首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present five families of periodic solutions of Hill’s problem which are asymmetric with respect to the horizontal ξ axis. In one of these families, the orbits are symmetric with respect to the vertical η axis; in the four others, the orbits are without any symmetry. Each family consists of two branches, which are mirror images of each other with respect to the ξ axis. These two branches are joined at a maximum of Γ, where the family of asymmetric periodic solutions intersects a family of symmetric (with respect to the ξ axis) periodic solutions. Both branches can be continued into second species families for Γ → − ∞.  相似文献   

2.
We describe and comment the results of a numerical exploration on the evolution of the families of periodic orbits associated with homoclinic orbits emanating from the equilateral equilibria of the restricted three body problem for values of the mass ratio larger than μ 1. This exploration is, in some sense, a continuation of the work reported in Henrard [Celes. Mech. Dyn. Astr. 2002, 83, 291]. Indeed it shows how, for values of μ. larger than μ 1, the Trojan web described there is transformed into families of periodic orbits associated with homoclinic orbits. Also we describe how families of periodic orbits associated with homoclinic orbits can attach (or detach) themselves to (or from) the best known families of symmetric periodic orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
This paper deals with the Restricted Three Body Problem (RTBP) in which we assume that the primaries are radiation sources and the influence of the radiation pressure on the gravitational forces is considered; in particular, we are interested in finding families of periodic orbits under theses forces. By means of some modifications to the method of numerical continuation of natural families of periodic orbits, we find several families of periodic orbits, both in two and three dimensions. As starters for our method we use some known periodic orbits in the classical RTBP. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
We consider the plane restricted elliptic 3 body problem with small mass ratio and small eccentricity and prove the existence of many periodic orbits shadowing chains of collision orbits of the Kepler problem. Such periodic orbits were first studied by Poincaré for the non-restricted 3 body problem. Poincaré called them second species solutions.  相似文献   

5.
Periodic Orbits of a Collinear Restricted Three-Body Problem   总被引:6,自引:0,他引:6  
In this paper we study symmetric periodic orbits of a collinear restricted three-body problem, when the middle mass is the largest one. These symmetric periodic orbits are obtained from analytic continuation of symmetric periodic orbits of two collinear two-body problems.  相似文献   

6.
The direct problem of dynamics in two dimensions is modeled by a nonlinear second-order partial differential equation, which is therefore difficult to be solved. The task may be made easier by adding some constraints on the unknown function = f y /f x , where f(x, y) = c is the monoparametric family of orbits traced in the xy Cartesian plane by a material point of unit mass, under the action of a given potential V(x, y). If the function is supposed to verify a linear first-order partial differential equation, for potentials V satisfying a differential condition, can be found as a common solution of certain polynomial equations.The various situations which can appear are discussed and are then illustrated by some examples, for which the energy on the members of the family, as well as the region where the motion takes place, are determined. One example is dedicated to a Hénon—Heiles type potential, while another one gives rise to families of isothermal curves (a special case of orthogonal families). The connection between the inverse/direct problem of dynamics and the possibility of detecting integrability of a given potential is briefly discussed.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

7.
Retrograde Orbits in Ring Configurations of N Bodies   总被引:3,自引:0,他引:3  
New families of simple, double and triple periodic symmetric retrograde orbits in various ring configurations are presented in this paper, providing new information on the dynamic behavior of such many-body systems. The evolution of the characteristic curves and of their orbits-members is discussed as well as their most prominent qualitative aspects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A method for determining the main families of isolated periodic orbits and their characteristic exponents in planar potentials which are separated by a point transformation is proposed. Since these orbits are continued analytically with the same stability, these results are persistent under small perturbations. The method is applied to the two fixed centers problem, the Paul trap and the dipole expansion of an electrostatic potential. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We have extend Stormer’s problem considering four magnetic dipoles in motion trying to justify the phenomena of extreme “orderlines” such as the ones observed in the rings of Saturn; the aim is to account the strength of the Lorentz forces estimating that the Lorentz field, co-acting with the gravity field of the planet, will limit the motion of all charged particles and small size grains with surface charges inside a layer of about 200 m thickness as that which is observed in the rings of Saturn. For this purpose our interest feast in the motion of charged particles with neglected mass where only electromagnetic forces accounted in comparison to the weakness of the Newtonian fields. This study is particularly difficult because in the regions we investigate these motions there is enormous three dimensional instability. Following the Poincare’s hypothesis that periodic solutions are ‘dense’ in the set of all solutions in Hamiltonian systems we try to calculate many families of periodic solutions and to study their stability. In this work we prove that in this environment charged particles can trace planar symmetric periodic orbits. We discuss these orbits in details and we give their symplectic relations using the Hamiltonian formulation which is related to the symplectic matrix. We apply numerical procedures to find families of these orbits and to study their stability. Moreover we give the bifurcations of these families with families of planar asymmetric periodic orbits and families of three dimensional symmetric periodic orbits.  相似文献   

10.
We describe and comment the results of a numerical exploration of the numerous natural families of periodic orbits associated with the L 4 equilibrium point of the restricted problem of three bodies (and of course by symmetry those associated with the L 5 equilibrium point). These families are organized in a very structured network or coweb and this structure evolves, when the mass ratio varies, in a very organized way.  相似文献   

11.
We present families of periodic orbits and their stability for the exterior mean motion resonances 1:2, 1:3 and 1:4 with Neptune in the framework of the planar circular restricted three-body problem. We found that in each resonance there exist two branches of symmetric elliptic periodic orbits with stable and unstable segments. Asymmetric periodic orbits bifurcate from the corresponding symmetric ones. Asymmetric periodic orbits are stable and the motion in their neighbourhood is a libration with respect to the resonant angle variable. In all the families of asymmetric periodic orbits the eccentricity extends to high values. Poincaré sections reveal the changes of the topology in phase space.  相似文献   

