首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用ANSYS有限元软件建立土-桩-上海中心大厦相互作用简化模型.其中,桩土区采用等效模型,近域土体定为塑性区,用DP模型模拟;外围的土域定为弹性区,用超单元来模拟.对考虑土,桩-结构相互作用的整体结构和以刚性地基为假定的上部结构分别进行地震反应分析,并完成了比较.最后,在整体结构中提取上部结构与下部结构处的加速度反应与原地震波叠加,形成修正地震波,为输入修正地震波能考虑相互作用因素来分析相同结构的精细模型地震反应提供了条件.  相似文献   

2.
余培杰  翟燕 《地震工程学报》2019,41(6):1514-1520
为提升剪力墙抗震性能分析精度,以某高层建筑工程楼体剪力墙为背景,将静力弹塑性分析方法与能量等效准则相结合,确定房屋剪力墙结构沿2个主轴方向的三线性恢复力参数,通过参数构建房屋剪力墙相近层模型。使用三维有限元模型模拟房屋剪力墙工程楼体,并采用相近层模型模拟该楼体三维有限元模型抗震性能的动力时程。结果表明,随着地震水平和楼层的增加,房屋剪力墙层间侧移角包络值和顶点侧移角包络值都在明显增加。设置黏滞流体阻尼器可改善房屋剪力墙受两种地震波的作用,在Ⅸ度罕见地震作用下,房屋剪力墙结构的X向减震效果比Y向好,房屋剪力墙X向和Y向层间位移角的最大减震率分别约为38%与18%。  相似文献   

3.
复合夹层结构频率及损耗因子的计算   总被引:5,自引:0,他引:5  
频率和损耗因子是粘弹性材料复合夹层结构的两个重要的动力特性指标。本文采用复模量模型模拟夹层粘弹性材料特性的频率相关性,并基于大型通用有限元程序NASTRAN,提出采用模态应变能迭代法及复特征值迭代法求解复合夹层结构的各阶频率及损耗因子。该方法可以应用到大型复杂复合夹层结构中去,具有很好的实用性和较好的准确性。以复合夹层梁为例,进行了理论解析解和数值解的对比研究和优化设计分析。  相似文献   

4.
地铁车站结构大型振动台试验与数值模拟的比较研究   总被引:4,自引:1,他引:3  
根据可液化土层上土-地铁车站结构动力相互作用大型振动台模型试验结果,以软件ABAQUS为平台,将地基土-地铁车站结构体系视为平面应变问题,采用记忆型嵌套面黏塑性动力本构模型模拟土体的动力特性,采用混凝土动塑性损伤模型模拟车站结构混凝土的动力特性,建立了土-地铁车站结构非线性动力相互作用的有限元分析模型,对各种试验工况下地基土-地铁车站结构体系的地震反应进行了数值模拟,并与试验结果进行了对比,结果表明:数值模拟与振动台模型试验结果基本一致,体现出了相似的规律性,相互印证了计算分析的力学建模和振动台试验结果的正确性。  相似文献   

5.
卫星从空间对大气CO2的实时观测可以客观地获取全球和区域大气CO2浓度的变化信息;另一方面,利用全球大气输送模型的数值模式模拟得到时空连续的全球大气CO2浓度是目前科学家们定性和定量地研究大气CO2全球输送过程及时空变化规律的主要途径之一.卫星观测和模型模拟以两种不同的方式为我们提供大气CO2浓度信息,但对于这两种方式所揭示的全球以及区域大气CO2浓度特征的差异还没有一个综合的对比分析与评价.本文收集2009年6月到2010年5月的GOSAT卫星观测数据,利用GEOS-Chem模型模拟了同时期全球大气CO2浓度,对比分析两种方式揭示的大气CO2时空变化特征差异,通过比较中国陆地与同纬度美国陆地区域的差异,评价分析卫星观测和模型模拟各自的合理性和不确定性.结果指出卫星GOSAT观测反演的大气CO2浓度总体低于模型模拟2 ppm左右,与地面观测验证的结果相近.但是两者的差异在不同的区域上明显不同,在中国陆地区域显示了从0.6~5.6 ppm很大的差值变化,而在全球陆地区域为1.6~3.7 ppm、美国陆地区域为1.4~2.7 ppm.卫星GOSAT观测与模型模拟在美国陆地显示了0.81的拟合优度,高于全球陆地区域的0.67和中国区域的0.68.综合分析结果指出在中国区域卫星观测与模型模拟的不一致性高于美国和全球,其原因与卫星观测反演算法中输入参数的不整合所引起的CO2浓度反演误差以及模型模拟中驱动参数数据的准确性有关.  相似文献   

