首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
某些油气田地表土壤的磁性与烃运移相互关系研究   总被引:5,自引:0,他引:5       下载免费PDF全文
根据鄂尔多斯盆地靖边气田上方的MI02线、江苏储家楼油田与江汉盆地花园油田地表十字剖面土壤磁性的测量结果,研究地表是否存在与深部油气藏中烃类垂向运移相关磁性蚀变带的可能性及其分布形式.结果表明,MI02线样品显示了明显的高磁性异常特征,并与酸解烃之间呈很强的正相关.磁滞回线形态与参量显示出明显的亚铁磁性特征.电子探针分析结果表明,样品中主要磁性矿物(磁铁矿)中高温杂质元素含量很低.江汉盆地花园油田十字剖面磁滞回线参量(饱和磁化强度Js与饱和等温剩磁Jr)的高异常位于油田周边,油田顶部土壤呈典型顺磁性特征.储家楼油田地表土壤的高磁性异常主要位于油田上方,它们均与盖层中的断裂构造对应,储家楼油田的高磁性样品中发现的典型球粒状磁铁矿为次生低温磁铁矿,它与烃运移之间存在成因关系.  相似文献   

2.
渤海南部莱州湾Lz908孔沉积物的岩石磁学性质   总被引:2,自引:2,他引:0       下载免费PDF全文
亚洲大陆边缘海和陆表海在区域的物质和能量交换以及区域气候与环境演化过程中扮演了关键角色.磁性地层学和环境磁学方法是建立年代框架和环境演变序列的有效手段,但是,由于该地区边缘海和陆表海沉积物中磁性矿物来源十分复杂,磁性地层学和环境磁学研究的重要基础是要精细地解译沉积物的岩石磁学性质.为此,本文利用渤海南部莱州湾Lz908孔与钻孔附近的现代沉积物样品进行了详细的岩石磁学对比研究.结果显示,渤海南部沉积物中的磁性矿物主要是较粗颗粒(较大的准单畴至多畴)磁铁矿,还有少量磁赤铁矿,部分沉积物还含有赤铁矿和针铁矿,其中磁铁矿是特征剩磁的主要载体;莱州湾现代河流-海洋沉积物和钻孔样品之间的磁性特征无显著差异,说明莱州湾沉积物堆积之后尚未经历明显的沉积后期改造.  相似文献   

3.
It has been proposed that the high-frequency, low-amplitude magnetic anomalies found over some hydrocarbon deposits are due to long-term microseepage of hydrocarbons into iron-rich sedimentary roof rocks, with subsequent precipitation of diagenetic magnetite or pyrrhotite at or near the water-table. Aerogeophysical data sets, comprising both magnetic and gamma-ray spectrometer measurements, over the Formby oil-field, Lancashire, U.K., have been analysed for hydrocarbon-related anomalies. Detailed ground magnetic traverses were also made to investigate some of the aeromagnetic anomalies. No hydrocarbon-induced magnetic anomalies were detected. The majority of the high-frequency events occurring in the aeromagnetic data correlated with cultural features, others were attributed to artefacts of the data processing. In particular there were no extensive areas of high-frequency, low-amplitude anomalies as might be expected from authigenic magnetic minerals. Borehole chippings from inside and outside the oil-field were examined. High magnetic susceptibilities were due to contamination during drilling. Magnetite, which was identified by mineralogical analysis, was found to be of detrital origin. If any diagenetic magnetic material was present it was in such small quantities as to be insignificant. The oil-field did not possess a characteristic gamma-ray spectrometric signature. Anomalies were found to be related to hydrological conditions and to the distribution of surficial deposits. Attempts to suppress the influence of the drift geology had only limited success. It is concluded that the effectiveness of high-resolution aeromagnetic onshore surveys for direct hydrocarbon detection has yet to be established. In particular, the anomaly found over the Formby oil-field was caused by the cumulative effect of borehole casing. Similar cultural contamination by oil-field equipment may explain some of the anomalies discovered over hydrocarbon deposits in North America. It is also unlikely that the spectrometric method can be applied diagnostically in any but the most simple and drift-free geological environments.  相似文献   

