首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As part of a larger regional research program “KarstEAU”, the authors have applied electrical resistivity tomography (ERT) techniques to characterize heterogeneities in the Port-Miou coastal karst aquifer (Cassis, SE France). Field surveys were carried out on intensely fractured and karstified Urgonian carbonates. Extensive research has characterized macro- and micro-scale geology of the Port-Miou area and particularly underground water-filled conduits and fault/fracture and karst systems within a former quarry. The authors applied 2D ERT along two surface profiles of length 420 and 595 m to test capability for delineating subsurface conduits and possibly relationship between conduit and fault/fracture/karst orientation; and 3D ERT with a dense 120 electrode array at 1 m spacing (11 × 10 m) was applied over an area of the quarry that had been profiled using 3D georadar and which has had intensive nearby structural geological interpretation. The 2D profiling imaged several underground conduits at depths to >50 m below ground surface and below sea level, including possibly the main Port Miou submarine spring and smaller springs. The 2D profiling within the quarry provided a better understanding of the connectivity between major fractures and faults on the quarry walls and secondary springs along the coast supporting flow of the secondary springs along interpreted fracture orientations. In addition, 2D inversion-derived conductivity models indicate that high resistivity zones above sea-level are associated with non-saturated zones and low resistivity anomalies in the non-saturated zone are associated with residual clays in paleokarsts. A partitioned lower resistivity zone below sea-level can be associated with a higher porosity/permeability zone with fractures and karstic features. Inversion models of the dense 3D ERT data indicate a higher resistivity volume within the larger surveyed block. The survey characterized the non-saturated zone and the ERT resistivities are correlated with karst features interpreted by 3D georadar and visible in the inferior wall of the quarry.  相似文献   

3.
4.
《Applied Geochemistry》2000,15(6):791-805
This paper describes the geochemical evolution of groundwater in the Bathonian and Bajocian aquifer along its flowpath. Since this aquifer represents one of the main sources of fresh water supply in the Caen area and has been subjected to a Holocene marine intrusion, its management requires a sound knowledge of (1) the primary conditions and (2) the potential influence of either natural or anthropogenic pressures. Groundwater vertical sampling validity is discussed with the contribution of high resolution temperature logging. The main processes of geochemical evolution along a groundwater flow line and the sea-water intrusion characteristics are discussed using ionic concentrations (Br, F and major elements) and isotopes (water δ2H and δ18O, TDIC δ13C and A14C, sulphate δ18O and δ34S). As the 13C content of TDIC is used as a tracer of water-rock interaction, it shows evidence of specific chemical and isotopic evolutions of groundwater within the aquifer, both related to water-rock interaction and mineral equilibria in groundwater. All the above-mentioned tracers evolve downflow: cation concentrations are modified by exchange with clay minerals allowing a high F concentration in groundwater, whereas Br and SO2−4 concentrations appear to be redox condition dependant. Superimposed on these geochemical patterns, δ18O and δ2H compositions indicate that aquifer recharge has varied significantly through time. The chemical evolution of groundwater is locally affected by a salty water intrusion that is characterised by mixing between Flandrian fresh water and sea-water which has interacted with peat as evidenced by a high Br/Cl ratio and SO2−4 reduction.  相似文献   

5.
Groundwater is an important water resource in the Helwan area, not only for drinking and agricultural purposes, but also because several famous mineral springs have their origin in the fractured carbonate aquifer of the region. The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of chloride, sulphate, hardness and significant mineralization were detected under the industrial and high-density urban areas. High nitrate contents in the groundwater recorded in the southern part of the study area are probably due to irrigation and sewage infiltrations from the sewage treatment station. The presence of shale and marl intercalation within the fissured and cavernous limestone aquifer promotes the exchange reactions and dissolution processes. The groundwater type is sodium, sulphate, chloride reflecting more mineralized than surface water. The results also showed that water in the study area (except the Nile water) is unsuitable for drinking purposes, but it can be used for irrigation and industrial purposes with some restrictions.  相似文献   