6.
首先利用最短断层法烈度衰减模型分别模拟两次地震的地震动参数空间分布,并通过与实际地震的极震区对比,验证该模型模拟地震烈度的可靠性.然后,基于模拟的地震烈度空间分布和建筑物的结构类型、层高等信息,采用结构弹塑性时程分析方法对兰州市城关区建筑物进行三维震害模拟.研究结果表明:最短断层法是一个模拟历史地震烈度空间分布较好的模...  相似文献   

7.
在地震来临时,一般假设建筑结构同时受到两个正交水平方向分量与一个竖向分量的地震动作用。双向水平地震效应组合方法用于估计两个正交水平分量地震动同时作用时结构的内力效应。本文主要对我国与美国抗震设计规范中规定使用的平方和开平方根(SRSS)方法与百分比组合方法的有效性进行了评估。首先,对比了我国与美国规范在考虑双向水平地震效应时的适用情况及相关规定上的异同。以一4层中心支撑-框架结构为工程案例,考虑两国规范在适用情况上的规定,设置了三个结构布置方案。对三个结构布置方案建立有限元模型,选取22组地震动,开展了动力时程分析。提出了针对SRSS方法与百分比组合方法的评估指标,基于时程分析结果,发展了双向水平地震效应组合的概率性评估方法。评估结果表明:SRSS方法与百分比组合方法用于平面扭转不规则结构的设计较为保守。在简化组合规则的适用条件上,美国规范对平面扭转不规则结构不进行考虑有一定的合理性。建议我国规范对中心支撑-框架结构中含双向受压柱的设计要求考虑双向水平地震效应组合。  相似文献   

8.
作为地理学两大理论基石之一的中心地学说,因其无法提供确定的时空参数条件,及其在演化过程模式上的缺失,致使其他空间结构模型无法与之对接,也导致完整的区域空间结构理论体系构建上的困难.本文深入解析了不同等级中心地产生与演化的过程机理,构建了中心地等级体系的演化模型,推导分析和模拟结果显示中心地等级体系的产生与演化可分为萌芽期、成形期、完善期、成熟期和提升期5个阶段.受空间区位和中心性影响,中心地规模结构和功能结构存在显著不同,不仅同一级中心地规模可以存在很大的差异,甚至低等级中心地规模可以超过高一级中心地,而位于中央位置的中心地最终可形成中心地集聚区.研究表明基于均质平原假设条件,不仅可以形成均衡性的中心地功能结构,同时还可衍生出不均衡的中心地规模结构,从而完成了从纯理论的空间均衡模式的推导向不均衡的现实模式的解释和论证的转变.  相似文献   