4.
海底电性源频率域CSEM勘探建模及水深影响分析   总被引:4,自引:3,他引:1       下载免费PDF全文
为了探索我国海域油气和水合物等高阻目标体CSEM勘探的可行性和方法技术,本文研究了在海水中水平电性源激励下有限水深海洋地电模型的频率域电磁响应,为进一步的1D和3D仿真计算奠定了理论基础.在推导电磁响应公式时,首先给出了各层介质的Lorentz势,然后根据Coulomb势与Lorentz势的关系,得到了各层介质的Coulomb势.各层介质中的电磁场均可以由Lorentz势或者Coulomb势计算得到,但在有限元计算时Coulomb势具有优势.长导线源的电磁场和势函数可以由电偶源的电磁场和势函数沿导线长度积分得到.文中具体给出了海水中水平电偶源和长导线源在海水层的电磁场公式,并根据该公式计算了不同水深环境下海底表面的电磁场分布,分析了海水深度对海底油气储层电磁异常的影响.结果表明,随着水深减小,异常幅度和形态特征发生明显变化.当水深很浅时(如50 m),只有同线方向的Ex和Ez两个电场分量存在明显异常.最后,以两个已知海底油田为例,计算了不同水深环境下可观测到的电场异常,展示了电性源频率域CSEM在海底勘探中(包括浅海环境)的良好应用前景.对于该方法实用化过程中还需进一步解决的问题,文中结尾部分也进行了初步探讨.  相似文献   

5.
To further evaluate the potential of magnetic anisotropy techniques for determining the origin of the natural remanent magnetization (NRM) in sedimentary rocks, several new remanence anisotropy measurement techniques were explored. An accurate separation of the remanence anisotropy of magnetite and hematite in the same sedimentary rock sample was the goal.In one technique, Tertiary red and grey sedimentary rock samples from the Orera section (Spain) were exposed to 13 T fields in 9 different orientations. In each orientation, alternating field (af) demagnetization was used to separate the magnetite and hematite contributions of the high field isothermal remanent magnetization (IRM). Tensor subtraction was used to calculate the magnetite and hematite anisotropy tensors. Geologically interpretable fabrics did not result, probably because of the presence of goethite which contributes to the IRM. In the second technique, also applied to samples from Orera, an anisotropy of anhysteretic remanence (AAR) was applied in af fields up to 240 mT to directly measure the fabric of the magnetite in the sample. IRMs applied in 2 T fields followed by 240 mT af demagnetization, and thermal demagnetization at 90°C to remove the goethite contribution, were used to independently measure the hematite fabric in the same samples. This approach gave geologically interpretable results with minimum principal axes perpendicular to bedding, suggesting that the hematite and magnetite grains in the Orera samples both carry a depositional remanent magnetization (DRM). In a third experiment, IRMs applied in 13 T fields were used to measure the magnetic fabric of samples from the Dome de Barrot area (France). These samples had been demonstrated to have hematite as their only magnetic mineral. The fabrics that resulted were geologically interpretable, showing a strong NW-SE horizontal lineation consistent with AMS fabrics measured in the same samples. These fabrics suggest that the rock's remanence may have been affected by strain and could have originated as a DRM or a CRM.Our work shows that it is important to account for the presence of goethite when using high field IRMs to measure the remanence anisotropy of hematite-bearing sedimentary rocks. It also shows that very high magnetic fields (>10 T) may be used to measure the magnetic fabric of sedimentary rocks with highly coercive magnetic minerals without complete demagnetization between each position, provided that the field magnetically saturates the rock.  相似文献   

6.
The Tobago Basin, which is located offshore northern Venezuela with a southern margin close to Trinidad and Tobago, has an area of approximately 59,600 km2. The Tobago Basin has relatively favourable hydrocarbon prospects, and to date, exploration work has mainly concentrated on small areas of the southwestern portion of the basin. To conduct a comprehensive study of the structural framework of the basin and the characteristics of the basement in order to identify prospective zones for hydrocarbon exploration, shipborne‐measured and satellite‐measured gravity data, shipborne‐measured magnetic data, and aeromagnetic survey data were analysed. A regularisation filtering method was used to separate and obtain regional and residual gravity and magnetic anomalies. Directional gradients of gravity and magnetic anomalies and the total horizontal gradient and vertical second derivative of gravity anomalies were employed to extract information about fault structures. Regression analysis methods were used to determine the basement depth. The geological significance of the gravity and magnetic fields was examined, the structural framework of the basin was assessed, the basement depth was estimated, and favourable hydrocarbon exploration prospects within the basin were identified. The results show that the Tobago Basin contains complex structures consisting mainly of two groups of faults trending in northeasterly and northwesterly directions and that the major northeasterly trending faults control the main structural configuration and depositional system within the basin. The basement of the Tobago Basin has deep rises and falls. It can be divided into the following four secondary tectonic units: the western sub‐basin, the central uplift area, the southern sub‐basin, and the northeastern sub‐basin. The central uplift area and northeastern sub‐basin are most likely to have developed hydrocarbon accumulations and should be targeted for further exploration.  相似文献   

