首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Geochemical reaction rate laws are often measured using crushed minerals in well-mixed laboratory systems that are designed to eliminate mass transport limitations. Such rate laws are often used directly in reactive transport models to predict the reaction and transport of chemical species in consolidated porous media found in subsurface environments. Due to the inherent heterogeneities of porous media, such use of lab-measured rate laws may introduce errors, leading to a need to develop methods for upscaling reaction rates. In this work, we present a methodology for using pore-scale network modeling to investigate scaling effects in geochemical reaction rates. The reactive transport processes are simulated at the pore scale, accounting for heterogeneities of both physical and mineral properties. Mass balance principles are then used to calculate reaction rates at the continuum scale. To examine the scaling behavior of reaction kinetics, these continuum-scale rates from the network model are compared to the rates calculated by directly using laboratory-measured reaction rate laws and ignoring pore-scale heterogeneities. In this work, this methodology is demonstrated by upscaling anorthite and kaolinite reaction rates under simulation conditions relevant to geological CO2 sequestration. Simulation results show that under conditions with CO2 present at high concentrations, pore-scale concentrations of reactive species and reaction rates vary spatially by orders of magnitude, and the scaling effect is significant. With a much smaller CO2 concentration, the scaling effect is relatively small. These results indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. This work demonstrates the use of pore-scale network modeling as a valuable research tool for examining upscaling of geochemical kinetics. The pore-scale model allows the effects of pore-scale heterogeneities to be integrated into system behavior at multiple scales, thereby identifying important factors that contribute to the scaling effect.  相似文献   

2.
3.
4.
5.
The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection—involving exponential stretching and folding of fluid elements—the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.  相似文献   

6.
7.
A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 µm, 6.2 µm, 8.3 µm and 10.2 µm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 µm) to lower resolutions (6.2 µm, 8.3 µm and 10.2 µm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.  相似文献   

8.
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.  相似文献   

9.
In pore network modeling, the void space of a rock sample is represented at the microscopic scale by a network of pores connected by throats. Construction of a reasonable representation of the geometry and topology of the pore space will lead to a reliable prediction of the properties of porous media. Recently, the theory of multi-cellular growth (or L-systems) has been used as a flexible tool for generation of pore network models which do not require any special information such as 2D SEM or 3D pore space images. In general, the networks generated by this method are irregular pore network models which are inherently closer to the complicated nature of the porous media rather than regular lattice networks. In this approach, the construction process is controlled only by the production rules that govern the development process of the network. In this study, genetic algorithm has been used to obtain the optimum values of the uncertain parameters of these production rules to build an appropriate irregular lattice network capable of the prediction of both static and hydraulic information of the target porous medium.  相似文献   

10.
This paper presents a dual-percolation model coupling the percolation theory and the fracture percolation theory to study the conductivity of the fractured porous media. The Monte-Carlo method is used in the numerical simulation. First an appropriate computing scale by considering the calculation precision and elapsed time together is validated. Then, two parameters, A 0 and D are presented in this model to determine the conductivity of the media. Generally the media can be blocked by itself in the condition of D > 2. However, the increase of pore connection and the randomness of fracture direction may release the selfblockage, increase the conductivity and make the dual porous media dissipated. A few long fractures can play a great role in the connection of media.  相似文献   

11.
12.
13.
《Advances in water resources》2007,30(6-7):1392-1407
Field and column studies of biocolloid transport in porous media have yielded a large body of information, used to design treatment systems, protect water supplies and assess the risk of pathogen contamination. However, the inherent “black-box” approach of these larger scales has resulted in generalizations that sometimes prove inaccurate. Over the past 10–15 years, pore scale visualization techniques have improved substantially, allowing the study of biocolloid transport in saturated and unsaturated porous media at a level that provides a very clear understanding of the processes that govern biocolloid movement. For example, it is now understood that the reduction in pathways for biocolloids as a function of their size leads to earlier breakthrough. Interception of biocolloids by the porous media used to be considered independent of fluid flow velocity, but recent work indicates that there is a relationship between them. The existence of almost stagnant pore water regions within a porous medium can lead to storage of biocolloids, but this process is strongly colloid-size dependent, since larger biocolloids are focused along the central streamlines in the flowing fluid. Interfaces, such as the air–water interface, the soil–water interface and the soil–water–air interface, play a major role in attachment and detachment, with significant implications for risk assessment and system design. Important research questions related to the pore-scale factors that control attachment and detachment are key to furthering our understanding of the transport of biocolloids in porous media.  相似文献   

