首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lower Mississippi Valley (LMV) has been one of the most intensively studied alluvial valleys in the world in terms of it's geological and geomorphic framework and history. A brief outline of the history of the major geological and geomorphological investigations of the LMV is provided. The results of these investigations are discussed in terms of the fluvial geomorphic framework of the valley and the apparent significant changes in the regime of the Mississippi River during the Late Wisconsinan and Holocene stages.

The LMV occupies the broad deep synclinal trough of the Mississippi Embayment which extends from Cairo, Illinois, to the Gulf of Mexico in a slightly sinuous north-south trend. The embayment is filled with a north to south thickening wedge of non-marine and marine sediment ranging in age from Jurassic to Holocene. The major landscapes of the LMV may be considered in four regions: (1) a narrow active meander belt in a broad valley of Late Pleistocene valley train in the northern third; (2) a wide mosaic of interwoven Holocene meander belts in the middle third; (3) a relatively narrow valley of the Atchafalaya Basin bounded on each side by narrow meander belts in the upper part of the lower third; and (4) the broad distributary wedge of the deltaic plain in the southernmost region of the valley. The valley trains vary in age and landform with the oldest occurring as slightly dissected low ridges and the youngest as broad flats separated by shallow interwoven former braided channels. Meander belts formed throughout the Holocene are comprised of low natural levee ridges flanking abandoned courses and bordered by crescent-shaped oxbow lakes and ridge and swale topography. In the middle third of the valley, meander belts are separated by expansive backswamps of very little relief. The deltaic plain is also exceptionally flat, interrupted by the low natural levee ridges of the abandoned deltaic distributaries.

The floodplain of the LMV is a complex mosaic of fluvial features and landscapes within the four landscape regions. Included in this mosaic are abandoned channels and courses, lateral accretion topography of ridges and swales, natural levees, crevasses and crevasse channels, distributary channels, backswamps and rimswamps, alluvial fans and aprons, valley trains (braided stream terraces), lakes and lacustrine deltas, terraces, and the alluvial valley bluff.

Changes in the hydraulic regime of the Lower Mississippi River (LMR) since the Late Pleistocene have played a major role in the development of the landscape of the valley. The most important regime change was the diminishment of the influence of Wisconsinan glaciation in the upper Midwest and the resultant evolution of the Mississippi River from a broad braided outwash channel to a more narrow but sinuous meandering channel at the end of the Pleistocene. During the Holocene, the Mississippi River undoubtedly responded to major climatic changes, rising sea level, tributary stream influence, and possibly tectonism, diapirism, and subsidence through the growth and evolution, and abandonment of it's meander belts and deltas.  相似文献   


2.
The response of the Lower Mississippi River to river engineering   总被引:2,自引:0,他引:2  
An examination of the response of the Lower Mississippi River (LMR) to a variety of engineering activities is presented through the discussion of: (a) a brief history of engineering investigations and activities on the LMR; (b) the impact of artificial cutoffs on the channel geometry and water surface profiles of adjacent reaches; (c) the impact of channel alignment activities on channel morphology; and (d) the apparent impact of all of the LMR engineering activities on sediment dynamics in the channel.

Investigations by many agencies reflect over 150 years of study of the hydraulics and hydrology of the LMR, which have contributed significantly to our understanding of large alluvial rivers. In an effort to provide for flood control and navigation on the largest river in North America, private landowners and the US Army Corps of Engineers have performed a wide range of river engineering activities, including construction of levees, floodways, artificial cutoffs, bank revetment, training dikes, dredging, channel alignment, and reservoirs on the major tributaries. This unprecedented program of river engineering activities on the river during the last 100 years has resulted in the evolution of a freely meandering alluvial river to a highly trained and confined meandering channel. The LMR has increased its overall gradient and average top-bank width and generally increased its channel depth. The immediate response of the river to increased gradient as a result of the construction of artificial cutoffs was dampened in some locations by local geological controls.

Examination of the trends in sediment dynamics of the LMR reveals that the suspended load of the river has decreased during the 20th century. Conversely, a trend in the bed load transport in the channel for the years 1930 and 1989 cannot be determined with confidence because of the difficulty in acquiring representative samples. The highly trained river now responds to channel forming flows by attempting to build mid-channel bars rather than natural cutoffs of meanders.