7.
海洋沉积物能够记录较为连续的古地磁信息.对沉积物记录的天然剩磁(NRM)进行归一化处理,可以构建过去较为连续的地磁场相对古强度(RPI)信息,这对于研究地磁场演变与全球记录对比具有重要的科学意义.本文以南海西北次海盆地区L07岩芯作为研究对象,利用等温剩磁(IRM)作为NRM的归一化参数,构建了南海西北次海盆地区37ka以来的RPI曲线.实验结果显示,L07岩芯中载磁矿物的成分较为单一,以单畴(SD)-细粒准单畴(PSD)低矫顽力磁铁矿为主,能够作为古强度记录的载体.此外,在11.5ka处RPI出现峰值.进一步结合东亚地区鄂霍茨克海岩芯的RPI记录以及中国黄土10Be的丰度变化,我们认为该RPI峰值是由于地球非偶极子场影响所致.这说明东亚正磁异常的影响范围可以达到中国南海等中低纬度地区,这为理解东亚地区磁场演化提供了新证据,同时也为该区千年尺度RPI记录变化特征提供了新机制.  相似文献   

8.
Regional–residual separation is essential in gravity and magnetic data interpretation and a variety of techniques have been proposed. Graphical determination of the regional allows geological information to be taken into account. Upward continuation can be used to obtain the regional field either empirically or using some hypothesis about the geology. In some cases, a matched filter can be designed and used to separate deep and shallow sources. Simple low pass filtering has also been used but without much success. Here we propose to use a non-linear filter approach to remove gravity and magnetic anomalies smaller than a given width. This technique attempts to mimic the graphical separation method. The results from synthetic models are presented as well as the results from a case study in eastern Canada and compared to regional gravity and magnetic anomalies obtained by other techniques. Contrary to the regional fields obtained by upward continuation, non-linear filtering does not have any physical meaning. However, its main advantage is that it gives a regional component of the gravity or magnetic field similar to the one obtained from a graphical separation.  相似文献   

9.
北黄海盆地烃渗漏蚀变带“磁亮点”的识别研究   总被引:1,自引:1,他引:0       下载免费PDF全文
北黄海盆地是我国近海海域尚未取得油气勘探突破的盆地之一.在海洋环境中应用海底油气藏的烃渗漏现象寻找油气有利区具有良好应用前景,为了给该区的含油气远景评价及下一步油气勘探缩小靶区提供地球物理依据,本文利用磁法这一经济、有效的油气渗漏异常地球物理判别手段,开展了识别海底烃渗漏引发磁异常的方法研究.给出一种根据“有导师”的模式识别技术,在充分利用磁异常多种数值特征及纹理特征的基础上,提取烃渗漏蚀变带磁异常的方法.通过已知约束信息(如见油井位等)的点、线、面三种基元及其邻近数据网格点组成基类,将其提取的模式或特征向量作为待识别异常匹配或学习的模板,利用加权欧氏距离函数计算待识别异常特征向量与模板向量之间的相似性,进行模式匹配,从而识别出与模板相似程度较高的异常.应用此方法圈定了北黄海盆地的烃渗漏“磁亮点”分布,从“磁亮点”异常区与中生代地层的分布以及地球化学异常(低层大气烃类检测和海底微生物异常)的对应情况来看,表明该识别方法是识别烃渗漏弱磁异常的一种有效手段.对研究区构造特征、磁异常及地球化学异常特征的综合分析表明,位于北黄海研究区东部和北部的“磁亮点”异常区可能是北黄海盆地较好的含油气远景区.  相似文献   

10.
A detailed rock magnetic investigation of loess/palaeosol samples from the section at Lingtai on the central Chinese Loess Plateau (CLP) is presented. Thermal demagnetisation of isothermal remanent magnetisation (IRM) and Curie temperature measurements suggest the presence of magnetite, maghemite and hematite as remanence carrying components. Bulk and grain size fractionated samples have been analysed using coercivity spectra of remanence acquisition/demagnetisation curves, which identify four main remanence carriers in different grain size fractions of loesses and palaeosols. A linear source mixing model quantifies the contribution of the four components which have been experimentally derived as dominating endmembers in specific grain size fractions. Up to two thirds of the total IRM of the palaeosols are due to slightly oxidised pedogenic magnetite. Two detrital components dominate up to 90% of the IRM of the loess samples and are ascribed to maghemite of different oxidation degree. Detrital hematite is present in all samples and contributes up to 10% of the IRM. The iron content of the grain size fractions gives evidence that iron in pedogenically grown remanence carriers does not originate from the detrital iron oxides, but rather from iron-bearing clays and mafic silicates. The contribution of pedogenic magnetite to the bulk IRM increases with the increasing degree of pedogenesis, which depends in turn on climate change.  相似文献   