9.
太湖富营养化条件下影响蓝藻水华的主导气象因子   总被引:2,自引:2,他引:0  
罗晓春  杭鑫  曹云  杭蓉蓉  李亚春 《湖泊科学》2019,31(5):1248-1258
利用2004-2018年卫星遥感解译的太湖蓝藻水华信息构建蓝藻综合指数,采用随机森林机器学习算法分析同期气象因子与蓝藻水华综合指数的关系,定量评估影响蓝藻水华的主要气象因子特征变量的重要性度量和贡献率.结果表明,在光、温、水、风等主要气象要素中,气温对蓝藻水华综合指数起着主导的作用,其次是风速和降水,日照时间的影响或可忽略.其中气温条件中重要性度量最大的是年平均气温,其次是冬、春季节的平均气温;风速因子中影响较大的是7月份的平均风速;水分条件中主导因子是9月累计降水量.优选的随机森林模型模拟值与实际蓝藻水华综合指数的变化趋势基本一致,拟合优度为0.91,通过0.01显著性检验,随机森林模型模拟效果较好.用随机森林模型模拟值对太湖蓝藻水华分等级评估,模型模拟精度达到了86.7%,其中5个重度等级年份模型模拟结果完全一致,中度等级的6个年份模型模拟值有5年与之相符,中度以上等级的模拟精度达90.9%,模型能够反映气象因子对蓝藻水华综合指数的综合影响,对中、重度蓝藻水华的模拟效果更好.随机森林模型有助于理解富营养化状态下影响蓝藻水华的主导气象因子,利用气象因子的可预测性可以促进蓝藻水华预测预警能力的提升.  相似文献   

10.
邓鹏  李致家  谢帆 《湖泊科学》2009,21(3):441-444
TOPMODEL是一种以地形为基础的半分布式流域水文模型.对珠江流域布柳河流域的DEM信息进行处理,提取流域的水系、子流域边界、地形指数及水流路径距离的分布,将TOPMODEL应用于该流域中.另外将新安江模型也应用于该流域进行比较.此外,分析了两种模型结构差异所带来的模拟功能差异.两种模型模拟结果精度差异不大,而TOPMODEL实现了空间产流面积分布的可视化.  相似文献   

11.
A recently developed earthquake ground motion model non-stationary in both intensity and frequency content is validated at the inelastic Single-Degree-Of-Freedom (SDOF) structural response level. For the purpose of this study, the earthquake model is calibrated for two actual earthquake records. The objective of a constant (or target) displacement ductility used in conventional earthquake-resistant design is examined from the statistical viewpoint using this non-stationary earthquake model. The non-linear hysteretic structural behaviour is modelled using several idealized hysteretic SDOF structural models. Ensemble-average inelastic response spectra corresponding to various inelastic SDOF response (or damage) parameters and conditioned on a constant displacement ductility response are derived from the two identified stochastic ground motion models. The effects of the type of hysteretic behaviour, the structural parameters, the target displacement ductility factor, and the ground motion model on the statistics of the inelastic response parameters are thoroughly investigated. The results of this parametric study shed further light on the proper interpretation and use of inelastic response or damage parameters in earthquake-resistant design in order to achieve the desirable objective of ‘constant-damage design’. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
A series of shaking table tests were conducted on scaled utility tunnel models with and without construction joints under non-uniform input earthquake wave excitation. Details of experimental setup are first presented with particular focuses on: design and fabrication of double-axis laminar shear box with a rectangular hole opened on its side walls; design of two devices for measuring the slippage between the interface of test soil and the structure, and the relative deformation and rotation between joints of the structure model; and procedure for construction of input earthquake wave. The experiments were conducted in three phases. Phase 1 is free-field test. A 2-norm index is suggested to quantify the boundary effect and it is found that the designed laminar box does not impose significant boundary effect. Phases 2 and 3 are model tests in longitudinal and transversal directions, respectively. Test results are discussed in items of shear force–slip relationship at the soil–model structure interaction surface, movement and rotation of the construction joint, and effect of non-uniform earthquake input. The comparison shows that structural response under non-uniform earthquake excitation is larger than that under uniform excitation. The effect of spatial distribution of earthquake excitation should be considered in the seismic design of utility tunnel.  相似文献   