The LMR should maintain a relatively stable plan form in the intermediate future, barring a very large and unprecedented flood. The river will continue to adjust its channel geometry and its local gradients as a response to variations in significant discharges. Continued channel maintenance and occasional dredging will insure the present state of sediment and water transport efficiency.  相似文献   


3.
We report new mapping, soils, survey, and geochronologic (luminescence, U-series, and cosmogenic-nuclide) data from Pleistocene deposits in the arid setting of eastern Grand Canyon. The result is a stratigraphic framework of inset fill gravels and associated terraces that provide a record of the responses of hillslopes, tributary streams, and the Colorado River to the last 400 kyr of glacial–interglacial climate change. The best-preserved last 80 kyr of this record indicates a stratigraphic–chronologic disconnect between both deposition and incision along the Colorado River versus along the trunks of local tributaries. For example, the Colorado River finished aggrading and had already begun incising before the main pulse of aggradation in the trunks of local catchments during Marine Isotope Stage 3, and then tributary incision followed during the millennial-scale fluctuations of the last glacial epoch, potentially concurrent with mainstem aggradation. The mainstem record appears to broadly correlate with regional paleoclimate and upstream geomorphic records and thus may be responding to climatic–hydrologic changes in its mountain headwaters, with aggradation beginning during full-glacial times and continuing into subsequent interglacials. The contrasting lag time in responses of the dryland catchments within Grand Canyon may be largely a function of the weathering-limited nature of hillslope sediment supply.  相似文献   

4.
The geologic and geomorphic template of Grand Canyon influences patterns in the archaeological record, including sites where apparent increases in erosion may be related to Glen Canyon Dam. To provide geoarchaeological context for the Colorado River corridor and such issues, we explore first‐order trends in a database of field observations and topographic metrics from 227 cultural sites. The patterns revealed may be expected in other river‐canyon settings of management concern. The spatial clustering of sites along the river follows variations in width of the valley bottom and the occurrence of alluvial terraces and debris fans, linking to bedrock controls. In contrast, the pattern of more Formative (Ancestral Puebloan, 800–1250 A.D.) sites in eastern Grand Canyon and Protohistoric (1250–1776 A.D.) sites in western Grand Canyon does not follow any evident geomorphic trends. In terms of site stability, wider reaches with more terrace and debris fan landforms host a disproportionate number of sites with acute erosion. This links most directly to weak alluvial substrates, and the primary erosion process is gullying with diffusive‐creep processes also pervasive. Although Glen Canyon Dam does not directly influence these erosion processes, overall sediment depletion and the loss of major flooding leaves erosion unhampered along the river corridor.  相似文献   