14.
A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another “equivalent” sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.  相似文献   

15.
Modelling adsorptive solute transport in soils needs a number of parameters to describe its reaction kinetics and the values of these parameters are usually determined from batch and displacement experiments. Some experimental results reveal that when describing the adsorption as first-order kinetics, its associated reaction rates are not constants but vary with pore water velocity. Explanation of this varies but an independent verification of each explanation is difficult because simultaneously measuring the spatiotemporal distributions of dissolved and adsorbed solutes in soils is formidable. Pore-scale modelling could play an important role to address this gap and has received increased attention over the past few years. This paper investigated the transport of adsorptive solute in a simple porous medium using pore-scale modelling. Fluid flow through the void space of the medium was assumed to be laminar and in saturated condition, and solute transport consisted of advection and molecular diffusion; the sorption and desorption occurring at the fluid–solid interface were modelled as linear first-order kinetics. Based on the simulated spatiotemporal distribution of dissolved and adsorbed solutes at pore scale, volumetric-average reaction kinetics at macroscopic scale and its associated reactive parameters were measured. Both homogeneous adsorption where the reaction rates at microscopic scale are constant, and heterogeneous adsorption where the reaction rates vary from site to site, were investigated. The results indicate that, in contrast to previously thought, the macroscopic reaction rates directly measured from the pore-scale simulations do not change with pore velocity under both homogeneous and heterogeneous adsorptions. In particular, we found that for the homogeneous adsorption, the macroscopic adsorption remains first-order kinetic and can be described by constant reaction rates, regardless of flow rate; whilst for the heterogeneous adsorption, the macroscopic adsorption kinetics continues not to be affected by flow rate but is no longer first-order kinetics that can be described by constant reaction rates. We discuss how these findings could help explain some contrary literature reports over the dependence of reaction rates on pore water velocity.  相似文献   

16.
In the water flooding of mixed-wet porous media, oil may drain down to relatively low residual oil saturations (Sor). Various studies have indicated that such low saturations can only be reached when oil layers in pore corners are included in the pore-scale modelling. These processes within a macroscopic porous medium can be modelled at the pore-scale by incorporating the fundamental physics of capillary dominated displacement within idealised pore network models. Recently, the authors have developed thermodynamic criteria for oil layer existence in pores with non-uniform wettability which takes as input geometrically and topologically representative networks, to calculate realistic Sor values for mixed-wet and oil-wet sandstones [16, 21]. This previous work is developed in this paper to include (i) the visualisation of the 3D structure of this residual oil, and (ii) a statistical analysis of this “residual/remaining” oil. Both the visualisation and the statistical analysis are done under a wide range of wettability conditions, which is reported for the first time in this paper.The structure of residual oil for strongly water wet systems is well known (where residual = remaining oil) and our model agrees with this but this structure changes radically for mixed wet systems (where residual  remaining) and this has not yet been visualised experimentally. We find that for more water-wet systems high final residual oil saturations are reached at relatively small amounts of water injected and this oil is present in the pores as bulk oil. On the other hand, for more oil-wet systems we find a slow decrease of the amount of remaining oil with increasing amounts of injected water. During the process, the remaining connectivity of the oil phase is increasingly provided by oil layers only, hence the slow drainage. The final residual oil saturation, only reached in the theoretical limit of an infinite amount of injected water, is almost entirely contained in large number of (relatively low volume) oil layers, which are present in pores of most radius sizes.  相似文献   

17.
A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier–Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental uncertainty in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods. © 2012 Elsevier Science. All rights reserved.  相似文献   