13.
The purpose of this research is to use data from experiments to formulate a mathematical model that will predict the non-linear response of a single-storey steel frame to an earthquake input. The process used in this formulation is system identification. In experiments performed on a shaking table, the frame was subjected to two earthquake motions at several intensities. In each case the frame underwent severe inelastic deformation. A computer program which incorporates the concepts of system identification makes use of the recorded data to establish four parameters in a non-linear mathematical model. When different amounts of data are used in the program, parameter sets are established which give the best model response for that amount of test data. The resulting sets of parameters reflect the way in which the properties of the structure change during the excitation. However, when the full durations of the different excitations are used, the sets of parameters are almost identical. For each of these sets of parameters, the correlation of the computed accelerations with the measured is excellent, and the shape of the computed displacement response compares very well with the measured response, although the permanent offset of the displacements is not computed exactly. Suggestions are given on how to overcome this deficiency in the mathematical model.  相似文献   

14.
The inelastic response of a single-degree-of-freedom (SDOF) system to different sets of earthquake records was analysed to study the significance of ground motion characteristics on structural damage. Six non-linear models were used. The ductility ratio and hysteretic energy index were chosen as two important damage indices to measure the structural damage. The dispersion phenomenon exhibited by yield spectra due to input ground motion was reduced by incorporating the ground motion a/v ratio into the two damage indices. Finally, empirical formulae for estimating two measures of structural damage were developed for each hysteretic model.  相似文献   

15.
钢管混凝土短柱支座隔震性能研究   总被引:3,自引:0,他引:3  
本文提出一种钢管混凝土短柱隔震支座座,通过伪静力试验测定了短柱支座的恢复力特性,给出了有关恢复力的某些特征参数的表达式;对一座廿层砌体主房屋进行了非线性地震反应分析,考察了短柱支座的特性及其隔震效果;通过模型振动台试验,进一步验证了短柱支座的耳震效果和计算模型的准确性。  相似文献   

16.
Evaluating the inelastic seismic response of structures accurately is of great importance in earthquake engineering and generally requires refined simulation, which is a time‐consuming process. Because the material nonlinearity generally occurs in a small part of the whole structure, many researches focus on taking advantage of this characteristic to improve the computational efficiency and the inelasticity‐separated finite element method (IS‐FEM) proposed recently provide a generic finite element formulation for solving this kind of problems efficiently. Although the fiber beam‐column element is widely used for the simulation of reinforced concrete (RC) framed structures, the inelastic deformation is often detected in a large part of the numerical model under earthquake excitation so that it is hard to achieve high efficient computation when applying the IS‐FEM to the inelastic response analysis of RC fiber models directly. In this paper, a new numerical scheme for seismic response analysis of RC framed structures model by fiber beam‐column element is proposed based on the IS‐FEM. To implement the RC fiber model for use in IS‐FEM and improve the computational performance of proposed scheme, a method of identifying the local domains with severe section inelasticity level is proposed and a modified Kent‐Park concrete material model is developed. Because the Woodbury formula is adopted as the solver, the global stiffness matrix can keep unchanged throughout the analysis and the main computational effort is only invested on a small matrix representing local inelastic behavior. The numerical examples demonstrate the validity and efficiency of the proposed scheme.  相似文献   

17.
During strong ground motions, structural members made of reinforced concrete undergo cyclic deformations and experience permanent damage. Members may lose their initial stiffness as well as strength. Recently, Los Alamos National Laboratory has performed experiments on scale models of shear wall structures subjected to recorded earthquake signals. In general, the results indicated that the measured structural stiffnesses decreased with increased levels of excitation in the linear response region. Furthermore, a significant reduction in strength as well as in stiffness is also observed in the inelastic range. Since the in-structure floor response spectra which are used to design and qualify safety equipment have been based on calculated structural stiffness and frequencies, it is possible that certain safety equipment could experience greater seismic loads than were specified for qualification due to stiffness reduction.In this research, a hysteresis model based on the concept of accumulated damage has been developed to account for this stiffness degradation both in the linear and inelastic ranges. Single and three-degrees-of-freedom seismic Category I structures were analysed and compared with equivalent linear stiffness degradation models in terms of maximum displacement responses, permanent displacement, and floor response spectra. The results indicate significant differences in response between the hysteresis model and equivalent linear stiffness degradation model at PGA levels of greater than 0.8 g. The hysteresis model is used in the analysis of reinforced concrete shear-wall structures to obtain the in-structure response spectra. Results of both cumulative and one shot tests are compared.  相似文献   