5.
The period in the Upper Mississippi Valley (UMV) from about 25 000 years B.P. until the time of strong human influence on the landscape beginning about 150–200 years ago can be characterized by three distinctly different alluvial episodes. The first episode is dominated by the direct and indirect effects of Late Wisconsin glacial ice in the basin headwaters. This period, which lasted until about 14 000 years B.P., was generally a time of progressive valley aggradation by a braided river system transporting large quantities of bedload sediment. An island braided system evolved during the second episode, which extended from about 14 000 to 9000 years B.P. The second episode is associated with major environmental changes of deglaciation when occurrences of major floods and sustained flows of low sediment concentration from drainage of proglacial lakes produced major downcutting. By the time of the beginning of the third episode about 9000 years B.P., most vegetation communities had established their approximate average Holocene locations. The change of climate and establishment of good vegetation cover caused upland landscapes of the UMV to become relatively stable during the Holocene in comparison to their relative instability during the Late Wisconsin. However, Holocene remobilization of Late Wisconsin age sediment stored in tributary valleys resulted in a return to long-term upper Mississippi River aggradation. The dominance of Holocene deposition over transportation reflects the abundance of sandy bedload sediment introduced from tributaries and the situation that energy conditions for floods and the hydraulic gradient of the upper Mississippi River are much less for the Holocene than they were for the Late Wisconsin and deglaciation periods.Outburst floods from glacial lakes appear to have been common in the UMV during the Late Wisconsin and especially during deglaciation. Magnitudes for the Late Wisconsin floods are generally poorly understood, but an estimate of 10 000–15 000 m3 s−1 was determined for one of the largest events in the northern UMV based on heights of paleo-foreset beds in a flood unit deposited in the Savanna Terrace. For comparison, the great flood of 1993 on the upper Mississippi River was about 12 000 m3 s−1 at Keokuk, Iowa, near the Des Moines River confluence where it represented the 500-year event in relation to modem flood series. Exceptionally large outburst floods derived from the rapid drainage of pro-glacial Lake Michigan and adjacent smaller proglacial lakes between about 16 000 and 15 500 years B.P. are a likely cause of the final diversion of the Mississippi River through the Bell City-Oran Gap at the upstream end of the Lower Mississippi Valley (LMV). The largest outburst flood from northern extremities of the UMV appears to have occurred between about 11700 and 10 800 years B.P. when the southern outlet of Lake Agassiz was incised. Based on the probable maximum capacity of the Agassiz flood channel 600 km downstream near the junction of the Wisconsin and Mississippi Rivers, the Agassiz flood discharge apparently did not exceed 30 000 m3 s−1. However, if the Agassiz flood channel here is expanded to include an incised component, then the flood discharge maximum could have been as large as 100,000 to 125 000 m3 s−1. The larger flood is presently viewed as unlikely, however, because field evidence suggests that the incised component of the cross-section probably developed after the main Agassiz flood event. Nevertheless, the large Agassiz flood between about 11 700 and 10 800 years B.P. produced major erosional downcutting and removal of Late Wisconsin sediment in the UMV. This flood also appears to be mainly responsible for the final diversion of the Mississippi River through Thebes Gap in extreme southwestern Illinois and the formation of the Charleston alluvial fan at the head of the LMV.After about 9000 years B.P. prairie-forest ecotones with associated steep seasonal climatic boundaries were established across the northern and southern regions of the UMV. The general presence of these steep climatically sensitive boundaries throughout the Holocene, in concert with the natural tendency for grasslands to be especially sensitive to climatic change, may partially explain why widespread synchroneity of Holocene alluvial episodes is recognized across the upper Mississippi River and Missouri River drainage systems. Comparison of estimated beginning ages of Holocene flood episodes and alluvial chronologies for upper Mississippi River and Missouri River systems with beginning ages for LMV meander belts and delta lobes shows a relatively strong correlation. At present, dating controls are not sufficiently adequate and confidence intervals associated with the identified ages representing system changes are too large to establish firm causal connections. Although the limitations of the existing data are numerous, the implicit causal connections suggested from existing information suggest that further exploration would be beneficial to improving the understanding of how upper valley hydrological and geomorphic events are influencing hydrological and geomorphic activity in the LMV. Since nearly 80% of the Mississippi River drainage system lies upstream of the confluence of the Mississippi and Ohio Rivers, there is a strong basis for supporting the idea that UMV fluvial activity should be having a strong influence on LMV fluvial activity. If this assertion is correct, then the traditional assignment of strong to dominant control by eustatic sea level variations for explaining channel avulsions, delta lobes, and meander belts in the LMV needs re-examination. A stronger role for upper valley fluvial activity as a factor influencing lower valley fluvial activity does not disregard the role of eustatic sea level, tectonic processes or other factors. Rather, upper valley fluvial episodes or specific events such as extreme floods may commonly serve as a “triggering mechanism” that causes a threshold of instability to be exceeded in a system that was poised for change due to sea level rise, tectonic uplift, or other environmental factors. In other situations, the upper valley fluvial activity may exert a more dominant control over many LMV fluvial processes and landforms as frequently was the case during times of glacial climatic conditions.  相似文献   

6.
The Amazon River is the largest fluvial source of fresh water and sediment to the global ocean and has the longest tidally influenced reach in the world. Two major rivers, the Tapajós and Xingu, enter the Amazon along its tidal reach. However, unlike most fluvial confluences, these are not one‐way conduits through which water and sediment flow downstream towards the sea. The drowned‐river valleys (rias) at the confluences of the Tapajós and Xingu with the Amazon River experience water‐level fluctuations associated not only with the seasonal rise and fall of the river network, but also with semidiurnal tides that propagate as far as 800 km up the Amazon River. Superimposed seasonal and tidal forcing, distinct sediment and temperature signatures of Amazon and tributary waters, and antecedent geomorphology combine to create mainstem–tributary confluences that act as sediment traps rather than sources of sediment. Hydrodynamic measurements are combined with data from sediment cores to determine the distribution of tributary‐derived and Amazon‐derived sediment within the ria basins, characterize the sediment‐transport mechanisms within the confluence areas and estimate rates of sediment accumulation within both rias. The Tapajós and Xingu ria basins trap the majority of the sediment carried by the tributaries themselves in addition to ca 20 Mt year?1 of sediment sourced from the Amazon River. These findings have implications for the interpretation of stratigraphy associated with incised‐valley systems, such as those that dominated the transfer of sediment to the oceans during lowstands in sea level.  相似文献   