6.
The Middle Berriasian deposits of the Jura platform in Switzerland and France have already been well studied in terms of high-resolution sequence stratigraphy and different orders of depositional sequences (large-, medium-, and small-scale) have been defined. The hierarchical stacking pattern of the sequences and the time span represented by the investigated interval imply that sea-level fluctuations in the Milankovitch frequency band as well as differential subsidence caused the observed changes of accommodation on the Jura platform. The present study focuses on three small-scale sequences within the transgressive interval of a large-scale sequence. The initial flooding of the platform is marked by a facies change from supra- and intertidal (Goldberg Formation) to shallow-marine subtidal deposits (Pierre Chatel Formation). Detailed logging and facies analysis of 11 sections allow recognizing small environmental changes that define elementary sequences within the well-established small-scale sequences and distinguishing between autocyclic and allocyclic processes in sequence formation. It is concluded that the small-scale sequences correspond to the 100-ka orbital eccentricity cycle, while allocyclic elementary sequences formed in tune with the 20-ka precession cycle. Based on the correlation of elementary and small-scale sequences it can be shown that the Jura platform has been flooded stepwise by repeated transgressive pulses. Differential subsidence and pre-existing platform morphology further controlled sediment accumulation and distribution during the transgression. The combination of high-resolution sequence stratigraphy and cyclostratigraphy then enables the reconstruction of hypothetical palaeogeographic maps in time increments of a few ten thousand years.  相似文献   

7.
8.
Fracture network connectivity is a spatially variable property that is difficult to quantify from standard hydrogeological datasets. This critical property is related to the distributions of fracture density, orientation, dimensions, intersections, apertures and roughness. These features that determine the inherent connectivity of a fracture network can be modified by secondary processes including weathering, uplift and unloading and other mechanisms that lead to fracture deformation in response to in situ stress. This study focussed on a fractured rock aquifer in the Clare Valley, South Australia, and found that fracture network connectivity could be discriminated from several geological, geophysical and hydrogeological field datasets at various scales including single well and local- to regional-scale data. Representative hydromechanical models of the field site were not only consistent with field observations but also highlighted the strong influence of in situ stress in determining the distribution of fracture hydraulic apertures and the formation of hydraulic chokes that impede fluid flow. The results of this multi-disciplinary investigation support the notion that the hydraulic conductivity of a fracture network is limited to the least hydraulically conductive interconnected fractures, which imposes a physical limit on the bulk hydraulic conductivity of a fractured rock aquifer.  相似文献   

9.
During the Late Jurassic, accelerated ocean-floor spreading and associated sea-level rise were responsible for a worldwide transgression, which reached its maximum in the Late Kimmeridgian. In many Western European basins, this major sea-level rise led to the formation of marly and condensed sections. In the Swiss Jura, however, a shallow carbonate platform kept growing and only subtle changes in the stratigraphic record suggest an increasingly open-marine influence. Field observations and thin-section analyses reveal that the central Swiss Jura was at that time occupied by tidal flats and by more or less open marine lagoons where shoals and bioherms developed. The evolution through time of sedimentary facies and bed thicknesses permits the definition of small-, medium-, and large-scale depositional sequences. The diagnostic features of these sequences are independent of scale and seem largely controlled by the Kimmeridgian second-order transgression. A high-resolution sequence-stratigraphic correlation with biostratigraphically well-dated hemipelagic and pelagic sections in the Vocontian Basin in France reveals that: (i) The most important increase in accommodation recorded in the Kimmeridgian of the central Swiss Jura occurs in the Eudoxus ammonite zone (Late Kimmeridgian) and corresponds to the second-order maximum flooding recognized in many sedimentary basins. (ii) The small- and medium-scale sequences have time durations corresponding to the first and second orbital eccentricity cycle (i.e. 100 and 400 ka, respectively), suggesting that sedimentation on the platform and in the basin was at least partly controlled by cyclic environmental changes induced by insolation variations in the Milankovitch frequency band. The comparison of the high-resolution temporal framework defined in the Swiss Jura and Vocontian Basin with the sequence-stratigraphic interpretation realized in other Western European basins shows that the large-scale sequence boundaries defined in the Kimmeridgian of the Swiss Jura appear in comparable biostratigraphic positions in most Western European basins. Discrepancies that occur are probably because of local or regional tectonics.  相似文献   

