共查询到20条相似文献,搜索用时 15 毫秒
1.
The attributes of a ‘four-systems-tract’ sequence are at times difficult to identify in outcrop-scale carbonate successions. Poor exposure conditions, variable rates of sediment production, erosion and/or superposition of surfaces that are intrinsic to the nature of carbonate systems frequently conceal or remove its physical features. The late Early–Middle Aptian platform carbonates of the western Maestrat Basin (Iberian Chain, Spain) display facies heterogeneity enabling platform, platform-margin and slope geometries to be identified, and provide a case study that shows all the characteristics of a quintessential four systems tract-based sequence. Five differentiated systems tracts belonging to two distinct depositional sequences can be recognized: the Highstand Systems Tract (HST) and Forced Regressive Wedge Systems Tract (FRWST) of Depositional Sequence A; and the Lowstand Prograding Wedge Systems Tract (LPWST), Transgressive Systems Tract (TST) and subsequent return to a highstand stage of sea-level (HST) of Depositional Sequence B. An extensive carbonate platform of rudists and corals stacked in a prograding pattern marks the first HST. The FRWST is constituted by a detached, slightly cross-bedded calcarenite situated at the toe of the slope in a basinal position. The LPWST is characterized by a small carbonate platform of rudists and corals downlapping over the FRWST and onlapping landwards. The TST exhibits platform backstepping and marly sedimentation. Resumed carbonate production in shelf and slope settings characterizes the second HST. A basal surface of forced regression, a subaerial unconformity, a correlative conformity, a transgressive surface and a maximum flooding surface bound these systems tracts, and are well documented and widely mappable across the platform-to-basin transition area analyzed. Moreover, the sedimentary succession studied is made up of four types of parasequence that constitute stratigraphic units deposited within a higher-frequency sea-level cyclicity. Ten lithofacies associations form these basic accretional units. Each facies assemblage can be ascribed to an inferred depositional environment in terms of bathymetry, hydrodynamic conditions and trophic level. The architecture of the carbonate platform systems reflects a flat-topped non-rimmed depositional profile. Furthermore, these carbonate shelves are interpreted as having been formed in low hydrodynamic conditions. The long-term relative fall in sea-level occurred during the uppermost Early Aptian, which subaerially exposed the carbonate platform established during the first HST and resulted in the deposition of the FRWST, is interpreted as one of global significance. Moreover, a possible relationship between this widespread sea-level drop and glacio-eustasy seems plausible, and could be linked to the cooling event proposed in the literature for the late Early Aptian. Because of the important implications in sequence stratigraphy of this study, the sedimentary succession analyzed herein could serve as an analogue for the application of the four-systems-tract sequence stratigraphic methodology to carbonate systems. 相似文献
2.
The isotopic composition of Fe was determined in water, Fe-oxides and sulfides from the Tinto and Odiel Basins (South West Spain). As a consequence of sulfide oxidation in mine tailings both rivers are acidic (1.45 < pH < 3.85) and display high concentrations of dissolved Fe (up to 420 mmol l − 1) and sulphates (up to 1190 mmol l − 1).The δ56Fe of pyrite-rich samples from the Rio Tinto and from the Tharsis mine ranged from − 0.56 ± 0.08‰ to + 0.25 ± 0.1‰. δ56Fe values for Fe-oxides precipitates that currently form in the riverbed varied from − 1.98 ± 0.10‰ to 1.57 ± 0.08‰. Comparatively narrower ranges of values (− 0.18 ± 0.08‰ and + 0.21 ± 0.14‰) were observed in their fossil analogues from the Pliocene–Pleistocene and in samples from the Gossan (the oxidized layer that formed through exposure to oxygen of the massive sulfide deposits) (− 0.36 ± 0.12‰ to 0.82 ± 0.07‰). In water, δ56Fe values ranged from − 1.76 ± 0.10‰ to + 0.43 ± 0.05‰.At the source of the Tinto River, fractionation between aqueous Fe(III) and pyrite from the tailings was less than would be expected from a simple pyrite oxidation process. Similarly, the isotopic composition of Gossan oxides and that of pyrite was different from what would be expected from pyrite oxidation. In rivers, the precipitation of Fe-oxides (mainly jarosite and schwertmannite and lesser amounts of goethite) from water containing mainly (more than 99%) Fe(III) with concentrations up to 372 mmol l − 1 causes variable fractionation between the solid and the aqueous phase (− 0.98‰ < Δ 56Fe solid–water < 2.25‰). The significant magnitude of the positive fractionation factor observed in several Fe(III) dominated water may be related to the precipitation of Fe(III) sulphates containing phases. 相似文献
3.
