首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The short-lived thorium isotope 234Th (half-life 24.1 days) has been used as a tracer for a variety of transport processes in aquatic systems. Its use as a tracer of oceanic export via sinking particles has stimulated a rapidly increasing number of studies that require analyses of 234Th in both marine and freshwater systems. The original 234Th method is labor intensive. Thus, there has been a quest for simpler techniques that require smaller sample volumes. Here, we review current methodologies in the collection and analysis of 234Th from the water column, discuss their individual strengths and weaknesses, and provide an outlook on possible further improvements and future challenges. Also included in this review are recommendations on calibration procedures and the production of standard reference materials as well as a flow chart designed to help researchers find the most appropriate 234Th analytical technique for a specific aquatic regime and known sampling constraints.  相似文献   

2.
234Th is an extremely useful radiotracer of particle dynamics in aquatic systems. Its utility, however, has yet to be realized by many within the aquatic science community. The reasons for this may in part be due to a lack of knowledge of how this nuclide has been used in the past as well as how and where 234Th might be profitably applied in future research. The purpose of this paper, then, is to examine the variety of 234Th applications that have been used to understand natural aquatic processes in four major areas: vertical transport, particle cycling, horizontal transport, and sediment dynamics. We provide a general overview of the possible applications of 234Th in the hopes of provoking an increased interest in the inherent potential and future application of 234Th in these systems. We end this paper with a discussion of future research avenues in the context of three specific regimes: (i) the upper 1000 m of the open ocean, (ii) coastal sediment/water processes and (iii) large freshwater lakes.  相似文献   

3.
234Th/238U disequilibria have been used extensively in studies of particle dynamics and the fate and transport of particle-reactive matter in marine environments. Similar work in low salinity, estuarine, and freshwater systems has not occurred primarily because the lower concentrations of both parent and daughter nuclides that are typical of these systems often render established methods for the analysis of 234Th inadequate. The application of this radionuclide tracer technique to these systems, however, has great potential. To this end, we present a method for measuring low activities of 234Th in relatively small samples (<200 l) using low background gas-flow proportional counters, a 229Th yield monitor, and empirical corrections for the interferences from real and apparent betas that are emitted by other thorium isotopes and their progeny. For samples with low 234Th/228Th activity ratios, we improve upon current beta counting methodologies that rely on immediate sample counting, weak beta absorption, or multiple beta counts so that, using the analytical approach outlined here, it should be possible to measure 234Th activities (i) as low as 1.5 dpm/total sample, (ii) up to 2 weeks after radiochemical purification of thorium, and (iii) with only one sample count for alpha and beta activity.  相似文献   

4.
We utilized 234Th, a naturally occurring radionuclide, to quantify the particulate organic carbon (POC) export rates in the northern South China Sea (SCS) based on data collected in July 2000 (summer), May 2001 (spring) and November 2002 (autumn). Th-234 deficit was enhanced with depth in the euphotic zone, reaching a subsurface maximum at the Chl-a maximum in most cases, as commonly observed in many oceanic regimes. Th-234 was in general in equilibrium with 238U at a depth of ∼100 m, the bottom of the euphotic zone. In this study the 234Th deficit appeared to be less significant in November than in July and May. A surface excess of 234Th relative to 238U was found in the summer over the shelf of the northern SCS, most likely due to the accumulation of suspended particles entrapped by a salinity front. Comparison of the 234Th fluxes from the upper 10 m water column between 2-D and traditional 1-D models revealed agreement within the errors of estimation, suggesting the applicability of the 1-D model to this particular shelf region. 1-D model-based 234Th fluxes were converted to POC export rates using the ratios of bottle POC to 234Th. The values ranged from 5.3 to 26.6 mmol C m−2d−1 and were slightly higher than those in the southern SCS and other oligotrophic areas. POC export overall showed larger values in spring and summer than in autumn, the seasonality of which was, however, not significant. The highest POC export rate (26.6 mmol C m−2d−1) appeared at the shelf break in spring (May), when Chl-a increased and the community structure changed from pico-phytoplankton (<2 μm) dominated to nano-phytoplankton (2–20 μm) and micro-phytoplankton (20–200 μm) dominated.  相似文献   