7.
Scientific inquiry into Pleistocene stratigraphy of the Lower Mississippi Valley (LMV) dates to early writings of European naturalists in the late 19th century. By the early 20th century, landscape evolution concepts, stratigraphic models, and regional syntheses had developed for most areas. The 1944 monograph of H.N. Fisk marks the advent of a predictive stratigraphic and landscape evolution model that links form and process to a predominantly glacioeustatic mechanism. The Fiskian model gained widespread acceptance, and decades passed before significant alternate models began to emerge. Revised stratigraphic and geomorphic concepts are presently developing from newly acquired environmental and engineering data. Present scenarios classify Pleistocene outcrop areas into erosional and constructional landscapes, and veneers of eolian, colluvial, fluvial, coastal, and marine origin can drape both types of surfaces.

The southern LMV and adjacent Gulf Coastal Plain (GCP) experienced significant landscape change during the Pleistocene. Late Tertiary (Pliocene?) to Early Pleistocene deposition of the Upland Complex was by streams with a high sand and gravel load relative to its mud load. The regional drainage network and fluvial system behavior was probably significantly different from the modern. Braided stream alluvial fan complexes received sediment from highland source areas adjacent to the LMV and the glaciated mid-continent. It is plausible that part of Upland Complex deposition predates initial glacial advances.

From Early to Middle Pleistocene, an erosional landscape formed during a dissection period that chiefly postdates soil formation on stable landscape positions of the Upland Complex. Slope evolution truncated a regionally extensive geosol in multiple phases, and parts of the erosion surface complex are graded to the oldest preserved constructional alluvial plains in present valleys. Toe and foot slope positions of the erosion surface complex and its correlative alluvial plains are presently delineated as the Intermediate Complex. Constructional landscapes formed at this time are sparsely preserved; Fisk's Montgomery Terrace in the Lower Red River Valley (LRRV) is the best preserved example. Influences on the development of erosion surfaces in the LMV are not well understood; however interactions of relative sea level fall, climate change, and epirogenic crustal movement are plausible factors.

From the latter part of Middle Pleistocene to the Holocene, there was widespread evolution of modern constructional landscapes. Constructional alluviation preserved lithofacies of mixed load, laterally accreting, meandering streams that developed over large areas of the southern LMV to form parts of the Prairie Complex. Lateral planation in valleys and stable rates of upland sediment generation were dominant processes during Prairie Complex deposition.

Pleistocene stratigraphic examples considered important by Fisk are still considered relevant to modern stratigraphic investigators. Presently, Pleistocene units of the southern LMV, the adjacent LRRV, and central GCP can be correlated only by relative stratigraphic relationships. Refined chronostratigraphic and paleoenvironmental models for these areas would help improve the understanding of the geomorphic influences on Quaternary landscape evolution in the region.  相似文献   


8.
西昆仑山前河流阶地的形成及其构造意义   总被引:4,自引:0,他引:4  
王永  王军  肖序常  迟振卿  王彦斌 《地质通报》2009,28(12):1779-1785
西昆仑山前河流普遍发育6级阶地,利用光释光(OSL)与热释光(TL)方法对采自西昆仑山前几条主要河流的低阶地堆积物样品进行年代测定。研究结果显示,主要河流低阶地的形成具有同时性,构造活动是河流阶地形成的主要控制因素。河流阶地的年龄测定结果表明,西昆仑山前河流阶地最早形成于约1.2Ma,T4、T3、T2阶地分别形成于约39ka、18ka和5ka。多级阶地的形成反映了河流自早更新世中期开始下切于活动抬升的西昆仑山。河流阶地的发育及区域对比揭示了西昆仑第四纪晚期以来的隆升过程,区域构造活动明显地影响河流的形态与行为。河流阶地的分布、地貌特征及区域对比表明,河流阶地的形成与演化受新构造活动、山脉隆升、气候变化等多种因素的影响。  相似文献   