12.
Studying the two-body problem associated to an anisotropic Schwarzschild-type field, Mioc et al. (2003) did not succeed in proving the existence or non-existence of periodic orbits. Here we answer this question in the affirmative. To do this, we start from two basic facts: (1) the potential generates a strong force in Gordon’s sense; (2) the vector field of the problem exhibits the symmetries S i , , which form, along with the identity, an Abelian group of order 8 with three generators of order 2. Resorting to S 2 and S 3, in connection with variational methods (particularly the classical lower-semicontinuity method), we prove the existence of infinitely many S 2- or S 3-symmetric periodic solutions. The symmetries S 2 and S 3 constitute an indicator of the robustness of the classical isotropic Schwarzschild-type system to perturbations (as the anisotropy may be considered).  相似文献   

13.
We study the regular families of periodic orbits in an analytical planar galactic potential, using the method of Lindstedt. We obtain analytical expressions describing these orbits, validity of which is not limited to small amplitudes. We can delimit, in the space of the parameters, the domain of existence of each family of orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Asymptotic motion near the collinear equilibrium points of the photogravitational restricted three-body problem is considered. In particular, non-symmetric homoclinic solutions are numerically explored. These orbits are connected with periodic ones. We have computed numerically the families containing these orbits and have found that they terminate at both ends by asymptotically approaching simple periodic solutions belonging to the Lyapunov family emanating from L3.  相似文献   

15.
We investigate symmetric periodic orbits in the framework of the planar, circular, restricted, three-body problem. Having fixed the mass of the primary equal to that of Jupiter, we determine the linear stability of a number of periodic orbits for different values of the eccentricity. A systematic study of internal resonances, with frequency p/q with 2p 9, 1 q 5 and 4/3 p/q 5, offers an overall picture of the stability character of inner orbits. For each resonance we compute the stability of the two possible periodic orbits. A similar analysis is performed for some external periodic orbits.Furthermore, we let the mass of the primary vary and we study the linear stability of the main resonances as a function of the eccentricity and of the mass of the primary. These results lead to interesting conclusions about the stability of exosolar planetary systems. In particular, we study the stability of Earth-like planets in the planetary systems HD168746, GI86, 47UMa,b and HD10697.  相似文献   

16.
Orbits repeating their ground track on the surface of the earth are found to be members of periodic-orbit families (in a synodic frame) of the tesseral problem of the Earth artificial satellite. Families of repeat ground track orbits appear as vertical bifurcations of the equatorial family of periodic orbits, and they evolve from retrograde to direct motion throughout the 180 degrees of inclination. These bifurcations are always close to the resonances of the Earth's rotation rate and the mean motion of the orbiter.  相似文献   

17.
Starting from the identification and classification of a family of fast periodic transfer orbits in the Earth–Moon planar circular Restricted Three Body Problem (RTBP), and using analytic continuation techniques, we find two unstable periodic orbits in the Sun–Earth–Moon Quasi-Bicircular Problem (QBCP). The orbits found perform periodic Earth–Moon transfers with a period of approximately 29.5 days.  相似文献   

18.
We study two and three-dimensional resonant periodic orbits, usingthe model of the restricted three-body problem with the Sun andNeptune as primaries. The position and the stability character ofthe periodic orbits determine the structure of the phase space andthis will provide useful information on the stability and longterm evolution of trans-Neptunian objects. The circular planarmodel is used as the starting point. Families of periodic orbitsare computed at the exterior resonances 1/2, 2/3 and 3/4 withNeptune and these are used as a guide to select the energy levelsfor the computation of the Poincaré maps, so that all basicresonances are included in the study. Using the circular planarmodel as the basic model, we extend our study to more realisticmodels by considering an elliptic orbit of Neptune and introducingthe inclination of the orbit. Families of symmetric periodicorbits of the planar elliptic restricted three-body problem andthe three-dimensional problem are found. All these orbitsbifurcate from the families of periodic orbits of the planarcircular problem. The stability of all orbits is studied. Althoughthe resonant structure in the circular problem is similar for allresonances, the situation changes if the eccentricity of Neptuneor the inclination of the orbit is taken into account. All theseresults are combined to explain why in some resonances there aremany bodies and other resonances are empty.  相似文献   

19.
Asymptotic motion to collinear equilibrium points of the restricted three-body problem with oblateness is considered. In particular, homoclinic and heteroclinic solutions to these points are computed. These solutions depart asymptotically from an equilibrium point and arrive asymptotically at the same or another equilibrium point and are important reference solutions. To compute an asymptotic orbit, we use a fourth order local analysis, numerical integration and standard differential corrections.  相似文献   

20.
We locate members of an important category of periodic orbits in the Newtonian four-body problem. These systems perform an interplay motion similar to that of the periodic three-body orbit discovered by Schubart. Such orbits, when stable, have been shown to be a key feature and influence on the dynamics of few-body systems. We consider the restricted case where the masses are collinear and are distributed symmetrically about their centre of mass. A family of orbits is generated from the known (three-dimensionally) unstable equal masses case by varying the mass ratio, whilst maintaining the symmetry. The stability of these orbits to perturbation is studied using linear stability analysis, analytical approximation of limiting cases and nonlinear simulation. We answer the natural question: are there any stable periodic orbits of this kind? Three ranges of the mass ratio are found to have stable orbits and three ranges have unstable orbits for three-dimensional motion. The systems closely resemble their three-body counterparts. Here the family of interplay orbits is simpler requiring just one parameter to characterise the mass ratio. Our results provide a further insight into three-body orbits studied previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号