5.
234Th is a particle-reactive radionuclide widely used to trace biogeochemical oceanic processes occurring over short timescales. During the last few years, small-volume techniques based on the co-precipitation of 234Th with MnO2 coupled with beta-counting have been developed as an alternative to large volume gamma-spectrometric techniques. Here a procedure has been developed to enhance quantitative measurement of 234Th in MnO2 precipitates. The main objectives were to obtain a purified Th fraction for beta-counting and to determine the chemical recovery of 234Th using Th spikes and alpha-spectrometry as an alternative to ICP-MS based methods. Two variations of the procedure are presented. In the first “1 spike” method a 230Th tracer is added to the sample prior to precipitation of MnO2, and UTEVA® extraction chromatography is used to obtain a NdF3(Th) purified source that can be used for both beta-counting of 234Th and alpha-spectrometry of 230Th. In the “2 spike” method a 230Th spike is added and the MnO2(Th) precipitate is directly beta-counted for 234Th and subsequently spiked with 228Th or 229Th prior to UTEVA® purification and alpha-spectrometry. The results confirm the need to process small-volume seawater samples for 234Th measurement in presence of a yield tracer, and show that both the 1 spike and 2 spike methods allow an accurate and precise determination of 234Th (relative percent difference, RPD, between expected and mean measured value < 1%; CV between replicate samples < 3%). Our work also suggests that, although the combined analytical uncertainty on total 234Th measurements accomplished with both versions of the NdF3 procedure is promising (6% for 2-L samples), the precision of the 234Th flux estimation will ultimately depend on the degree of disequilibrium between 234Th and 238U.  相似文献   

6.
Uncertainties in the determinations of particulate organic carbon flux from measurements of the disequilibrium between 234Th and its mother isotope uranium depend largely on the determination of the organic carbon to 234thorium (OC : 234Th) ratio. The variability of the OC : 234Th ratio in different size fractions of suspended matter, ranging from the truly dissolved (< 3 or 10 kDa) fraction to several millimeter sized marine snow, as well as from sediment trap material was assessed during an eight-day cruise off the coast of California in Spring 1997. The affinity of polysaccharide particles called TEP (transparent exopolymer particles) and inorganic clays to 234Th was investigated through correlations. The observed decrease in the OC : 234Th ratio with size, within the truly dissolved to small particle size range, is consistent with concepts of irreversible colloidal aggregation of non-porous nano-aggregates. No consistent trend in the OC : 234Th ratio was observed for particles between 1 or 10 to 6000 μm. Origin and fate of marine particles belonging to this size range are diverse and interactions with 234Th too complex to expect a consistent relationship between OC : 234Th ratio and size, if all categories of particles are included. The relationship between OC and 234Th was significant when data from the truly dissolved fraction were excluded. However, variability was very large, implying that OC flux calculations using different collection methods (e.g. sediment trap, Niskin bottles or pumps) would differ significantly. Therefore a large uncertainty in OC flux calculations based on the 234Th method exist due to individual decisions as to which types or size classes of particles best represent sinking material in a specific area. Preferential binding of 234Th to specific substance classes could explain the high variability in the relationship between OC and 234Th. At 15 m, in the absence of lithogenic material, the OC : 234Th ratio was a function of the fraction of TEP or TEP-precursors in OC, confirming that acidic polysaccharides have a high affinity for 234Th and that TEP carry a ligand for 234Th. Preferential binding to TEP might change distribution patterns of 234Th considerably, as TEP may sink when included in large aggregates, or remain suspended or even ascend when existing as individual particles or microaggregates. In the presence of lithogenic matter, at depths below 30 m, the ratio between 234Th and OC was linearly related to the ratio between alumino silicates and C. The affinity of inorganic substances to 234Th is known to be relatively low, suggesting that a coating of acidic polysaccharides was responsible for the apparently high affinity between 234Th and lithogenic material. Overall, OC : 234Th ratios of all material collected during this investigation can best be explained by differential binding of 234Th to both TEP and TEP-precursors, as well as to lithogenic minerals, which were very abundant in an intermediate nepheloid layer between 50 and 90 m.  相似文献   