The Bajo Segura Basin is located in the eastern Betic Cordillera, at present connected with the Mediterranean Sea to the east. It has a complete stratigraphic record from the Tortonian to the Quaternary, which has been separated into six units bounded by unconformities. This paper is concerned with the northern edge of the basin, controlled by a major strike–slip fault (the Crevillente Fault Zone, CFZ), where the most complete stratigraphic successions are found. The results obtained (summarised below) are based on an integrated analysis of the sedimentary evolution and the subsidence-uplift movements. Unit I (Early Tortonian) is transgressive on the basin basement and is represented by ramp-type platform facies, organised in a shallowing-upward sequence related to tectonic uplift during the first stages of movement along the CFZ. Unit II (lower Late Tortonian) consists of shallow platform facies at bottom and pelagic basin facies at top, forming a deepening-upward sequence associated with tectonic subsidence due to sinistral motion along the CFZ. Unit III (middle Late Tortonian) is made up of exotic turbiditic facies related to a stage of uplift and erosion of the southern edge of the basin. Unit IV (upper Late Tortonian) consists of pelagic basin facies at bottom and shallow platform facies at top, defining a shallowing-upward sequence related to tectonic uplift during continued sinistral movement on the basin-bounding fault. Units V (latest Tortonian–Messinian) and VI (Pliocene–Pleistocene p.p.) consist of shallowing-upward sequences deposited during folding and uplift of the northern margin of the basin. No definitive evidence of any major eustatic sea-level fall, associated with the ‘Messinian salinity crisis’, has been recorded in the stratigraphic sections studied. 相似文献
4.
A thick Upper Ordovician shelf sequence was developed in the northern Gondwana margin (southernmost exposures of the Central Iberian Zone). Integrated sedimentologic and stratigraphic studies allow distinction between pedogenetic processes (Facies association C), shoreline deposits (Facies association S), proximal to distal shelf (Facies association L, H 1, H 2, H 3) and outer shelf zone or open marine environments (Facies association M, Mo). The vertical distribution of facies is characterized by the presence of regressive high frequency sequences (partial shelf progradational sequences), affected by the presence of catastrophic phenomena (storms). These sequences, in turn, can be classified into higher‐order transgressive (T)–regressive (R) cycles. Two second‐order T‐R megacycles (MC. Ord‐2 and MC. Sil‐1) limited by a major sequence boundary are identified. Traces of emersion (palaeokarsts and palaeosols) are detected along the sequence boundary, and these are related to the eustatic sea‐level fall that occurred during the Ashgillian. The MC. Ord‐2 and MC. Sil‐1 megacycles extend respectively from the Middle Arenig to the Ashgillian and from Late Ashgillian to the Late Llandovery. Major transgressive peaks occurred at the Llanvirn and at the Middle Llandovery (Aeronian). The vertical distribution of the facies delineates successive genetically related units in relation to relative sea‐level changes. Within the upper part of the first megacycle (MC. Ord‐2) six third‐order cycles are proposed (Lla‐1, Car‐1, Car‐2, Car‐3, Car‐4, Ash‐1), in which a transgressive and a regressive interval can be distinguished. Within the lower part of the second megacycle (MC. Sil‐1) two transgressive–regressive third‐order cycles are proposed (Lly‐1, Lly‐2). Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
5.
