首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bifurcations of dust acoustic solitary waves and periodic waves in an unmagnetized plasma with q-nonextensive velocity distributed ions are studied through non-perturbative approach. Basic equations are reduced to an ordinary differential equation involving electrostatic potential. After that by applying the bifurcation theory of planar dynamical systems to this equation, we have proved the existence of solitary wave solutions and periodic wave solutions. Two exact solutions of the above waves are derived depending on the parameters. From the solitary wave solution and periodic wave solution, the effect of the parameter (q) is studied on characteristics of dust acoustic solitary waves and periodic waves. The parameter (q) significantly influence the characteristics of dust acoustic solitary and periodic structures.  相似文献   

2.
In our article (Zhuravlev, 1979) a formal method of constructing conditionally periodic solutions of canonical systems of differential equations with a quick-rotating phase in the case of sharp commensurability was presented. The existence of stationary (or periodic) solutions of an averaged system of differential equations corresponding to the initial system of differential equations is necessary for an effective application of the method for different problems.Evidently, the stationary solutions do not always exist but in numerous papers on stationary solutions (oscillations or motions), the conditions of existence of such solutions are very often not considered at all. Usually a simple assumption is used that the stationary solutions do exist.Otherwise it is well known that Poincaré's theory of periodic solutions (Poincaré, 1892) let one set up conditions of existence of periodic solutions in different systems of differential equations. Particularly, in papers,Mah (1949, 1956), see alsoexmah (1971), the necessary and sufficient conditions of the existence of periodic solutions of (non-canonical) systems of differential equations which are close to arbitrary non-linear systems are given. For canonical autonomous systems of differential equations the conditions of existence of periodic solutions and a method of calculation are presented in the paperMepmah (1952).In our paper another approach is given and the conditions of existence of stationary solutions of canonical systems of differential equations with a quick-rotating phase are proved. For this purpose Delaunay-Zeipel's transformation and Poincaré's small parameter method are used.  相似文献   

3.
Ion acoustic solitary waves and periodic waves in an unmagnetized plasma with superthermal (kappa distributed) cool and hot electrons have been investigated using non-perturbative approach. We have transformed basic model equations to an ordinary differential equation involving electrostatic potential. Then we have applied the bifurcation theory of planar dynamical systems to the obtained equation and we have proved the existence of solitary wave solutions and periodic wave solutions. We have derived two exact solutions of solitary and periodic waves depending on the parameters. From the solitary wave solution and periodic wave solution, we have shown the effects of density ratio p of cool electrons and ions, spectral index κ, and temperature ratio σ of cool electrons and hot electrons on characteristics of ion acoustic solitary and periodic waves.  相似文献   

4.
Families of conditionally periodic solutions have been found by a slightly modified Lyapunov method of determining periodic solutions near the libration points of the restricted three-body problem. When the frequencies of free oscillations are commensurable, the solutions found are transformed into planar or spatial periodic solutions. The results are confirmed by numerically integrating the starting nonlinear differential equations of motion.  相似文献   

5.
The long period problem provides the initial conditions for numerical computation of close periodic solutions separated in three categories. For each type of commensurability a number of periodic solutions are computed and their stability is studied by computing the characteristic exponents of the matrizant. The Runge-Kutta method for the solution of differential equations of motion was used in all cases. The results obtained are presented for a four cases of commensurability.  相似文献   

6.
POINCARÉ's conditions for the existence of periodic solutions of systems of differential equations are simplified by use of transformations of coordinates.  相似文献   

7.
A formal method of constructing of conditionally periodic solutions of canonical systems of differential equations in the vicinity of a commemsurability of frequencies is proposed. The method is a union of the rapid convergence method and (well-known in celestial mechanics) Delaunay-Zeipel's method of canonical transformations. For a successful application of the method an existence of stationary resonant solutions of an averaged system of the differential equations is necessary.  相似文献   

8.
The periodic solutions of the restricted three-body problem representing analytic continuations of Keplerian rectilinear periodic motions are well known (Kurcheeva, 1973). Here the stability of these solutions are examined by applying Poncaré's characteristic equation for periodic solutions. It is found that the isoperiodic solutions are stable and all other solutions are unstable.  相似文献   

9.
The equations of motion of a rigid body about a fixed point in a central Newtonian field is reduced to the equation of plane motion under the action of potential and gyroscopic forces, using the isothermal coordinates on the inertia ellipsoid.The construction of periodic solutions nearby equilibrium points, by using the Liapunov theorem of holomorphic integral are obtained and the necessary and sufficient conditions for the stability of the system are given.  相似文献   

10.
For differential equations with one fast variable, a perturbation method is introduced that transforms a solution valid over only a short time interval to a new solution composed of averaged variables plus a periodic function of the averaged variables. The averaged variables are governed by a set of differential equations where the fast variable has been removed and thus can be numerically integrated quickly or solved directly. This method is applied to a perturbed harmonic oscillator with a cubic perturbation, van der Pol's equation, coorbital motion in the restricted three-body problem, and to nearly circular motion of a particle near one of the primaries in the restricted three-body problem.  相似文献   