10.
To assess whether the biochemical characteristics of peat can provide clues for past ecosystem changes or not, a study was carried out combining elemental analysis, micro-morphological counts and neutral monosaccharide determination of peat organic matter (OM) and the dominant living plants from a formerly cut-over peat bog in the Jura Mountains. Peat profiles (up to 50 cm depth) from two distinctive zones (bare peat, FRA and a regenerating stage, FRC) were compared with the reference profile (FRD) taken from an unexploited area of the bog. The results show contrasting OM composition along the profiles. In the upper sections of the FRD and FRC profiles, high C/N ratios and sugar contents (in the same range as in the source plants) and the large predominance of well preserved plant tissues indicate good preservation of primary biological inputs. In contrast, in peat from the FRA profile and deeper levels of the FRC profile, lower C/N ratios, lower amounts of sugars and a predominance of amorphous OM and mucilage suggest more extensive OM degradation. These features delineate a clear threshold between an uppermost “new” regenerating peat section and an “old” catotelm peat below. Nevertheless, even in the latter, the sugar contents remain relatively high (>80 mg/g) compared with other organic and mineral soils. Analysis of typical peat-forming plants and of bulk peat and fine grained fractions allowed identification of the following source indicators: xylose and arabinose for Cyperaceae; rhamnose, galactose and mannose for mosses; and ribose (and to a lesser extent, hemicellulosic glucose) possibly for microbial synthesis.  相似文献   

11.
12.
Managed aquifer recharge (MAR) is increasingly being considered as a means of reusing urban stormwater and wastewater to supplement the available water resources. Subsurface storage is advantageous as it does not impact on the area available for urban development, while the aquifer also provides natural treatment. However, subsurface storage can also have deleterious effects on the recovered water quality through water–rock interactions which can also impact on the integrity of the aquifer matrix. A recent investigation into the potential for stormwater recycling via Aquifer Storage Transfer and Recovery (ASTR) in a carbonate aquifer is used to determine the important hydrogeochemical processes that impact on the recovered water quality. An extensive period of aquifer flushing allows observation of water quality changes under two operating scenarios: (1) separate wells for injection and recovery, representing ASTR; and (2) a single well for injection and recovery, representing Aquifer Storage and Recovery (ASR).  相似文献   

13.

Spatially distributed values of the specific yield, a fundamental parameter for transient groundwater mass balance calculations, were obtained by means of three independent methods for the Crau plain, France. In contrast to its traditional use to assess recharge based on a given specific yield, the water-table fluctuation (WTF) method, applied using major recharging events, gave a first set of reference values. Then, large infiltration processes recorded by monitored boreholes and caused by major precipitation events were interpreted in terms of specific yield by means of a one-dimensional vertical numerical model solving Richards’ equations within the unsaturated zone. Finally, two gravity field campaigns, at low and high piezometric levels, were carried out to assess the groundwater mass variation and thus alternative specific yield values. The range obtained by the WTF method for this aquifer made of alluvial detrital material was 2.9– 26%, in line with the scarce data available so far. The average spatial value of specific yield by the WTF method (9.1%) is consistent with the aquifer scale value from the hydro-gravimetric approach. In this investigation, an estimate of the hitherto unknown spatial distribution of the specific yield over the Crau plain was obtained using the most reliable method (the WTF method). A groundwater mass balance calculation over the domain using this distribution yielded similar results to an independent quantification based on a stable isotope-mixing model. This agreement reinforces the relevance of such estimates, which can be used to build a more accurate transient hydrogeological model.

  相似文献   

14.
The Albian aquifer of the Paris Basin (France) has been exploited since 1841 and shows drastic drawdown. A three-dimensional (3D) groundwater flow model is used to study the hydrodynamic response of the multi-layered aquifers to pumping activity in the Albian, at basin scale over 167 years. This 3D flow model uses geometry and hydrodynamic parameter distributions that are inherited from a genetic approach through basin modelling, the basin model creating a geometric pattern of hydrodynamic properties constrained by geological history. The paper aims to promote the use of the basin model approach (long time scale, 248 Ma) for the study of deep-aquifer response to anthropogenic perturbation (short time scale, 167 years) in situations for which hydrodynamic data are scarce but geological data are numerous. The results show that parameter distribution is insufficient to reproduce the Albian aquifer behaviour, notably highlighting a different meaning of the specific storage coefficient between basin modelling and groundwater-flow modelling. Dividing the storage coefficient by 100 and including available transmissivity data significantly improved the model/data comparison. The potential impact on a deep aquitard is then discussed. This study sheds light on the advantages and limitations of the basin model approach for groundwater-flow modelling in 3D.  相似文献   