The NW–SE-striking Northeast German Basin (NEGB) forms part of the Southern Permian Basin and contains up to 8 km of Permian to Cenozoic deposits. During its polyphase evolution, mobilization of the Zechstein salt layer resulted in a complex structural configuration with thin-skinned deformation in the basin and thick-skinned deformation at the basin margins. We investigated the role of salt as a decoupling horizon between its substratum and its cover during the Mesozoic deformation by integration of 3D structural modelling, backstripping and seismic interpretation. Our results suggest that periods of Mesozoic salt movement correlate temporally with changes of the regional stress field structures. Post-depositional salt mobilisation was weakest in the area of highest initial salt thickness and thickest overburden. This also indicates that regional tectonics is responsible for the initiation of salt movements rather than stratigraphic density inversion.Salt movement mainly took place in post-Muschelkalk times. The onset of salt diapirism with the formation of N–S-oriented rim synclines in Late Triassic was synchronous with the development of the NNE–SSW-striking Rheinsberg Trough due to regional E–W extension. In the Middle and Late Jurassic, uplift affected the northern part of the basin and may have induced south-directed gravity gliding in the salt layer. In the southern part, deposition continued in the Early Cretaceous. However, rotation of salt rim synclines axes to NW–SE as well as accelerated rim syncline subsidence near the NW–SE-striking Gardelegen Fault at the southern basin margin indicates a change from E–W extension to a tectonic regime favoring the activation of NW–SE-oriented structural elements. During the Late Cretaceous–Earliest Cenozoic, diapirism was associated with regional N–S compression and progressed further north and west. The Mesozoic interval was folded with the formation of WNW-trending salt-cored anticlines parallel to inversion structures and to differentially uplifted blocks. Late Cretaceous–Early Cenozoic compression caused partial inversion of older rim synclines and reverse reactivation of some Late Triassic to Jurassic normal faults in the salt cover. Subsequent uplift and erosion affected the pre-Cenozoic layers in the entire basin. In the Cenozoic, a last phase of salt tectonic deformation was associated with regional subsidence of the basin. Diapirism of the maturest pre-Cenozoic salt structures continued with some Cenozoic rim synclines overstepping older structures. The difference between the structural wavelength of the tighter folded Mesozoic interval and the wider Cenozoic structures indicates different tectonic regimes in Late Cretaceous and Cenozoic.We suggest that horizontal strain propagation in the brittle salt cover was accommodated by viscous flow in the decoupling salt layer and thus salt motion passively balanced Late Triassic extension as well as parts of Late Cretaceous–Early Tertiary compression. 相似文献
6.
Fluvial ribbon sandstone bodies are ubiquitous in the Ebro Basin in North‐eastern Spain; their internal organization and the mechanics of deposition are as yet insufficiently known. A quarrying operation in an Oligocene fluvial ribbon sandstone body in the southern Ebro Basin allowed for a three‐dimensional reconstruction of the sedimentary architecture of the deposit. The sandstone is largely a medium‐grained to coarse‐grained, moderately sorted lithic arenite. In cross‐section, the sandstone body is 7 m thick, occupies a 5 m deep incision and wedges out laterally, forming a ‘wing’ that intercalates with horizontal floodplain deposits in the overbank region. Three architectural units were distinguished. The lowest and highest units (Units A and C) mostly consist of medium‐grained to coarse‐grained sandstone with medium‐scale trough cross‐bedding and large‐scale inclined stratasets. Each of Units A and C comprises a fining‐up stratal sequence reflecting deposition during one flood event. The middle unit (Unit B) consists of thinly bedded, fine‐grained sandstone/mudstone couplets and represents a time period when the channel was occupied by low‐discharge flows. The adjoining ‘wing’ consists of fine‐grained sandstone beds, with mudstone interlayers, correlative to strata in Units A and C in the main body of the ribbon sandstone. In plan view, the ribbon sandstone comprises an upstream bend and a downstream straight reach. In the upstream bend, large‐scale inclined stratasets up to 3 m in thickness represent four bank‐attached lateral channel bars, two in each of Units A and C. The lateral bars migrated downflow and did not develop into point bars. In the straight downstream reach, a tabular cross‐set in Unit A represents a mid‐channel transverse bar. In Unit C, a very coarse‐grained, unstratified interval is interpreted as deposited in a riffle zone, and gives way downstream to a large mid‐channel bar. The relatively simple architecture of these bars suggests that they developed as unit bars. Channel margin‐derived slump blocks cover the upper bar. The youngest deposit is fine‐grained sandstone and mudstone that accumulated immediately before avulsion and channel abandonment. Deposition of the studied sandstone body reflects transport‐limited sediment discharges, possibly attaining transient hyperconcentrated conditions. 相似文献
7.