9.
Blocked‐valley lakes are formed when tributaries are impounded by the relatively rapid aggradation of a large river and its floodplain. These features are common in the landscape, and have been identified in the floodplains of the Solimões‐Amazon (Brazil) and Fly‐Strickland Rivers (Papua New Guinea), for example, but their inaccessibility has resulted in studies being limited to remotely sensed image analysis. This paper documents the sedimentology and geomorphic evolution of a blocked‐valley lake, Lake Futululu on the Mfolozi River floodplain margin, in South Africa, while also offering a context for the formation of lakes and wetlands at tributary junctions. The study combines aerial photography, elevation data from orthophotographs and field survey, and longitudinal sedimentology determined from a series of cores, which were sub‐sampled for organic content and particle size analysis. Radiocarbon dating was used to gauge the rate and timing of peat accumulation. Results indicate that following the last glacial maximum, rising sea‐levels caused aggradation of the Mfolozi River floodplain. By 3980 years bp , aggradation on the floodplain had impounded the Futululu drainage line, creating conditions suitable for peat formation, which has since occurred at a constant average rate of 0·13 cm year?1. Continued aggradation on the Mfolozi River floodplain has raised the base level of the Futululu drainage line, resulting in a series of back‐stepping sedimentary facies with fluvially derived sand and silt episodically prograding over lacustrine peat deposits. Blocked‐valley lakes form where the trunk river has a much larger sediment load and catchment than the tributary stream. Similarly, when the relative difference in sediment loads is less, palustrine wetlands, rather than lakes, may be the result. In contrast, where tributaries drain a steep, well‐connected catchment, they may impound much larger trunk rivers, creating lakes or wetlands upstream.  相似文献   

10.
Studies of photographs, maps, and channel morphology permit identification of greatly different Mississippi River reaches. From this, it becomes apparent that this large alluvial river is not monotonous in appearance, and therefore, it is not completely controlled by hydrology and hydraulics. In fact, the Mississippi River has reacted to uplift, faults, clay plugs, outcrops of Tertiary clay, and Pleistocene gravel in its bed, and tributaries. This classic example of a large alluvial river has major geological controls on its shape, pattern, and magnitude of change through time. In addition, the same controls plus the effect of plutonic intrusives and fault zones have significantly affected smaller rivers and the alluvial valley of the Mississippi River.  相似文献   

11.
On the eastern margin of the Tibetan Plateau, the Anninghe, Zemuhe and Xiaojiang faults comprise a N–S-trending active left-lateral fault system extending more than 700 km. The northernmost Anninghe Fault extends for ∼200 km, consisting of two sub-parallel N–S trending strands. Along the western strand, the fault traces occur almost strictly along the broad and flat Anninghe valley, displacing high terraces, alluvial fans and tributary channels of the Anninghe River. The eastern strand, on the other hand, cuts through the steep mountain slopes, with prominent rectilinear upslope-facing scarps and shutter ridges against pounded fluvial sediments from the east. The displacements along the eastern strand are much larger than that along the western strand, indicating the eastern strand is the major fault absorbing the E–W shortening. This study demonstrates that the Anninghe Fault is now acting as a relief-building boundary fault and absorbing the E–W compression under the eastwards motion of the Tibetan Plateau. Accordingly, the Anninghe region is a topographic transition area from steep relief to low gradient topography. The variation in topographic gradient is consistent with the differing tectonic regime between southern and northern parts of the Tibetan Plateau.  相似文献   

12.
This paper reports on a radiocarbon‐dated sequence of alluvial terraces from the Teleorman Valley in the southern Romanian Plain and represents the first Late‐glacial and well‐constrained Holocene alluvial sequence from the lower Danube Valley of southeast Europe. The two earliest and most extensive terraces (T1 and T2) are dissected by large, high‐amplitude palaeochannels, which are dated to ca. 12 800 yr BP and are comparable to large meandering palaeochannels identified from other Late glacial contexts across northern and central Europe. The remaining sequence of alluvial deposits show changes in river activity and accelerated sedimentation around 4900–4800 yr BP, 4000–3800 yr BP, 3300–2800 yr BP, 1000 yr BP and within the past 200 yr. A phase of tributary stream alluvial fan deposition is dated to ca. 2400 yr BP. All these periods of alluvial sedimentation correlate well with episodes of climatic cooling, higher rainfall and enhanced river activity, both in terms of incision and greater lateral mobility as well as increased flood frequency and magnitude identified elsewhere in central, western and northern Europe. Human activity appears to have had little effect on this river environment and significant fine‐grained sedimentation is not noted until ca. 2400 yr BP, approximately 5000 yr after the first neolithic farmers settled the area. Whether this record of river activity truly reflects the impact of prehistoric societies on this catchment will only be elucidated through further, ongoing detailed archaeological research. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Backwater effects in the Amazon River basin of Brazil   总被引:4,自引:0,他引:4  
The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Purús rivers, causes falling river stages to be as much as 2–3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300–400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River.  相似文献   