18.
Urban housing has been provided economically in many parts of the world by large panel precast building systems; in seismic regions, however, special attention must be given to the connections between panels in order to achieve the necessary earthquake resistance. In this paper a comprehensive seismic test programme of concrete panel assemblages done as part of a U.S.-Yugoslavia cooperative research plan in earthquake engineering is described. The test structures were three-storey assemblages of 1/3 scale concrete panels supplied by a Yugoslavian construction company; the models were about 12 ft high and 6 ft long, with the panels interconnected by various types of joint systems along their tops, bottoms and sides. Cyclic pseudostatic testing of the models was done at the IZIIS Laboratories in Skopje, Yugoslavia. A second set of models was assembled at the University of California, Berkeley from identical panels that had been shipped from the Belgrade factory; these models were tested on the 20 ft square EERC shaking table. The purpose of this paper is to compare the earthquake response represented by the two different types of test procedures. A major conclusion was that the response mechanisms in both cases were similar, with the principal deformation being opening of the panel joint at the base of the model due to overturning moments. As the rocking response continued, tension and compression failure occurred alternately at the two ends of the joint. The principal difference between the results was that pseudostatic testing imposed an increasing sequence of symmetric deformation that was independent of the damage being developed in the model, while the shaking table response was greatly influenced by the damage as it occurred—leading to significant unsymmetry. Moreover, the damage occurred in a concentrated region with the shaking table test. This difference emphasizes the fact that pseudostatic test results must be interpreted with caution because they do not fully simulate an actual earthquake response.  相似文献   

19.
This study aims to determine the influence of torsional coupling on the inelastic response of a series of models representing typical structural configurations in real buildings. The lake bed (SCT) east-west component of the 1985 Mexico City earthquake was employed in the analysis, and is representative of a severe ground motion known to have induced large inelastic structural deformations in a high proportion of those buildings having asymmetrical distributions of stiffness and/or strength. Material non-linearity in lateral load-resisting elements has been defined using a hysteretic Ramberg-Osgood model. Structural eccentricities have been introduced into the building models by (i) asymmetrical distributions of stiffness and/or strength, (ii) asymmetrical configuration of lateral load-resisting elements, or (iii) varying post-elastic material behaviour in the resisting elements. The dynamic inelastic response of these models has been obtained by a numerical integration of the relevant equations of motion, expressed in a non-dimensional incremental form.

In the elastic range, the results correlate well with those of previous studies. In the inelastic range, it is concluded that the peak ductility demand of the worst-affected element increases with the ground excitation level across the range of building periods considered, and that the influence of torsional coupling on the key response parameters is model dependent. Most significantly, the strength eccentricity relative to the centre of mass has been shown to influence the peak edge displacement response more than conventionally employed stiffness eccentricity.  相似文献   


20.
弹塑性位移谱法的振动台模型试验验证   总被引:2,自引:0,他引:2  
弹塑性位移谱法求解结构在指定强度地面运动作用下的位移需求是一种简便合理的方法。本文将弹塑性位移谱法就具体地震波计算的楼层位移需求、层间位移角需求与一比例为1/10的12层钢筋混凝土模型框架振动台试验结果作了比较。设计的12层钢筋混凝土模型框架结构在振动台上经历了7种强度等级地震波的作用,输入峰值加速度依次为:0.090g、0.258g、0.388g、0.517g、0.646g、0.775g和0.904g。求出了弹塑性位移谱法计算的楼层位移和层问位移角需求与振动台试验结果的比值,研究了二者比值的均值及方差沿楼层的分布情况。结果表明:弹塑性位移谱法的计算结果与振动台得到的位移需求值吻合较好,在基于性能的抗震设计中具有较好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号