Three subsequent Tertiary paleostress fields that are deduced from fault-slip data for the eastern part of the Tajo Basin are analyzed by finite-element studies. The modelling results show that maximum horizontal stresses ( SHmax) are mainly controlled by the geometry of the model limits and the boundary conditions applied. The models are used to test two hypotheses on the origin of the Altomira Range. A local stress field responsible for its formation (‘Altomira') can be modelled successfully by superposition in time and place of two major paleostress fields (‘Iberian' and ‘Guadarrama'). Stress trajectories have been modelled with respect to a homogeneous cover and heterogeneous basement to investigate the role of rheological contrasts between different basement blocks on the orientation of the stress field. Results of this kind of modelling suggest a mechanical decoupling between the cover and the basement, especially for the ‘Altomira' paleostress field. 相似文献
8.
The Permian–Triassic sediments of the Iberian Plate are a well studied case of classical Buntsandstein–Muschelkalk–Keuper facies, with good sedimentological interpretations and precise datings based on pollen and spore assemblages, ammonoids and foraminifera. Synrift–postrift cycles are recorded in these facies, but there are only a few studies of quantitative subsidence analysis (backstripping method) and only a previous one using forward modelling for the quantification of synrift–postrift phases of this period.Here we present the results obtained by the quantitative analysis of fourteen field sections and oil-well electric log records in the Iberian and Ebro Basins, Spain. Backstripping analysis showed five synrift phases of 1 to 3 million years duration followed by postrift periods for the Permian–Triassic interval. The duration, however, shows lateral variations and some of them are absent in the Ebro Basin. The forward modelling analysis, assuming local isostatic compensation, has been applied to each observation point using one-layer and two-layer lithospheric configurations. The second one shows a better fit between observation and model prediction in a systematic way, so a two layer configuration is assumed for the sedimentary basin filling analysis. Lithospheric stretching factors β and δ obtained in the forward modelling analysis are never higher than 1.2, but sometimes β < 1 and simultaneously δ > 1 in the same section. If surficial extension is compensated by deep compression either at the roots of the rift basins or in far-away zones is not yet clear, but this anomaly can be explained using a simple shear extensional model for the Iberian and Ebro basins. 相似文献
9.
Knowledge of the turtle fauna from the Lower Cretaceous of the Iberian Peninsula has been very limited until now. There are several fossil sites where Lower Cretaceous associations of continental vertebrates have been found. Although turtles have been identified in some of them, most of these specimens have not been studied, so the diversity is unknown. Among all these findings, the turtles from the Cameros Basin are considered particularly relevant, both in their abundance and diversity. Their study has allowed the identification of several taxa. At least one representative of Solemydidae and three taxa of Eucryptodira are recognized. This study establishes kinship and biogeographic relationships between the taxa in Cameros with those found in other Spanish fossil sites and with those of other European regions. 相似文献
10.
The Lower–Middle Albian coaly clay bed of the Escucha Formation, which is exposed at Rubielos de Mora (eastern Iberian Ranges, Spain), contains a diverse fossil plant assemblage. Among the taxa present in this layer, Mirovia gothanii Gomez sp. nov. differs from other species of the genus by its greater leaf length, margins typically overhanging the depressed stomatal groove, a single short, blunt, papilla borne by each subsidiary cell, non-stomatal cells inside the groove and margins, and a higher number of resin ducts in the mesophyll. Morphological study of the well-preserved cuticles demonstrates that the species also occurs in Lower Cretaceous coals of Santa Maria de Meià (Pyrenees, Spain) where Gothan (1954) described it as Sciadopitytes sp. Both localities constitute the southernmost extent of the genus in Laurasia when the family was likely to have reached its climax in terms of abundance and diversity. 相似文献
11.
Fluid inclusions and clay mineralogy of the Permo-Triassic rocks from the Espina and Espadà Ranges (SE Iberian Chain, Spain) have been investigated to establish their relationship with hydrothermal fluid circulation during the Alpine Orogeny. Primary fluid inclusions in quartz-filled tension gashes in Permo-Triassic sandstones reveal maximum temperatures around 230 °C and very constant salinities of 8.5% wt. eq. NaCl. Secondary fluid inclusions found in quartz from the Santonian Ba–Cu–Hg deposits show similar compositional and thermodynamic characteristics, denoting an Alpine recrystallization. Clay mineral composition of Permo-Triassic mudrocks is characterized by pyrophyillite, indicating low-grade metamorphic conditions. Field observations and experimental data suggest that the crystallization of quartz in tension gashes, the formation of secondary fluid inclusions and the development of the metamorphism are contemporaneous and related to fluid circulation during the Alpine compression. Fluid flow took place along the Hercynian fault system that was reactivated during the Mesozoic rift stage and inverted during the Alpine deformation. 相似文献
12.