7.
Disequilibrium between 234Th and 238U in water column profiles has been used to estimate the settling flux of Th (and, by proxy, of particulate organic carbon); yet potentially major non-steady-state influences on 234Th profiles are often not able to be considered in estimations of flux. We have compared temporal series of 234Th distributions in the upper water column at both coastal and deep-water sites in the northwestern Mediterranean Sea to coeval sediment trap records at the same sites. We have used sediment trap records of 234Th fluxes to predict temporal changes in water column 234Th deficits and have compared the predicted deficits to those measured to determine whether the time-evolution of the two coincide. At the coastal site (327 m water depth), trends in the two estimates of water column 234Th deficits are in fairly close agreement over the 1-month deployment during the spring bloom in 1999. In contrast, the pattern of water column 234Th deficits is poorly predicted by sediment trap records at the deep-water site (DYFAMED, 2300 m water depth) in both 2003 and 2005. In particular, the transition from a mesotrophic to an oligotrophic system, clearly seen in trap fluxes, is not evident in water column 234Th profiles, which show high-frequency variability. Allowing trapping efficiencies to vary from 100% does not reconcile the differences between trap and water column deficit observations; we conclude that substantial lateral and vertical advective influences must be invoked to account for the differences.Advective influences are potentially greater on 234Th fluxes derived from water column deficits relative to those obtained from traps because the calculation of deficits in open-ocean settings is dominated by the magnitude of the “dissolved” 234Th fraction. For observed current velocities of 5–20 cm s−1, in one radioactive mean-life of 234Th, the water column at the DYFAMED site can reflect 234Th scavenging produced tens to hundreds of kilometers away. In contrast, most of the 234Th flux collected in shallow sediment traps at the DFYFAMED site was in the fraction settling >200 m d−1; in effect the sediment trap can integrate the 234Th flux over distances 40-fold less than water column 234Th distributions. In some sense, sediment trap and water column sampling for 234Th provide complementary pictures of 234Th export. However, because the two methods can be dominated by different processes and are subject to different biases, their comparison must be treated with caution.  相似文献   

8.
吕冬伟 《台湾海峡》2006,25(3):430-436
采用大体积现场泵方法同时采集不同粒级的^228Th、^234Th及溶解态的^228Th、^234Th、^228Ra.以小体积MnO2共沉淀-β计数法测定海水中的总^234Th活度(A'TTh);用Goflo采水器采集6~10dm^3海水,继而过滤收集颗粒物质并测定其^234Th的活度(A’PTh);以α能谱测定分离纯化后的^228Th;对^228Ra则是采用测定其子体^228Ac的β放射性方法.采用此流程分析了南海2004年2月航次A1站住的样品,获得了较好的结果.  相似文献   

9.
对厦门湾塔角附近海域某站位叶绿素 a、POC、初级生产力、234Th/238U不平衡进行的周日变化研究表明,POC含量介于14.4~34.6 mmol/m3之间,其中碎屑有机碳与活体有机碳所占份额分别为74%~92%和8%~26%.POC垂直分布呈现由表及底降低的趋势,且白昼期间POC含量高于晚间,说明研究海域POC含量与生物过程具有密切联系.初级生产力水平在1d之中变化达5倍,垂直分布亦随深度增加而降低,与叶绿素a的变化相对应.短时间(2h)培养获得的初级生产力水平明显高于长时间培养(24 h)的结果,证实部分新固定的碳被优先呼吸排出.结合234Th/238U不平衡法获得的颗粒态234Th输出通量及输出界面颗粒物中的POC/PTh比值,可计算出真光层 POC的垂向输出通量为16.0mmol/(m2·d),其中碎屑有机碳与活体有机碳贡献的数量分别为13.3和2.7mmol/(m2·d).POC输出通量与初级生产力的比值(ThE比值)平均为0.31,真光层POC停留时间平均为11d.上述结果与Aksnes和Wassmann[1]的模型计算结果相吻合,但与其他大多数模型的结果仍存在一定的差异.  相似文献   

10.
Dissolved and particulate 234Th activities in surface seawater were determined at 27 stations along the coastline of western Taiwan during 19–23 November 2004. Contrasting scavenging settings were observed between the northern and southern regimes of the nearshore water off western Taiwan, separated by the Cho-Shui River. The northern regime is characterized by a large quantity of suspended load contributed by northward transport of a suspension plume from the Cho-Shui River, while the southern regime, low in suspended load and high in chlorophyll concentration, is a system controlled by biological activity. A scavenging model that takes account of the physical transport was used to estimate the 234Th budget in order to estimate the scavenging and removal rates from the nearshore water. The scavenging and removal rates ranged from 21 to 127 dpm m−3d−1 and from 36 to 525 dpm m−3d−1, for dissolved and particulate 234Th, respectively. The removal fluxes of particulate organic carbon (POC) and particulate organic nitrogen (PON) were estimated by multiplying the particulate 234Th removal flux to the organic carbon/234Th and nitrogen/234Th ratios in suspended particles, which ranged from 4.5 to 275.2 mmol-C m−2d−1 and from 1.3 to 50.1 mmol-N m−2d−1, respectively. These fluxes resulted in residence times of 1∼20 days for the POC in the surface water of nearshore water off western Taiwan.  相似文献   