15.
The ability of artificial neural networks (ANN) to model the rainfall-discharge relationships of karstic aquifers has been studied in the La Rochefoucauld karst system, south-west France, which supplies water to the city of Angoulême. A neural networks model was developed based on MLP (multi-layer perceptron) networks and the Levenberg-Marquardt optimization algorithm. Raw rainfall data were used without transformation into effective rainfall. This allowed for the elimination of certain non-verifiable simplifying assumptions and their subsequent introduction into the modeling procedure. The raw rainfall and discharge data were divided into three groups for the training, the validation and the prediction test of the ANN model. The training and validation phases led to a very satisfactory calibration of the ANN model. The attempt to predict discharges showed that the ANN model is able to simulate the karstic aquifer discharges. The shape of the simulated hydrographs was found to be similar to that of the actual hydrographs. These encouraging results make it possible to consider interesting and new prospects for the modeling of karstic aquifers, which are highly non-linear systems.
Resumen Se ha estudiado la capacidad de las redes artificiales neurales (ANN) para modelizar las relaciones de lluvia-descarga de acuíferos kársticos en el sistema kárstico La Rochefocauld, al suroeste de Francia, el cual abastece de agua a la ciudad de Angoulême. Se desarrolló un modelo de redes neurales en base a redes MLP (Perceptron Multi-Capas) y el algoritmo de optimización Levenberg-Marquardt. Se utilizaron datos de lluvia sin la transformación hacia lluvia efectiva. Esto permitió la eliminación de ciertos supuestos simplificadores no verificables y su subsiguiente introducción en el procedimiento de modelizado. Los datos brutos de descarga y lluvia se dividieron en 3 grupos para la preparación, validación y la prueba de predicción del modelo ANN. Las fases de preparación y validación llevaron a una calibración muy satisfactoria del modelo ANN. El intento por predecir descargas mostró que el modelo ANN es capaz de simular las descargas del acuífero kárstico. Se encontró que la forma de los hidrogramas sintéticos es similar a la de los hidrogramas reales. Estos resultados alentadores hacen posible considerar prospectos nuevos e interesantes para el modelizado de acuíferos kársticos los cuales son sistemas altamente no-lineares.

Résumé L’aptitude des réseaux de neurones artificiels (RNA) à modéliser les relations pluie-débit des aquifères karstiques a été évaluée sur le karst de La Rochefoucauld (Sud-Ouest de la France), qui fournit l’eau potable à la capitale régionale Angoulême. Un modèle RNA a été développé à cet effet, basé sur les réseaux PMC (Perceptron Multicouche) et l’algorithme d’optimisation de Levenberg-Marquardt. Les données de pluie utilisées concernent la pluie brute, sans transformation en pluie efficace, ce qui permet de s’affranchir de certaines hypothèses simplificatrices non vérifiables. Les données de pluie brute et de débit ont été réparties en 3 groupes pour l’apprentissage, la validation et le test de prédiction du RNA. Les phases d’apprentissage et de validation ont permis d’aboutir à une calibration très satisfaisante du modèle RNA. La tentative de prédiction a montré que le RNA est apte à simuler les débits de l’aquifère karstique à partir de la pluie brute. La forme des hydrogrammes simulés est semblable à celle des hydrogrammes réels. Les résultats obtenus sont très encourageants et permettent d’envisager des perspectives intéressantes et nouvelles de modélisation des aquifères karstiques, qui sont des systèmes hautement non-linéaires.
  相似文献   

16.
Based on a well-established bio- and sequence-stratigraphic framework, a narrow time window in the Bimammatum ammonite zone (Late Oxfordian) is investigated in six Swiss Jura sections representing a shallow-water carbonate platform. From the detailed facies and microfacies analysis of oncoid-rich (Hauptmumienbank Member) and ooid-rich (Steinebach Member) limestones, a microfacies classification is established, depositional environments are interpreted, and a depositional model for the Swiss Jura platform is proposed. The sequence- and cyclostratigraphic interpretation has been performed for the transgressive part of the medium-scale sequence Ox6+, independently for each section, with a very high time resolution at the scale of elementary depositional sequences. The good correlation of the elementary and small-scale sequences between the six studied sections and the similar number of elementary sequences in all sections strongly suggest that allocyclic processes were involved in their formation. The hierarchically stacked depositional sequences (small-scale and elementary sequences) result from orbitally controlled sea-level changes with periodicities of 100 and 20 kyr, respectively. Thickness variations in the correlated small-scale and elementary sequences imply variable sedimentation rates, probably resulting from differential subsidence due to the activity of tectonic blocks. The tectonically controlled platform morphology contributed significantly to the general pattern of depositional environments and, combined with high-frequency sea-level fluctuations, created a complex facies distribution in time and space on the Swiss Jura carbonate platform.  相似文献   