A Lower Cretaceous (Aptian) succession of carbonate rocks in the southern Maestrat Basin (Iberian Chain, Spain) was analysed in terms of sedimentological and palaeontological criteria. The shallow marine sequence was deposited upon a homoclinal carbonate ramp. Five main facies types were distinguished: (A) peloidal and bioclastic grainstones and rudstones of the inner ramp shoals; (B) orbitolinid wackestones-packstones of the distal outer ramp; (C) peloid and Ostrea wackestones-packstones of the middle outer ramp; (D) coral-algal sheetstones of the proximal outer ramp; and (E) coral-algal platestones-domestones of the middle ramp. Coral-bearing facies types (D) and (E) showed similar major environmental factors: low energy hydrodynamism, low light intensity and apparently nutrient-rich water. Slight differences in these conditions are reflected in the different growth forms and coral assemblages. Coral-algal sheetstones are characterized by sheet-like and lamellar forms with a low coral diversity not clearly dominated by any taxon. Coral-algal platestones-domestones develop platy, tabular and irregular massive forms with a slightly higher coral diversity characterized by a Microsolenina-Faviina association. The coral fauna is revised taxonomically and yielded a total of 22 species in 18 genera (21 Scleractinia species, one Octocorallia species). Genera of the suborders Microsolenina and Faviina predominate, those of the suborders Stylinina, Fungiina, Rhipidogyrina and the order Coenothecalia are subordinate. 相似文献
13.
The sedimentary cycles of the Cenomanian to Maastrichtian were investigated in the Basco-Cantabrian Basin (BCB) in northern Spain (Provinces of Alava, Vizcaya and Burgos). The depositional area was a distally steepened carbonate ramp which extended from Catalonia northwestwards to the Basque country. The investigated sediments range from calciturbidites and pelagic marls to marl-limestone alternations deposited on a distal carbonate ramp. Shallow marine limestones, marls and intertidal clastics and carbonates were deposited on the proximal part of the carbonate ramp. The establishment of a regional sequence analysis is based on the investigation of seismic profiles, well logs and outcrop sections. Examples of outcrop sections are interpreted in terms of sequence stratigraphy (unconformities of third- and second-order cycles, depositional geometries, systems tracts). The sequence stratigraphic interpretation of outcrop sections is based on facies analysis, interpretation of observed depositional geometries and correlation of unconformities and marine flooding surfaces through the basin. A biostratigraphic framework is established based on ammonites, inoceramids, planktonic and benthic foraminifera. As a result, a regional sequence stratigraphic cycle chart is presented and compared with published global cycle charts. The correlation of the regional cycle chart with published cycle charts is good. In the Cenomanian and Turonian, several sequence boundaries in the BCB are shifted by up to one biozone compared with the global chart. Some type 1 boundaries of the standard chart are only type 2 in the BCB. Important type 1 boundaries in the BCB are: top Geslinianum Zone with a 100 m lowstand wedge at the basis of the sequence (sequence boundary 92.2) ; base Petrocoriense Zone with a 250 m shallowing-upwards lowstand wedge at the basis (sequence boundary 89.2); and within the Syrtale Zone (sequence boundary 85.0).The Campanian-Maastrichtian sequence record is strongly disturbed by local compressive tectonics. Several sequences are recognizable and can be correlated with the global cycle chart. Correlation is hampered by the low biostratigraphic resolution in the western basin part. Subsidence analysis of several sections of the Upper Cretaceous of the BCB and its interpretation in the regional tectonic context leads to a discussion of the causes of the observed cyclicity. A regional eustatic curve is presented for the Upper Cretaceous of the BCB. Stage and substage names were used according Code-Committee (1977).
Correspondence to: K.-U. Gräfe 相似文献
14.