14.
利用沉积转换事件再造关键变革期的构造活动和气候演变是源-汇系统研究的新动向和切入点。新生代以来,印度大陆与亚洲大陆的汇聚隆升以及喜马拉雅-青藏高原的剥蚀、向孟加拉湾的物质输入,形成了当今世界上最大的源-汇系统(喜马拉雅-孟加拉湾源-汇系统)。利用3D地震数据和IODP 354与362航次获取的碎屑锆石数据揭示了晚中新世以来孟加拉-尼科巴扇沉积转换事件及其源-汇成因机制。研究认为尼科巴扇和孟加拉扇经历了此消彼长的沉积建造过程:尼科巴扇经历了“晚中新世快速进积→上新世缓慢建造→第四纪相对静止”的建造过程;而孟加拉扇经历了“晚中新世相对静止→上新世缓慢建造→第四纪快速进积”的沉积建造过程。喜马拉雅-孟加拉湾源-汇系统碎屑锆石年龄核密度统计结果显示:晚中新世以来,指示古布拉马普特拉河迁移演化路径的60~0 Ma碎屑锆石在若开-尼科巴扇呈现出逐渐减少的变化趋势,而在孟加拉扇呈现出逐渐增多的变化趋势。这一碎屑锆石年龄核密度变化特征表明:(1)在晚中新世,古布拉马普特拉河主沉积物分散路径靠近孟加拉湾东部一侧发育且大量碎屑颗粒向尼科巴扇搬运分散,形成“快速进积的尼科巴扇和相对静止的孟加拉扇”;(2)在上新世初,青藏高原隆升所诱发的西隆高原抬升使古布拉马普特拉河向西迁移分流,在古西隆高原北缘Mikir山附近分流为东西两支,东支向尼科巴扇搬运分散的碎屑颗粒开始减少,而西支向孟加拉扇搬运分散的碎屑颗粒开始增多,形成“以缓慢建造为演化特征的尼科巴-孟加拉扇”;(3)在第四纪初,印度板块-亚洲板块最强碰撞造成青藏高原最强隆升并达到最大海拔高度,古布拉马普特拉河东支袭夺废弃,向尼科巴扇卸载的沉积物相应显著减少,而古布拉马普特拉河西支与恒河并流后向孟加拉扇卸载的沉积物亦相应显著增加,形成“相对静止的尼科巴扇和快速进积的孟加拉扇”。由此可见,尼科巴-孟加拉扇“此消彼长的跷跷板式沉积转换事件”是古布拉马普特拉河沉积物分散路径迁移演化的源-汇响应;其在上新世-第四纪之交发生了一起最为显著的沉积转换事件,其是上新世晚期印度板块-亚洲板块碰撞的源-汇响应。  相似文献   

15.
黄河上游干支流交汇区沙坝淤堵形成条件   总被引:1,自引:0,他引:1       下载免费PDF全文
针对黄河上游干、支流交汇区形成的沙坝淤堵事件,利用野外观测资料,分析了支流高含沙洪水特性及交汇区沙坝淤堵特点,探讨了汇流比(支流流量与干流流量之比)、支流洪水水量、支流洪水沙量等因素对沙坝淤堵形成的影响;根据动量原理建立了交汇区形成沙坝淤堵的判别关系,结合黄河上游干、支流洪水输移特性,得出了基于汇流比与支流洪水水量关系及支流洪水沙量与支流洪水水量关系的沙坝淤堵判别条件。由此,可根据汇流比、支流洪水水量及沙量判断交汇区能否形成沙坝淤堵,可为暴雨洪水期黄河上游交汇区形成沙坝淤堵灾害的预报及防治提供参考。  相似文献   

