ages, tectonic evolution or geographic affinity of the region. We present new detrital and igneous U–Pb–Hf zircon data and in-situ monazite data to further understand the tectonic evolution of this Columbia-forming orogen.Detrital zircon patterns from the metasedimentary rocks are dominated by major populations of Palaeoproterozoic grains (ca. 2460, 2320, 2260, 2200–2100, 2080–2010, 1980–1920, 1850 and 1750 Ma), and minor Archaean grains (ca. 2850, 2740, 2600 and 2550 Ma). Combined U–Pb ages and Lu–Hf zircon isotopic data suggest that the sedimentary protoliths were not sourced from the adjacent Dharwar Craton. Instead they were likely derived from East Antarctica, possibly the same source as parts of Proterozoic Australia. Magmatism occurred episodically between 1.64 and 1.57 Ga in the Ongole Domain, forming felsic orthopyroxene-bearing granitoids. Isotopically, the granitoids are evolved, producing εHf values between − 2 and − 12. The magmatism is interpreted to have been derived from the reworking of Archaean crust with only a minor juvenile input. Metamorphism between 1.68 and 1.60 Ga resulted in the partial to complete resetting of detrital zircon grains, as well as the growth of new metamorphic zircon at 1.67 and 1.63 Ga. In-situ monazite geochronology indicates metamorphism occurred between 1.68 and 1.59 Ga.The Ongole Domain is interpreted to represent part of an exotic terrane, which was transferred to proto-India in the late Palaeoproterozoic as part of a linear accretionary orogenic belt that may also have included south-west Baltica and south-eastern Laurentia. Given the isotopic, geological and geochemical similarities, the proposed exotic terrane is interpreted to be an extension of the Napier Complex, Antarctica, and may also have been connected to Proterozoic Australia (North Australian Craton and Gawler Craton).  相似文献   

20.
The Jiangnan Orogen, the eastern part of which comprises the oceanic Huaiyu terrane to the northeast and the continental Jiuling terrane to the southwest, marks the collision zone of the Yangtze and the Cathaysia Blocks in South China. Here, zircon U–Pb geochronological and Lu–Hf isotopic results from typical basement and cover meta-sedimentary/sedimentary rock units in the eastern Jiangnan Orogen are presented. The basement sequences in southwestern Huaiyu terrane are mainly composed of marine volcaniclastic turbidite, ophiolite suite and tuffaceous phyllite, whereas those in the northeastern Huaiyu consist of littoral face pebbly feldspathic sandstones and greywacke interbedded with intermediate-basic volcanic rocks. Combined with previous studies, the present data show that the basement sequences exhibit arc affinities. Zircons from the basement phyllite in the southwestern margin of the Huaiyu terrane, representing a Neoproterozoic back-arc basin, yield a single age population of 800–900 Ma. The basement greywacke from northeastern Huaiyu terrane, representing fore-arc basin, is also characterized by zircons that preserve a single tectono-thermal event during 800–940 Ma. However, the late Neoproterozoic cover sequence preserves zircons from multiple sources with age populations of 750–890 Ma, 1670–2070 Ma and 2385–2550 Ma. Moreover, Hf isotopic data further reveal that most detrital zircons from the basement sequences yield positive εHf(t) values and late Mesoproterozoic model ages, while those of the cover sequence mostly show negative εHf(t) values. The Hf isotopic data therefore suggest that the basement sequences are soured from a Neoproterozoic arc produced by reworking of subducted late Mesoproterozoic materials. The geochronological and Hf isotopic data presented in this study suggest ca. 800 Ma for the assembly of the Huaiyu and Jiuling terranes, implying that the amalgamation of the Yangtze and Cathaysia Blocks in the eastern part occurred at ca. 800 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号