In the western sector of the Ebro Basin two types of structures deform the Quaternary terraces and pediments developed by the Ebro River and its tributaries: (1) folds up to 10 km long in the lower levels of fluvial terraces and (2) normal listric faults that produce tilting and rollover anticlines of the Quaternary deposits. Both types of structures are linked to the geometrical and lithological features of the Tertiary beds that underlie the Quaternary deposits. Quaternary folds, whose axes are parallel to the strike of the Tertiary beds, are the result of reactivation of Tertiary large-scale (60 km long) folds due to diapirism of their gypsum cores, where the gypsum units reach a maximum thickness of 3 000 m. This reactivation produced flexural-slip in some beds on the limbs of the folds, bringing about the folding of the overlying Quaternary terraces. The mechanism of Quaternary folding involves layer-parallel shear in alternating Tertiary units and folding linked to detachments and reverse layer-parallel faults. Normal listric faults are widespread throughout the studied area. They are partly parallel to low dipping Tertiary beds and are the result of a NNE-SSW tectonic extension, compatible with minor structures and focal mechanisms of recent earthquakes. The relationship between the two kinds of Quaternary structures indicates that diapirism of the gypsum cores of the anticlines was activated by extensional tectonics. 相似文献
15.
Within the upper Valanginian to upper Albian deposits of the easternmost part of the Prebetic Zone of the Betic Cordillera (Iberian Peninsula), seven lithostratigraphic formations made up of shallow-water carbonate and carbonate-siliciclastic sediments and of outer-platform hemipelagic sediments have been recognized. These formations were deposited in the most distal part of a platform that developed on the Southern Iberian Continental Palaeomargin. The geodynamic context was a margin affected by extensional or transtensional faults that produced tilted blocks. The interval studied records three major second-order transgressive-regressive facies cycles: (I) A late Valanginian to earliest Aptian cycle, mostly represented by hemipelagic and condensed sedimentation, with the development of a tectonically controlled high without sedimentation that separated two sectors with different sedimentary evolution and that ended with an episode of shallow-water carbonate platform development; (II) An earliest to latest Aptian cycle, with a transgressive phase represented by a retrogradational shallow-water carbonate platform capped by a drowning event leading to hemipelagic sedimentation, which was affected by an anoxic event (OAE 1a); the regressive phase is represented by progradation and aggradation of shallow-water carbonate deposits. Finally (III) a latest Aptian to early-late Albian cycle that records the expansion of mixed platform deposits in the entire area, ending with a phase of shallow-water carbonate platform development. Extensional tectonics leading to spatial and temporal changes in subsidence patterns is envisaged as the main control on sedimentation at a local scale, resulting in notable lateral changes in thickness as the main signature. Tectonics exerted a strong control on the distribution of sedimentary environments only during Cycle I. At a higher order, sea-level fluctuations are responsible for sequential organization, and environmental factors determined shallow-water carbonate platform development and demise, as well as oceanic anoxic events. The relevant continuity of the stratigraphic record in the distal part of the Prebetic platform has led to the recognition of events related to cycle boundaries, which result mainly from a combination of tectonics and sea-level changes. 相似文献
16.
It is now generally accepted that the Oceanic Anoxic Event 1a [OAE 1a] correlates with the lower part of the Leupoldina cabri planktonic foraminiferal Zone. Its calibration against the standard ammonite scale, however, seems to be more problematic. This is due, in part, to the fact that ammonites are scarce and/or of little diagnostic value from a biochronological viewpoint in the lower Aptian pelagic successions where the black shale horizons are better developed.We have been able to characterize OAE 1a geochemically in the relatively shallow water deposits of the eastern Iberian Chain (Maestrat Basin, eastern Spain), where ammonite faunas are rich. The interval corresponding to this event is dominated by the genera Roloboceras and Megatyloceras, accompanied by Deshayesites forbesi and Deshayesites gr. euglyphus/spathi. This assemblage is characteristic of the middle/upper part of the Deshayesites weissi Zone. The first occurrence of the species Deshayesites deshayesi (d'Orbigny), which marks the base of the overlying zone, takes place in our sections some metres above the OAE 1a interval.In the historical stratotype region of Cassis-La Bédoule (southern Provence Basin, southeastern France), the OAE 1a interval is also characterized by the presence of Roloboceras and Megatyloceras. Nevertheless, it has usually been correlated with the D. deshayesi