16.
黄河的形成与演化对于认识我国宏观地貌格局的形成、青藏高原及黄土高原的区域构造活动历史、华北平原及黄渤海陆架的形成和演化等问题具有重要意义。目前对黄河演化历史的研究主要集中在龙羊峡以下的河段,对于黄河源段的关注较少。文章基于黄河源地区河谷地貌的实地考察,并利用SRTM1-DEM数据,分析了黄河源段干流及支流河谷橫剖面的地貌特征,并与该区典型的冰川谷和兰州附近黄河的河谷横剖面进行了对比。结果表明:黄河源地区的河谷规模巨大,并呈现出谷底开阔、河床窄小、阶地不明显、谷坡陡立、河谷横剖面左右对称的U型谷特征。这些特征与该区冰蚀谷的特征相似,但与兰州段黄河成型河谷的特征相差甚远,且其河谷规模更大。我们推断,黄河源地区的河谷可能主要为冰期时的冰蚀作用所塑造,而非单纯的流水侵蚀形成。由于冰蚀作用的存在,该区早期的河流阶地可能被随后冰期的冰蚀作用所破坏,当前基于黄河源地区现存河流阶地年代的研究很可能低估了该区水系的发育历史。此外,反复的冰川进退也可能导致黄河源水系自上而下贯通,而非溯源侵蚀形成。  相似文献   

17.
In this study, the distribution of channel‐bed sediment facies in the lowermost Mississippi River is analysed using multibeam data, complemented by sidescan sonar and compressed high‐intensity radar pulse seismic data, as well as grab and core samples of bed material. The channel bed is composed of a discontinuous layer of alluvial sediment and a relict substratum that is exposed on the channel bed and sidewalls. The consolidated substratum is made up of latest Pleistocene and Early Holocene fluvio‐deltaic deposits and is preferentially exposed in the deepest thalweg segments and on channel sidewalls in river bends. The exposed substratum commonly displays a suite of erosional features, including flutes that are quantitatively similar in form to those produced under known laboratory conditions. A total of five bed facies are mapped, three of which include modern alluvial deposits and two facies that are associated with the relict substratum. A radius of curvature analysis applied to the Mississippi River centreline demonstrates that the reach‐scale distribution of channel‐bed facies is related to river planform. From a broader perspective, the distribution of channel‐bed facies is related to channel sinuosity — higher sinuosity promotes greater substratum exposure at the expense of alluvial sediment. For example, the ratio of alluvial cover to substratum is ca 1·5:1 for a 45 km segment of the river that has a sinuosity of 1·76 and this ratio increases to ca 3:1 for a 120 km segment of the river that has a sinuosity of 1·21. The exposed substratum is interpreted as bedrock and, given the relative coverage of alluvial sediment in the channel, the lowermost Mississippi River can be classified as a mixed bedrock‐alluvial channel. The analyses demonstrate that a mixed bedrock‐alluvial channel boundary can be associated with low‐gradient and sand‐bed rivers near their marine outlet.  相似文献   

18.
Reinvestigation of Quaternary sediments in West Feliciana Parish, southeastern Louisiana, and adjacent Wilkinson County, southwestern Mississippi, has resulted in revision of previous terrace stratigraphy of this portion of the Gulf Coastal Plain. Plant-macrofossil and pollen assemblages incorporated in fluviatile terrace deposits in the study area are reexamined in light of the current stratigraphic understanding. Macrofossils identified as white spruce (Picea glauca), tamarack (Larix laricina), and northern white cedar (Thuja occidentalis), recovered from these terrace deposits along with fossil remains of distinctly southern plant species, were initially interpreted as the result of dynamic intermixing of aggressive boreal species within a southern forest during the early Wisconsin (Brown, 1938). Failure to distinguish chronologically separate fossiliferous deposits resulted in the conceptual “mixing” of northern and southern plant species which came from two distinct fluviatile terrace sequences. Terrace 2 is now believed to be a fluviatile and coastwise depositional terrace of Sangamon Interglacial age; deposits of terrace 2 contain a distinctly warm-temperate plant assemblage. Fluviatile terrace 1 dates from 12,740 ± 300 to 3457 ± 366 BP and is now considered to be related to late glacial and Holocene aggradation and lateral migration of the Mississippi River (the local base level for streams in the study area); basal portions of terrace 1 contain fossils of white spruce, tamarack, and many plant species today characteristic of the cool-temperate Mixed Mesophytic Forest Association. Terrace 1 fossil deposits occur in fluviatile terraces along tributary streams of the Mississippi River at elevations 15 to 30 m above the maximum recorded historic flood stage of the Mississippi River. The plant macrofossils represent remains of species that grew at or very near the site of deposition; they were not “rafted in” by floodwaters of the Mississippi River. We present quantitative data for plant macrofossils and pollen that support our hypothesis that at least local cooling along the Blufflands of Mississippi and Louisiana promoted southward migrations of mixed mesophytic forest species and certain boreal species along this major pathway during late Wisconsin continental glaciation.  相似文献   