11.
分析了南海北部陆架西区盆地的地质、地球物理场特征,计算了研究海域重、磁资料的1阶小波细节、4阶小波逼近变换。根据分析与计算可知,研究区的布格重力异常以北西低的负值,东南高的正值为特征。在东部及东南部异常等值线走向为北东;西部异常等值线以北西走向为特征;西北地区异常以北东东、北东走向的局部等值线圈闭为特征。磁场的展布十分复杂,按磁异常的变化程度可分为三个变化区,即磁异常平静区、剧变区及缓变区。磁异常的平静区位于研究区的西部,即莺歌海盆地所在位置,这一带磁异常等值线极为稀疏,异常值为负背景异常。剧变区位于海南岛,该地区的磁异常变化极为剧烈,异常特征以局部小圈闭为特征,等值线分布密集。磁异常的平缓区位于平静区及剧变区之外的其它地区。琼东南盆地、北部湾盆地的磁异常具有此特征。根据重、磁场资料以及南海北部盆地钻井取样的测试结果、同时参考穿越南海地学断面的结果,对研究区的地壳结构进行了反演计算,计算表明南海陆架盆地区域地壳结构较为复杂,研究区的地壳厚度在22-33km之间,总的趋势由陆向洋地壳厚度逐渐减薄,反映出该区域地壳具有陆壳、拉伸陆壳、过渡壳的性质,同时存在有上地幔隆起区及凹陷区。磁性底界面厚度在17-24km之间变化,其中在莺歌海盆地较深,在海南岛地区磁性界面较浅。  相似文献   

12.
The Central Indian region has a complex geology covering the Godavari Graben, the Bastar Craton (including the Chhattisgarh Basin), the Eastern Ghat Mobile Belt, the Mahanadi Graben and some part of the Deccan Trap, the northern Singhbhum Orogen and the eastern Dharwar Craton. The region is well covered by reconnaissance‐scale aeromagnetic data, analysed for the estimation of basement and shallow anomalous magnetic sources depth using scaling spectral method. The shallow magnetic anomalies are found to vary from 1 to 3 km, whereas magnetic basement depth values are found to vary from 2 to 7 km. The shallowest basement depth of 2 km corresponds to the Kanker granites, a part of the Bastar Craton, whereas the deepest basement depth of 7 km is for the Godavari Basin and the southeastern part of the Eastern Ghat Mobile Belt near the Parvatipuram Bobbili fault. The estimated basement depth values correlate well with the values found from earlier geophysical studies. The earlier geophysical studies are limited to few tectonic units, whereas our estimation provides detailed magnetic basement mapping in the region. The magnetic basement and shallow depth values in the region indicate complex tectonic, heterogeneity, and intrusive bodies at different depths, which can be attributed to different thermo‐tectonic processes since Precambrian.  相似文献   

13.
Rock magnetic criteria for the detection of biogenic magnetite   总被引:15,自引:0,他引:15  
We report results on the magnetic properties of magnetites produced by magnetotactic and dissimilatory iron-reducing bacteria. Magnetotactic bacterial (MTB) strains MS1, MV1 and MV2 and dissimilatory iron-reducing bacterium strain GS-15, grown in pure cultures, were used in this study. Our results suggest that a combination of room temperature coercivity analysis and low temperature remanence measurements provides a characteristic magnetic signature for intact chains of single domain (SD) particles of magnetite from MTBs. The most useful magnetic property measurements include: (1) acquisition and demagnetization of isothermal remanent magnetization (IRM) using static, pulse and alternating fields; (2) acquisition of anhysteretic remanent magnetization (ARM); and (3) thermal dependence of low temperature (20 K) saturation IRM after cooling in zero field (ZFC) or in a 2.5 T field (FC) from 300 K. However, potentially the most diagnostic magnetic parameter for magnetosome chain identification in bulk sediment samples is related to the difference between low temperature zero-field and field cooled SIRMs on warming through the Verwey transition (T ≈ 100 K). Intact chains of unoxidized magnetite magnetosomes have ratios of δFCZFC greater than 2, where the parameter δ is a measure of the amount of remanence lost by warming through the Verwey transition. Disruption of the chain structure or conversion of the magnetosomes to maghemite reduces the δFCZFC ratio to around 1, similar to values observed for some inorganic magnetite, maghemite, greigite and GS-15 particles. Numerical simulations of δFCZFC ratios for simple binary mixtures of magnetosome chains and inorganic magnetic fractions suggest that the δFCZFC parameter can be a sensitive indicator of biogenic magnetite in the form of intact chains of magnetite magnetosomes and can be a useful magnetic technique for identifying them in whole-sediment samples. The strength of our approach lies in the comparative ease and rapidity with which magnetic measurements can be made, compared to techniques such as electron microscopy.  相似文献   