18.
《Advances in water resources》2007,30(6-7):1421-1431
Recent studies indicate that during in situ bioremediation of contaminated groundwater, degradation occurs primarily along transverse mixing zones. Classical reactive-transport models overpredict the amount of degradation because solute spreading and mixing are not distinguished. Efforts to correct this have focused on modifying both dispersion and reaction terms, but no consensus on the best approach has emerged. In this work, a pore-scale model was used to simulate degradation along a transverse mixing zone between two required nutrients, and a continuum model with fitted parameters was used to match degradation rates from the pore-scale model. The pore-scale model solves for the flow field, concentration field, and biomass development within pore spaces of porous medium. For the continuum model, the flow field and biomass distributions are assumed to be homogeneous, and the fitting parameters are the transverse dispersion coefficient (DT) and maximum substrate utilization rate (kS,c). Results from the pore-scale model show that degradation rates near the system inlet are limited by the reaction rate, while degradation rates downgradient are limited by transverse mixing. For the continuum model, the value of DT may be adjusted so that the degradation rate with distance matches that from the pore-scale model in the mixing-limited region. However, adjusting the value of kS only improves the fit to pore-scale results within the reaction-limited region. Comparison with field and laboratory experiments suggests that the length of the reaction rate-limited region is small compared to the length scale over which degradation occurs. This indicates that along transverse mixing zones in the field, values of kS are unimportant and only the value of DT must be accurately fit.  相似文献   

19.
When nonwetting fluid displaces wetting fluid in a porous rock many rapid pore-scale displacement events occur. These events are often referred to as Haines jumps and any drainage process in porous media is an ensemble of such events. However, the relevance of Haines jumps for larger scale models is often questioned. A common counter argument is that the high fluid velocities caused by a Haines jump would average-out when a bulk representative volume is considered. In this work, we examine this counter argument in detail and investigate the transient dynamics that occur during a Haines jump. In order to obtain fluid–fluid displacement data in a porous geometry, we use a micromodel system equipped with a high speed camera and couple the results to a pore-scale modeling tool called the Direct HydroDynamic (DHD) simulator. We measure the duration of a Haines jump and the distance over which fluid velocities are influenced because this sets characteristic time and length scales for fluid–fluid displacement. The simulation results are validated against experimental data and then used to explore the influence of interfacial tension and nonwetting phase viscosity on the speed of a Haines jump. We find that the speed decreases with increasing nonwetting phase viscosity or decreasing interfacial tension; however, for the same capillary number the reduction in speed can differ by an order of magnitude or more depending on whether viscosity is increased or interfacial tension is reduced. Therefore, the results suggest that capillary number alone cannot explain pore-scale displacement. One reason for this is that the interfacial and viscous forces associated with fluid–fluid displacement act over different length scales, which are not accounted for in the pore-scale definition of capillary number. We also find by analyzing different pore morphologies that the characteristic time scale of a Haines jump is dependent on the spatial configuration of fluid prior to an event. Simulation results are then used to measure the velocity field surrounding a Haines jump and thus, measure the zone of influence, which extends over a distance greater than a single pore. Overall, we find that the time and length scales of a Haines jump are inversely proportional, which is important to consider when calculating the spatial and temporal averages of pore-scale parameters during fluid–fluid displacement.  相似文献   

20.
Air injection into porous media is investigated by laboratory experiments and numerical modelling. Typical applications of air injection into a granular bed are aerated bio-filters and air sparging of aquifers. The first stage of the dynamic process consists of air injection into a fixed or a quasi-fixed water-saturated granular bed. Later stages could include stages of movable beds as well, but are not further investigated here. A series of laboratory experiments were conducted in a two-dimensional box of the size 60 cm × 38 cm × 0.55 cm consisting of glass walls and using glass beads of diameter 0.4–0.6 mm as granular material. The development of the air flow pattern was optically observed and registered using a digital video camera. The resulting transient air flow pattern can be characterized as channelled flow in a fixed porous medium with dynamic tree-like evolution behaviour. Attempts are undertaken to model the air injection process. Multiphase pore-scale modelling is currently disregarded since it is restricted to very small scales. Invasion percolation models taking into account gravity effects are usually restricted to slow processes. On the other hand a continuum-type two-phase flow modelling approach is not able to simulate the observed air flow pattern. Instead a stochastic continuum-type approach is discussed here, which incorporates pore-scale features on a subscale, relevant for the immiscible processes involved. Consequently, the physical process can be modelled in a stochastic manner only, where the single experiment represents one of many possible realizations. However, the present procedure retains realistic water and air saturation patterns and therefore produces similar finger lengths and widths as observed in the experiments. Monte Carlo type modelling leads to ensemble mean water saturation and the related variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号