11.
234 Th was utilized as a tracer of particulate organic carbon (POC) export in the northwestern South China Sea (SCS) on the basis of the data collected at four stations during a spring cruise.Depth profiles of dissolved and particulate 234 Th activities were measured in the upper 60 m,showing a significant deficit relative to 238 U over the investigated stations.A stratified structure of 234 Th-238 U disequilibrium was in general observed in the upper 60 m water column,indicating that the euphotic zone of t...  相似文献   

12.
对厦门湾塔角附近海域某站位叶绿素 a、POC、初级生产力、234Th/238U不平衡进行的周日变化研究表明,POC含量介于14.4~34.6 mmol/m3之间,其中碎屑有机碳与活体有机碳所占份额分别为74%~92%和8%~26%.POC垂直分布呈现由表及底降低的趋势,且白昼期间POC含量高于晚间,说明研究海域POC含量与生物过程具有密切联系.初级生产力水平在1d之中变化达5倍,垂直分布亦随深度增加而降低,与叶绿素a的变化相对应.短时间(2h)培养获得的初级生产力水平明显高于长时间培养(24 h)的结果,证实部分新固定的碳被优先呼吸排出.结合234Th/238U不平衡法获得的颗粒态234Th输出通量及输出界面颗粒物中的POC/PTh比值,可计算出真光层 POC的垂向输出通量为16.0mmol/(m2·d),其中碎屑有机碳与活体有机碳贡献的数量分别为13.3和2.7mmol/(m2·d).POC输出通量与初级生产力的比值(ThE比值)平均为0.31,真光层POC停留时间平均为11d.上述结果与Aksnes和Wassmann[1]的模型计算结果相吻合,但与其他大多数模型的结果仍存在一定的差异.  相似文献   

13.
不同潮时对厦门湾水体中234Th/238U不平衡的影响   总被引:1,自引:0,他引:1  
厦门海水体中^234Th/^238U不平衡的时间序列数据表明,无论是溶解态、颗粒态^234Th还是总^234Th,相对于母体^238U均严重亏损,呈现出与开阔大洋水明显不同的特征。溶解态、颗粒态^234Th的停留时间介于0.5-41d之间,其中低潮时停留时间比高潮时小2-4倍,证实近岸海域具有强烈的清除、迁出作用,且潮汐变化对海域颗粒动力学特征有重要影响。^234Th停留时间与总悬浮颗粒物浓度(TSM)、Ch1.α的关系则表明,近岸海域元素的清除、迁出作用主要受陆源颗粒物输送的影响,与生物活动关系并不密切。此外,非稳态与稳态清除模型结果的对比证明,稳态模型对于具有强烈清除、迁出作用的近岸海域是适用的。  相似文献   

14.
234Th (T1/2=24.1 d) and 210Po (T1/2=138.4 d) are particle reactive radioisotopes that are used as tracers for particle cycling in the upper ocean. Particulate organic carbon (POC) export has frequently been estimated using 234Th/238U disequilibrium. Recent evidence suggests that 210Po/210Pb disequilibrium may be used as an additional tool to examine particle export, given the direct biological uptake of 210Po into cellular material. Differences in these two radioisotope pairs with regard to their half-lives, particle reactivity and scavenging affinity in seawater should provide complementary information to be obtained on the processes occurring in the water column. Here, we review eight different studies that have simultaneously used both approaches to estimate POC export fluxes from the surface ocean. Our aim is to provide a complete “dataset” of all the existing POC flux data derived from the coupled use of both 234Th and 210Po and to evaluate the advantages and limitations of each tracer pair. Our analysis suggests that the simultaneous use of both radiotracers provides more useful comparative data than can be derived from the use of a single tracer alone. The difference in half-lives of 234Th and 210Po enables the study of export production rates over different time scales. In addition, their different biogeochemical behaviour and preferred affinity for specific types of particles leads to the conclusion that 234Th is a better tracer of total mass flux, whereas 210Po tracks POC export more specifically. The synthesis presented here is also intended to provide a basis for planning future sampling strategies and promoting further work in this field to help reveal the more specific application of each tracer under specific water column biogeochemistries.  相似文献   