Zone. In our opinion, this discrepancy is due to divergences in the taxonomic assignments of the deshayesitids present in these beds. In fact, the specimens attributed by French authors [Ropolo, P., Conte, G., Gonnet, R., Masse, J.P., Moullade, M., 2000. Les faunes d'Ammonites du Barrémien supérieur/Aptien inférieur (Bédoulien) dans la région stratotypique de Cassis-La Bédoule (SE France): état des connaissances et propositions pour une zonation par Ammonites du Bédoulien-type. Géologie Méditerranéenne 25, 167–175; Ropolo, P., Moullade, M., Gonnet, R., Conte, G., Tronchetti, G., 2006. The Deshayesitidae Stoyanov, 1949 (Ammonoidea) of the Aptian historical stratotype region at Cassis-La Bédoule (SE France), Carnets de Géologie / Notebooks on Geology Memoir 2006/01, 1–46.] to D. deshayesi and D. dechyi can be reinterpreted as belonging to D. forbesi.Following this reinterpretation, the Roloboceras beds (equivalent of OAE 1a) of Cassis-La Bédoule would also correspond to the D. weissi Zone. This age is additionally corroborated by data from southern England [Casey, R., 1961a. The stratigraphical palaeontology of the Lower Greensand. Palaeontology 3, 487–621; Casey, R., 1961b. A Monograph of the Ammonoidea of the Lower Greensand, part III. Palaeontographical Society, London, pp. 119–216], and by our recent observations in Le Teil (Ardèche Platform, southeastern France), where the Roloboceras faunas are also associated with Deshayesites consobrinus and Deshayesites gr. euglyphus, taxa that are characteristic of the D. weissi Zone. 相似文献
17.
Stratigraphic and sedimentological analyses of the Quaternary tufa and associated deposits in the Piedra and Mesa river valleys allowed a number of stages of their sedimentary evolution to be characterized, and a depositional sedimentary model for this north‐central sector of the Iberian Range (Spain) to be established. The proposed sedimentary facies model may explain tufa arrangements in other medium to high gradient, stepped, fluvial tufa systems with narrow transverse profiles occurring in temperate, semi‐arid areas, in both recent and past scenarios. There are several tufa deposits within the Piedra and Mesa river valleys that, over a maximum thickness of about 90 m, record one or more stages of tufa deposition produced following the fluvial incision of the bedrock or previous tufa deposits. Each depositional stage begins with coarse detrital sedimentation. Six fundamental, vertical sequences of tufa facies with small amounts of detrital material reveal the sedimentary processes that occurred in different fluvial environments: channel areas with: (i) free‐flowing water; (ii) barrages and/or cascades; and (iii) dammed water and palustrine floodplains. The proposed sedimentary model involves narrow, stepped, fluvial valleys in which tufa cascades were common. Alternating intervals of bryophyte and stromatolite facies commonly formed at some cascades. Many of these represented barrage‐cascade structures that consisted of phytoclast rudstones, thick phytoherms of mosses and associated stromatolites, and curtain‐shaped phytoherms of stems. Upstream of these structures, dammed areas with bioclastic sands and silts developed and palustrine vegetation grew. The channel stretches between barrages and/or cascades were loci for extensive stromatolite growth in fast flowing water. The palustrine floodplain was home to pools and drainage channels. The model also explains the growth of some barrages in the River Piedra that surpassed the height of the divide, with the diffluence of the main channel into a secondary course forming other tufa deposits in the area. The distribution and abundance of certain types of tufa facies in fluvial basins may be an indicator of differences in their gradients. The facies studied in this work suggest that the gradient of the ancient River Piedra was steeper than that of the ancient River Mesa. Assuming similar scenarios for climate and hydrology, the depositional settings mentioned above and their dimensions would have been determined mainly by the gradient and width of the associated river valleys. This sedimentary model may also be useful for inferring variations in other river basin slopes, as well as accounting for the presence of tufas in areas that normally have no permanent water input. 相似文献
18.
The Iberian Peninsula hosts the world-class Hg mining district of Almadén. Besides pre-Hercynian ore bodies, alpine-cycle Hg-bearing veins are also present in the eastern Iberian Ranges (Espadán deposits). We present both the first absolute ages (84±4 and 85±3 Ma) for a post-Hercynian Hg deposit in Spain, obtained from primary muscovites, and a complete compilation of published Mesozoic radiometric absolute ages of the Iberian Peninsula. We deduce that there are three main thermal episodes that affected the Iberian Peninsula, which have been revealed after the comparison among the magmatic, metamorphic and hydrothermal ages. Moreover, the Espadán hydrothermal system was active when both the Cretaceous alkalic magmatism took place in Southern Portugal and in the Pyrenees, and during the opening of the Bay of Biscay. 相似文献
19.