17.
We analysed the stable isotopes (18O and 2H) of rainwater and drip water within a cave (Nerja Cave) located in the unsaturated zone of a carbonate aquifer. Rainfall is more abundant and presents lower isotopic content in winter, while the volume of drip water is greater and its isotopic content is lower in summer. The flow analysis of 18O through the unsaturated zone confirms the seasonal lag between rainfall and the appearance of drip water in the cave and reveals that the unsaturated zone of the aquifer, in the sector of the cave, behaves like an inertial system with a strong capability to modulate the input signal. To cite this article: F. Carrasco et al., C. R. Geoscience 338 (2006).  相似文献   

18.
Microbial metabolism impacts the degree of carbonate saturation by changing the total alkalinity and calcium availability; this can result in the precipitation of carbonate minerals and thus the formation of microbialites. Here, the microbial metabolic activity, the characteristics and turnover of the extracellular polymeric substances and the physicochemical conditions in the water column and sediments of a hypersaline lake, Big Pond, Bahamas, were determined to identify the driving forces in microbialite formation. A conceptual model for organomineralization within the active part of the microbial mats that cover the lake sediments is presented. Geochemical modelling indicated an oversaturation with respect to carbonates (including calcite, aragonite and dolomite), but these minerals were never observed to precipitate at the mat–water interface. This failure is attributed to the capacity of the water column and upper layers of the microbial mat to bind calcium. A layer of high Mg‐calcite was present 4 to 6 mm below the surface of the mat, just beneath the horizons of maximum photosynthesis and aerobic respiration. This carbonate layer was associated with the zone of maximum sulphate reduction. It is postulated that extracellular polymeric substances and low molecular weight organic carbon produced at the surface (i.e. the cyanobacterial layer) of the mat bind calcium. Both aerobic and anaerobic heterotrophic microbes consume extracellular polymeric substances (each process accounting for approximately half of the total consumption) and low molecular weight organic carbon, liberating calcium and producing inorganic carbon. The combination of these geochemical changes can increase the carbonate saturation index, which may result in carbonate precipitation. In conclusion, the formation and degradation of extracellular polymeric substances, as well as sulphate reduction, may play a pivotal role in the formation of microbialites both in marine and hypersaline environments.  相似文献   

19.
This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria’s capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.  相似文献   

20.
Labat  C.  Larroque  F.  de Grissac  B.  Dupuy  A.  Saltel  M.  Bourbon  P. 《Hydrogeology Journal》2021,29(5):1711-1732

Geological deformations like anticlines have a prominent role in aquifer system functioning. Structural deformations control erosion patterns, areas of nondeposition, lateral facies variations and thickness variations. The nature and geometry of geological bodies have a major impact on the aquifers and interconnections between them. To characterize these features and to quantify their influence on overall hydrogeological functioning, a multidisciplinary approach is proposed at a local scale. In southwestern France, the Aquitaine Basin contains a regional multilayered aquifer system affected by numerous anticlines. The Villagrains-Landiras anticline is a major anticline of the Aquitaine Basin, and near its axis is the subcropping Cenomanian aquifer; thus, the Cenomanian aquifer has potential for drinking water supply. An extensive research program was developed, including reconnaissance drilling, water level measurements, geochemical analyses, and petrophysical tests, and the results were combined with existing data. This integrated work precisely defined the complex architecture of the aquifer and confining units linked with the uplift and the polyphase erosion of the anticline. It resulted in the characterisation of the deposits’ geometries, lithology, and aquifer properties. The areas of aquifer interconnection have been defined and recharge flows have been estimated. A new groundwater circulation pattern constrained by isotopic water residence times was developed. A new geological model was built, which enables a rethink of the local functioning of the aquifer targeted for drinkable-water supply, but also it allows an understanding of the importance of anticline structure on the recharge conditions of the aquifers of this regional multilayered aquifer system.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号