15.
Alkenone unsaturation indices (UK37 and UK′37) have long been used as proxies for surface water temperature in the open ocean. Recent studies have suggested that in other marine environments, variables other than temperature may affect both the production of alkenones and the values of the indices. Here, we present the results of a reconnaissance field study in which alkenones were extracted from particulate matter filtered from the water column in Chesapeake Bay during 2000 and 2001. A multivariate analysis shows a strong positive correlation between UK37 (and UK′37) values and temperature, and a significant negative correlation between UK37 (and UK′37) values and nitrate concentrations. However, temperature and nitrate concentrations also co-vary significantly. The temperature vs. UK37 relationships (UK37=0.018 (T)−0.162, R2=0.84, UK′37=0.013 (T)−0.04, R2=0.80) have lower slopes than the open-ocean equations of Prahl et al. [1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta 52, 2303–2310] and Müller et al. [1998. Calibration of the alkenone paleotemperature index UK′37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochimica et Cosmochimica Acta 62, 1757–1772], but are similar to the relationships found in controlled studies with elevated nutrient levels and higher nitrate:phosphate (N:P) ratios. This implies that high nutrient levels in Chesapeake Bay have either lowered the UK37 vs. temperature slope, or nutrient levels are the main controller of the UK37 index. In addition, particularly high abundances (>5% of total C37 alkenones) of the tetra-unsaturated ketone, C37:4, were found when water temperatures reached 25 °C or higher, thus posing further questions about the controls on alkenone production as well as the biochemical roles of alkenones.  相似文献   

16.
Depth profiles of total 234Th (dissolved+particulate) were collected at Station ALOHA (22°45N, 158°00W) in the North Pacific Subtropical Gyre during 9 cruises from April 1999 to March 2000. Samples were collected and processed by a new 2 L technique that enables more detailed depth resolution then previous 234Th studies. Significant zones of particle export (234Th deficiency) and particle remineralization (234Th excess) were measured both temporally and with depth. 234Th derived particulate carbon (PC) and nitrogen (PN) fluxes were determined with steady-state and non-steady-state models and PC/234Th and PN/234Th ratios measured with both in situ pumps and free-drifting particle interceptor traps deployed at 150 m. 234Th based export estimates of 4.0±2.3 mmol C m−2 d−1 and 0.53±0.19 mmol N m−2 d−1, were approximately 60% higher than those measured in PIT style sediment traps from the same time period, 2.4±0.2 mmol C m−2 d−1 and 0.32±0.08 mmol N m−2 d−1. Most of this difference is attributable to two large export events that occurred during October and December 1999, when traps undercollected for 234Th by a factor of 2 to 4. 234Th export (ThE) ratios based on 234Th derived PC flux/14C based primary production ranged from 4% to 22% (average=8.8%). Our results confirm the recent estimates of C export by Emerson et al. (Nature 389 (1997) 951) and Sonnerup et al. (Deep-Sea Research I 46 (1999) 777) and indicate that C export from the oligotrophic ocean must be considered when discussing C sequestration in global climate change.  相似文献   

17.
~(210) Po and ~(210) Pb are increasingly used to constrain particle dynamics in the open oceans, however they are less used in coastal waters. Here, distributions and partitions of ~(210) Po and ~(210) Pb were examined in the Taiwan Strait, as well as their application to quantify particle sinking. Activity concentrations of dissolved ~(210) Po and ~(210) Pb(0.6 μm)ranged from 1.21 to 7.63 dpm/(100 L) and from 1.07 to 6.33 dpm/(100 L), respectively. Activity concentrations of particulate ~(210) Po and ~(210) Pb varied from 1.96 to 36.74 dpm/(100 L) and from 3.11 to 38.06 dpm/(100 L). Overall,particulate ~(210) Po and ~(210) Pb accounted for the majority of the bulk ~(210) Po and ~(210) Pb. 210 Po either in dissolved or particulate phases showed similar spatial patterns to 210 Pb, indicating similar mechanisms for controlling the distributions of ~(210) Po and ~(210) Pb in the Taiwan Strait. The different fractionation coefficients indicated that particles in the Zhemin Coastal Current(ZCC) inclined to absorb 210 Po prior to 210 Pb while they showed an opposite effect in the Taiwan Warm Current(TWC). Based on the disequilibria between ~(210) Po and ~(210) Pb, the sinking fluxes of total particulate matter(TPM) were estimated to range from –0.22 to 3.84 g/(m2·d), showing an overall comparable spatial distribution to previous reported sediment accumulation rates. However, our sinking fluxes were lower than the sedimentation rates, indicating a sediment resuspension in winter and horizontal transport of particulate matter from the Taiwan Strait to the East China Sea.  相似文献   