14.
The magnetic susceptibility of 1300 samples of igneous rock drill cuttings obtained from eight deep drill holes in Iceland has been measured, in order to directly provide limits on the thickness of the layer which is the source of the magnetic anomalies over Iceland. The remanent magnetism of some of the material has also been studied, and the variation of magnetic susceptibility in 740 lava flows from eastern Iceland has been analysed as a function of depth of burial.All the results indicate no systematic change of susceptibility with depth up to 2.0 km. The Curie point of all deeply buried basalts in Iceland appears to be close to that of magnetite, so that the magnetic layer may be 5 km or more in thickness when susceptibility contrasts are considered; lateral contrasts in primary remanence may reach to 3 km depth. Derivation of a magnetic layer thickness in Iceland from analyses of magnetic anomalies, using methods which have been conventionally applied to marine magnetic anomalies could, on the other hand, yield much lower apparent thickness values (less than 1 km).We therefore argue that estimates of the magnetic layer thickness in oceanic regions should be based on considerations of magnetite Curie point isotherm behaviour, rather than on anomaly analysis.  相似文献   

15.
Iron ore and host rocks have been sampled (90 oriented samples from 19 sites) from the Las Truchas mine, western Mexico. A broad range of magnetic parameters have been studied to characterize the samples: saturation magnetization, Curie temperature, density, susceptibility, remanence intensity, Koenigsberger ratio, and hysteresis parameters. Magnetic properties are controlled by variations in titanomagnetite content, deuteric oxidation, and hydrothermal alteration. Las Truchas deposit formed by contact metasomatism in a Mesozoic volcano-sedimentary sequence intruded by a batholith, and titanomagnetites underwent intermediate degrees of deuteric oxidation. Post-mineralization hydrothermal alteration, evidenced by pyrite, epidote, sericite, and kaolin, seems to be the major event that affected the minerals and magnetic properties. Magnetite grain sizes in iron ores range from 5 to >200 μm, which suggest dominance of multidomain (MD) states. Curie temperatures are 580±5°C, characteristic of magnetite. Hysteresis parameters indicate that most samples have MD magnetite, some samples pseudo-single domain (PSD), and just a few single domain (SD) particles. AF demagnetization and IRM acquisition indicate that NRM and laboratory remanences are carried by MD magnetite in iron ores and PSD–SD magnetite in host rocks. The Koenigsberger ratio falls in a narrow range between 0.1 and 10, indicating the significance of MD and PSD magnetites.  相似文献   

16.
Magnetic parameters and their environmental implications of sediments in a core (PD) from the Pearl River Delta, South China, indicate that ferrimagnetic minerals with low coercivity, such as magnetite, dominate the magnetic properties although small amounts of Fe-sulphides occur. The fraction of Fe-sulphides increases and becomes the dominant minerals determining the magnetic characteristics in grey-black organic-rich clay horizons, indicating an anoxic, sulphate-reducing swamp environment resulting from a marine regression. In the "Huaban clay" , hard magnetic minerals, such as hematite and goethite, largely control the magnetic properties of the sediments and imply a long period of exposure and weathering. Where magnetite is the main magnetic mineral, its fraction and grain size determine properties such as magnetic susceptibility (κ ) and saturation isothermal remanent magnetization (SIRM). Ratios of SIRM/κ and χarm/SIRM reflect changes in sea level with high SIRM/κ and χarm/SIRM correlating with a smaller magnetic mineral grain size and rising sea level. Based on downcore variations of these environmental magnetic parameters along with sediment characteristics and microfauna, the sedimentary environment of the Pearl River Delta area can be divided into two main cycles of transgression and regression during the late Pleistocene and Holocene with more sub-cycles of sea level fluctuation during each transgression.  相似文献   