The Gulf of Corinth is a graben, which has undergone extension during the Late Quaternary. The subsidence rate is rapid in the currently marine part whereas uplift now affects a large part of the initially subsiding area in the North Peloponnese. In this paper, we document the rates of subsidence/uplift and extension based on new subsurface data, including seismic data and long piston coring in the deepest part of the Gulf. Continuous seismic profiling data (air gun) have shown that four (at least) major oblique prograding sequences can be traced below the northern margin of the central Gulf of Corinth. These sequences have been developed successively during low sea level stands, suggesting continuous and gradual subsidence of the northern margin by 300 m during the Late Quaternary (last 250 ka). Subsidence rates of 0.7–1.0 m kyr − 1 were calculated from the relative depth of successive topset to foreset transitions. The differential total vertical displacement between the northern and the southern margins of the Corinth graben is estimated at about 2.0–2.3 m kyr − 1. Sequence stratigraphic interpretation of seismic profiles from the basin suggests that the upper sediments (0.6 s twtt thick) in the depocenter were accumulated during the last 250 ka at a mean rate of 2.2–2.4 m kyr− 1. Long piston coring in the central Gulf of Corinth basin enabled the recovery of lacustrine sediments, buried beneath 12–13.5 m of Holocene marine sediments. The lacustrine sequence consists of varve-like muddy layers interbedded with silty and fine sand turbidites. AMS dating determined the age of the marine–lacustrine interface (reflector Z) at about 13 ka BP. Maximum sedimentation rates of 2.4–2.9 m kyr− 1 were calculated for the Holocene marine and the last glacial, lacustrine sequences, thus verifying the respective rates obtained by the sequence stratigraphic interpretation. Recent accumulation rates obtained by the 210Pb-radiometric method on short sediment box cores coincide with the above sedimentation rates. Vertical fault slip rates were measured by using fault offsets of correlated reflector Z. The maximum subsidence rate of the depocenter (3.6 m kyr− 1) exceeds the maximum sedimentation rate by 1.8 m kyr− 1, which, consequently, corresponds to the rate of deepening of the basin's floor. The above rates indicate that the 2.2 km maximum sediment thickness as well as the 870 m maximum depth of the basin may have formed during the last 1 Ma, assuming uniform mean sedimentation rate throughout the evolution of the basin. 相似文献
20.
Geological mapping, definition of facies distributions and reconstruction of platform‐interior growth geometries of the Messinian Cariatiz carbonate platform (Sorbas basin, South Spain), were performed to evaluate the controlling factors in platform growth and to test a 3‐D computer simulation program. For the simulation with the program REPRO, five platform‐related facies were modelled: (1) the reef crest facies by the numerical solution of a Fisher equation; (2) the lagoonal facies by a function of water depth‐dependent carbonate production; (3) the proximal and middle slope facies (breccia and block facies, calcarenite facies) by a subroutine simulating gravity‐driven particle export from the reef crest; (4) a distal slope; and (5) a basinal facies by a pelagic rain function. Development of a fan delta conglomeratic system is simulated by using a siliciclastic point source and gravity‐driven particle redistribution. A best fit between the observed platform growth geometries and modelling results is achieved by assuming that high‐frequency sea‐level changes superimposed onto a longer term sea‐level fall controlled platform growth. For the modelling, a relative sea‐level curve was reconstructed, which is based on a deep‐sea benthic foraminiferal stable oxygen isotope record at ODP Site 926 with a 45 m eustatic sea‐level fall, and a tectonic uplift component of 20 m. The consistency of 3‐D simulation results is corroborated by the coral growth rates provided by the Fisher‐equation subroutine. These rates of 2–8 mm year −1 compare well to the coral growth rates in Recent fringing reefs. We propose that during the early stage of platform evolution the high‐frequency fluctuations were obliquity‐modulated precessional cycles, whereas precessional cycles control later stages of platform growth. REPRO provides a separate visualization of the different facies bodies as a function of time and space, showing the intrinsic pattern of facies distribution in the platform. This is the result of a combination of platform growth and syndepositional subaerial erosion. For example, only the youngest stages of reef framework facies in the development of the Cariatiz carbonate platform are preserved. 相似文献
|