18.
The deficit of 234Th relative to its radioactive parent 238U in the surface ocean can yield reliable estimates of vertical Particulate Organic Carbon (POC) fluxes to deeper waters, but only when coupled with an accurate ratio of POC concentration to activity of 234Th on sinking matter. Assuming a simple partitioning of suspended phytoplankton mass between single cells and flocs, we calculate the ratio of the POC flux estimated from 234Th deficit to the actual POC flux (p ratio, Smith, J.N., Moran, S.B., Speicher, E.A., in press. The p-ratio: a new diagnostic for evaluating the accuracy of upper ocean particulate organic carbon export fluxes estimated from 234Th/238U disequilibrium. Deep-Sea Research I.). The p ratios are calculated under the assumption that particle surface area is correlated with 234Th activity and particle volume is correlated with POC concentration. The value of the p ratio depends on the relative contributions of single cells and flocs to the vertical flux. When large single cells make up a significant fraction of the vertical flux, p ratios are less than one, meaning POC fluxes estimated from 234Th deficits underestimate actual POC fluxes. When large single cells are abundant but do not sink fast enough to contribute to vertical POC flux, p ratios are greater than one (up to 3 × overestimate). Factor analysis of the model indicates that altering the extent of flocculation in suspension and changing the density and maximum size of phytoplankton cells have the greatest effects on the p ratio. Failure to measure the properties of flocs when characterizing the ratio of POC to thorium on sinking matter potentially leads to large overestimation of the POC flux (over 20 ×). Failure to characterize the POC to thorium ratio of large particles, by, for example, destruction of phytoplankton cells in pumps, can lead to underestimation of POC flux. Estimates of POC flux should be most reliable in highly flocculated suspensions populated by small cells and rapidly sinking flocs. These conditions are often associated with intense phytoplankton blooms.  相似文献   

19.
利用高精度的电感耦合等离子体质谱仪对2014年1月长江口表层水中溶解铀浓度及其234U/238U比值、2013年3月长江口表层沉积物中各矿物组分的铀含量及其234U/238U比值进行了测定,研究了其空间分布特征和影响因素。结果表明:除了长江径流和海水之外,长江口还有其他的溶解铀来源。水体中过剩铀与悬浮颗粒物浓度呈现显著相关性(r2=0.96)。对长江口表层沉积物进行的序列提取实验进一步表明,水体中悬浮颗粒物或沉积物中可解吸态和碳酸钙结合态铀可以在河口区域释放进入水体,而铁锰氧化物和有机物结合铀比较稳定,不受河口区混合过程的影响。每千克颗粒物或沉积物能够释放约2 μmol颗粒态铀,使其转化为溶解态。然而,铁氢氧化物和细颗粒物的絮凝吸附作用也可使溶解铀同时从河口水体中清除。在低盐度区,铀的清除和添加过程速率相近,使溶解铀呈现暂时的"伪保守"现象:颗粒态释放的铀具有明显低的234U/238U比值,导致水体的234U/238U低于保守混合值。在中高盐度区域,溶解铀呈现明显的富集现象。但是由于水相和颗粒相中的铀交换,可释放颗粒态铀的234U/238U接近溶解铀的234U/238U比值,从而导致水体的234U/238U比值呈现出保守性。长江口颗粒物的铀释放通量为(3.48±0.41)×105 mol/a,约占输入的总颗粒态铀通量(1.80±0.17)×106 mol/a的19.3%。长江口输入东海的溶解铀总通量(河流溶解态铀与河口添加铀之和)为(2.68±0.13)×106 mol/a,约为世界河流入海铀通量的11.7%。  相似文献   

20.
本文对TOA萃取剂萃取钍适宜的操作条件及萃取溶剂进行了试验,提出了TOA/苯萃取234Th的最佳条件: 在 1cm3含 234Th的 6mol/dm3 HNO3 溶液中,用体积比为 0. 5的TOA/苯溶液 2cm3 萃取,然后用 2cm3 1. 0mol/dm3 H2SO4反萃取,最高萃取率达 94%.对TOA/苯、TBP/煤油和TTA/苯这 3种萃取体系的萃取效率及其影响因素、萃取机理、成本等做了比较,认为 3种体系各有利弊,但均可有效地应用于相关的海洋学研究中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号