19.
The passive margin Texas Gulf of Mexico Coastal Plain consists of coalescing late Pleistocene to Holocene alluvial–deltaic plains constructed by a series of medium to large fluvial systems. Alluvial–deltaic plains consist of the Pleistocene Beaumont Formation, and post-Beaumont coastal plain incised valleys. A variety of mapping, outcrop, core, and geochronological data from the extrabasinal Colorado River and the basin-fringe Trinity River show that Beaumont and post-Beaumont strata consist of a series of coastal plain incised valley fills that represent 100 kyr climatic and glacio-eustatic cycles.

Valley fills contain a complex alluvial architecture. Falling stage to lowstand systems tracts consist of multiple laterally amalgamated sandy channelbelts that reflect deposition within a valley that was incised below highstand alluvial plains, and extended across a subaerially-exposed shelf. The lower boundary to falling stage and lowstand units comprises a composite valley fill unconformity that is time-transgressive in both cross- and down-valley directions. Coastal plain incised valleys began to fill with transgression and highstand, and landward translation of the shoreline: paleosols that define the top of falling stage and lowstand channelbelts were progressively onlapped and buried by heterolithic sandy channelbelt, sandy and silty crevasse channel and splay, and muddy floodbasin strata. Transgressive to highstand facies-scale architecture reflects changes through time in dominant styles of avulsion, and follows a predictable succession through different stages of valley filling. Complete valley filling promoted avulsion and the large-scale relocation of valley axes before the next sea-level fall, such that successive 100 kyr valley fills show a distributary pattern.

Basic elements within coastal plain valleys can be correlated with the record offshore, where cross-shelf valleys have been described from seismic data. Falling stage to lowstand channelbelts within coastal plain valleys were feeder systems for shelf-phase and shelf-margin deltas, respectively, and demonstrate that falling stage fluvial deposits are important valley fill components. Signatures of both upstream climate change vs. downstream sea-level controls are therefore interpreted to be present within incised valley fills. Signatures of climate change consist of the downstream continuity of major stratigraphic units and component facies, which extends from the mixed bedrock–alluvial valley of the eroding continental interior to the distal reaches, wherever that may be at the time. This continuity suggests the development of stratigraphic units and facies is strongly coupled to upstream controls on sediment supply and climate conditions within hinterland source regions. Signatures of sea-level change are critical as well: sea-level fall below the elevation of highstand depositional shoreline breaks results in channel incision and extension across the newly emergent shelf, which in turn results in partitioning of the 100 kyr coastal plain valleys. Moreover, deposits and key surfaces can be traced from continental interiors to the coastal plain, but there are downstream changes in geometric relations that correspond to the transition between the mixed bedrock–alluvial valley and the coastal plain incised valley. Channel incision and extension during sea-level fall and lowstand, with channel shortening and delta backstepping during transgression, controls the architecture of coastal plain and cross-shelf incised valley fills.  相似文献   


20.
Soluble reactive phosphorus (SRP) has recently been shown to be one of the limiting nutrients for the growth of phytoplankton in the northern Gulf of Mexico. We show here that during the past decade, SRP concentrations in the lower reaches of North America's largest river, the Mississippi River, were highest in summer and lowest in winter and positively correlated with water temperature. Upstream data showed this coupling to increase in a downstream trend in the Mississippi main stem. Water quality data analysis and phosphorus mass balances were conducted to examine the controls of this relationship. The results showed that the positive SRP–temperature correlation in the Mississippi River system was largely a result of gradual dilution of SRP-enriched upper Mississippi River waters, which contributed most to the Mississippi River during summer, by SRP-depleted waters from the Ohio and other tributaries. Particle buffering and organic matter mineralization might play a role in the observed SRP–temperature relationship, but their importance relative to tributary effects is not quantified. Future work on the seasonal dynamics of SRP in large river systems needs to consider the effects of both tributary dilution and in situ processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号