11.
The equations of motion of a rigid body about a fixed point in a central Newtonian field is reduced to the equation of plane motion under the action of potential and gyroscopic forces, using the isothermal coordinates on the inertia ellipsoid.The construction of periodic solutions near the equilibrium points, by using the Lipaunov theorem of holomorphic integral, is obtained and the necessary and sufficient conditions for the stability of the system are given.  相似文献   

12.
13.
The article describes the solutions near Lagrange's circular collinear configuration in the planar problem of three bodies with three finite masses. The article begins with a detailed review of the properties of Lagrange's collinear solution. Lagrange's quintic equation is derived and several expressions are given for the angular velocity of the rotating frame.The equations of motion are then linearized near the circular collinear solution, and the characteristic equation is also derived in detail. The different types of roots and their corresponding solutions are discussed. The special case of two equal outer masses receives special attention, as well as the special case of two small outer masses.Finally, the fundamental family of periodic solutions is extended by numerical integration all the wap up to and past a binary collision orbit. The stability and the bifurcations of this family are briefly enumerated.  相似文献   

14.
A method based on the invariace under a continuous Lie group of transformations is worked out to reduce the problem of finding solutions to the cosmological equations of Jordan and Brans-Dicke theory of gravitation for the Robertson-Walker metrics and the cases of the dust universe and the vacuum universe. The reduction consists in a first-order differential equation and a quadrature for each case. Previously known cosmological solutions are re-obtained. In particular, it becomes apparent during the development of this scheme that the flat-space solutions are indeed the general solution.  相似文献   

15.
An appropriate generalization of the Jacobi equation of motion for the polar moment of inertia I is considered in order to study the N-body problem with variable masses. Two coupled ordinary differential equations governing the evolution of I and the total energy E are obtained. A regularization scheme for this system of differential equations is provided. We compute some illustrative numerical examples, and discuss an average method for obtaining approximate analytical solutions to this pair of equations. For a particular law of mass loss we also obtain exact analytical solutions. The application of these ideas to other kind of perturbed gravitational N-body systems involving drag forces or a different type of mass variation is also considered. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
In this paper, we present a new second kind Chebyshev (S2KC) operational matrix of derivatives. With the aid of S2KC, an algorithm is described to obtain numerical solutions of a class of linear and nonlinear Lane–Emden type singular initial value problems (IVPs). The idea of obtaining such solutions is essentially based on reducing the differential equation with its initial conditions to a system of algebraic equations. Two illustrative examples concern relevant physical problems (the Lane–Emden equations of the first and second kind) are discussed to demonstrate the validity and applicability of the suggested algorithm. Numerical results obtained are comparing favorably with the analytical known solutions.  相似文献   

17.
A new class of linear ordinary differential equations with periodic coefficients is found which can be transformed to the Gauss hypergeometric equation, and therefore the monodromy matrices are computable explicitly. These equations appear as the variational equations around a straight-line solution in Hamiltonian systems of the form H = T(p) + V(q), where T(p) and V(q) are homogeneous functions of p and q, respectively.  相似文献   

18.
徐兴波 《天文学报》2022,63(4):40-31
考虑周期解的数值延拓问题并提出基于Broyden拟牛顿法来延拓周期解的一种有效算法,先后以布鲁塞尔振子、平面圆型限制性三体问题(Planar Circular Restricted Three-Body Problem, PCRTBP)的周期解为例进行了验证.这里的Broyden方法包含线性搜索、正交三角分解求线性方程组的步骤.对一般的周期解,周期性条件方程组中含有周期作为待延拓参数,可用周期来决定积分时长,将解代入周期性条件得到积分型的非线性方程组,利用Broyden方法迭代延拓直至初值收敛.根据两次垂直通过一个超平面的轨道是对称周期轨道的性质,可采用插值的方法求得再次抵达超平面的解分量,得到周期性条件方程组,再用Broyden方法求解.结合哈密顿系统的对称性和PCRTBP周期轨道的一些分类,对2/1、3/1的内共振周期解族进行了数值研究.最后,对算法和计算结果做了总结和讨论.  相似文献   

19.
Steady-plane flow of an inviscid, electrically-conducting, compressible fluid with infinite electrical conductivity is considered and a single partial differential equation is obtained which involves two functions. Appropriate specialization of these functions generate new exact solutions of the orginal equations.  相似文献   

20.
Two formal solutions of the radiative transfer equation for polarized light have been proposed. One uses the Stokes parameters to describe the polarization, while the other uses the coherency matrix. It is shown in the present work that they are equivalent. Both can be used to compute response and contribution functions for the Stokes parameters and both require the solution of systems of differential equations with similar numbers of independent variables. New equations to solve the radiative transfer problem using the Stokes parameters formalism are presented. In addition, a computer code which synthesizes the Stokes profiles by means of these equations is described.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号