17.
Remanent coercivity spectra derived from IRM acquisition curves and thermal demagnetization of the IRM indicate that magnetite, haematite and minor amounts of goethite determine the magnetic properties of the Pliensbachian limestones at Bakonycsernye. These limestones have been sampled at approximately 7-cm intervals along a 10-m stratigraphic section which covers the whole Pliensbachian stage (Lower Jurassic) without any recognizable break in sedimentation. The primary natural remanent magnetization (NRM) is carried by detrital particles of magnetite and haematite, but it is seriously overprinted by a normal magnetization which originates from secondary haematite with a wide range of blocking temperatures. This haematite is believed to have formed diagenetically during one of the Mesozoic periods of normal polarity. However, the reversal pattern obtained after NRM thermal demagnetization at temperatures ≥450°C is thought to be characteristic of the Pliensbachian stage.  相似文献   

18.
近年来,针对秦岭造山带晚三叠世花岗岩体侵位机制的巨大争议,一些研究采用磁组构方法分析了岩体的内部组构特征及其与区域构造的关系,提出了具有重要意义的新认识.然而,目前这些研究均缺乏对岩体磁组构本质意义的分析,利用该方法约束岩体内部组构的可靠性并不十分清晰.针对这一问题,本文以秦岭造山带内具典型代表性意义的晚三叠世糜署岭花岗岩体为例,开展了该岩体的磁组构、岩石磁学、矿物形态组构和显微构造的综合研究.结果表明,糜署岭岩体的磁化率总体较低,属钛铁矿系列花岗岩.绝大部分样品的磁化率受控于顺磁性的黑云母等铁镁硅酸盐矿物,部分高磁化率样品包含了少量多畴磁铁矿等铁磁性组分的贡献,且随磁化率增大,铁磁性组分的贡献更为明显.样品的磁组构也主要是黑云母组构或由黑云母与磁铁矿的亚组构复合而成.由于样品中磁铁矿含量较低且与黑云母密切共生,磁组构与黑云母形态组构基本一致,因此,黑云母与磁铁矿的亚组构基本共轴.糜署岭岩体的磁组构本质上等同于黑云母组构,反映了黑云母等页硅酸盐矿物在岩体中的分布,可以有效的指示岩体的内部构造特征.宏观和显微构造观察还显示,糜署岭岩体的内部组构形成于岩浆侵位的晚期阶段,叠加了同岩浆期区域构造的关键信息,是从岩体构造角度开展区域构造演化的良好载体.  相似文献   

19.
以黄土高原西北缘的靖远和古浪剖面(包含黄土层L1上部和占土壤层SO)作为研究对象,选取代表性样品进行磁化率、频率磁化率、热磁曲线、等温剩磁获得曲线和磁滞回线等测定.结果表明,靖远和古浪L1黄土和SO古土壤具有相似的岩石磁学特征.磁性矿物含量相对较低,载磁矿物均以磁铁矿为主,同时含有磁赤铁矿和赤铁矿,且SO占土壤中的磁赤...  相似文献   

20.
In order to give a more reliable shallow crust model for the Chinese mainland, the present study collected many short-period surface wave data which are better sensitive to shallow earth structures. Different from traditional two-step surface wave tomography, we developed a new linearized surface wave dispersion inversion method to directly get a 3D S-wave velocity model in the second step instead of inverting for 1D S-velocity profile cell by cell. We convert all the regionalized dispersions into linear constraints for a 3D S-velocity model. Checkerboard tests show that this method can give reasonable results. The distribution of the middle-and upper-crust shear-wave velocity of the Chinese mainland in our model is strongly heterogeneous and related to different geotectonic terrains. Low-velocity anomalies delineated very well most of the major sedimentary basins of China. And the variation of velocities at different depths gives an indication of basement depth of the basins. The western Tethyan tectonic domain (on the west of the 95°E longitude) is characterized by low velocity, while the eastern Tethyan domain does not show obvious low velocity. Since petroleum resources often distribute in sedimentary basins where low-velocity anomaly appears, the low velocity anomalies in the western Tethyan domain may indicate a better petroleum prospect than in its eastern counterpart. Besides, low velocity anomaly in the western Tethyan domain and around the Xing’an orogenic belt may be partly caused by high crustal temperature. The weak low-velocity belt along ~105°E longitude corresponds to the N-S strong seismic belt of central China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号