首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined in situ cosmogenic 10Be ages for nine boulders sampled on the Salpausselkä I (Ss I) Moraine. Previous dating of this moraine indicated that it formed during the Younger Dryas Stadial along the southern margin of the Scandinavian Ice Sheet in southern Finland. Our new exposure ages range from 10.9±1.0 to 13.5±1.2 10Be ka, with an error-weighted mean age of 12.4±0.7 10Be ka. Our results confirm four previous 10Be ages obtained 40 km northeast of our sample location. The combined data (n=13) indicate that retreat from the Ss I Moraine occurred at 12.5±0.7 10Be ka, in excellent agreement with an age of 12.1 ka for retreat from the Ss I Moraine based on varve chronologies. These results identify the Ss I Moraine as among the best-dated margins associated with Late Quaternary ice sheets.  相似文献   

2.
A clay varve chronology has been established for the Late Weichselian ice recession east of Mt. Billingen in Västergötland, Sweden. In this area the Middle-Swedish end moraine zone was built up as a consequence of cold climate during the Younger Dryas stadial. A change-over from rapid to slow retreat as a result of climatic deterioration at the Alleröd/Younger Dryas transition cannot be traced with certainty in the varve sequences, but it seems to have taken place just before 11,600 varve years BP. The following deglaciation was very slow for about 700 years — within the Middle-Swedish end moraine zone the annual ice-front retreat was only c . 10 m on average. A considerable time-lag is to be expected between the Younger Dryas climatic event and this period of slow retreat. The 700 years of slow retreat were succeeded by 200 years of more rapid recession, about 50–75 m annually, and then by a mainly rapid and uncomplicated retreat of the ice-front by 100–200 m/year or more, characterizing the next 1500 years of deglaciation in south and central Sweden. The change from about 50–75 m to 100–200 m of annual ice-front retreat may reflect the Younger Dryas/Preboreal transition. Clay-stratigraph-ically defined, the transition is dated at c . 10,740 varve years BP, with an error of +100 to -250 years. In the countings of ice layers in Greenland ice cores (GRIP and GISP-2) the end of the Younger Dryas climatic event is 800–900 years older. However, a climatic amelioration after the cold part of the Younger Dryas and in early Preboreal should rapidly be reflected by for example chemical components and dust in Greenland ice cores, and by increasing δ13C content in tree rings. On the other hand, the start of a rapid retreat of the inland ice margin can be delayed by several centuries. This can explain at least a part of the discrepancy between the time-scales.  相似文献   

3.
Younger Dryas事件与北黄海泥炭层的形成   总被引:1,自引:0,他引:1       下载免费PDF全文
形成于海平面变化处于停滞阶段和湿润气候条件下的泥炭层是古环境变化信息的重要载体。对北黄海4个含泥炭层的沉积剖面进行研究后发现,其均集中在渤海海峡入口处,水深变化在50~54m。泥炭层的AMS14C年龄在10650~1010014 CaBP,与发生在11000~1000014 CaBP间的末次冰消气候回冷事件——Younger Dryas(YD)事件在年代上非常吻合,表明北黄海泥炭层的形成可能与YD事件的全球效应密切相关,可作为YD事件在北黄海陆架响应的一个重要证据。泥炭层在北黄海的集中出现说明,冰后期的海平面上升过程中在YD事件期间存在停滞阶段,这一时期海面已经达到渤海海峡外侧,并可能在此徘徊了近千年。此外,泥炭层的大量出现和孢粉记录表明YD事件发生期间约为10600~1020014 CaBP,此时北黄海可能处在寒冷而湿润的环境。这一发现与全球范围内大部分YD事件的海陆记录存在明显差异,说明不同地区对YD事件的响应存在差异,不能简单地利用单一的干冷模式来分析YD事件在区域上的响应特征和过程。  相似文献   

4.
Marine transgression in Younger Dryas in Norway   总被引:1,自引:0,他引:1  
BOREAS Anundsen, K. 1978 03 01: Marine transgression in Younger Dryas in Norway. Boreas, Vol. 7, pp. 49–60. Oslo. ISSN 0300–9483.
The lithostratigraphy and biostratigraphy of sediment cores from two basins in southwestern Norway have been studied and radiocarbon dated. The diatom and the Hystrix content indicates a marine Younger Dryas transgression that reached its maximum level at the transition Younger Dryas/Preboreal Chronozone. No Allerød transgression to the same altitude can be demonstrated, and the suggested Allerød transgression at Bømlo (Faegri 1944) is most likely of Younger Dryas age, too.  相似文献   

5.
We use cosmogenic 10Be surface exposure age techniques at a locality close to Rannoch Moor, western Scottish Highlands, in order to establish the age and chronology of its most recent glaciation. Glacial erratics and an in situ bedrock quartz vein sampled from this site—the summit of Beinn Inverveigh—have yielded zero‐erosion exposure ages of 12.9 ± 1.5 ka to 11.6 ± 1.0 ka, implying complete ice cover of the mountain during the Younger Dryas, or Loch Lomond Stadial. These results fit closely with published 14C dates that bracket the maximum (lateral) extent of ice cap outlet glaciers, and are the first internally consistent ages to specifically address this period of glaciation in Scotland. Furthermore, the dates imply that previous palaeoglaciological reconstructions for this area may have underestimated both the thickness of the former ice cap and, by implication, its volume. © British Geological Survey/Natural Environment Research Council copyright 2007. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

6.
Younger Dryas in southern South America?   总被引:3,自引:0,他引:3  
Two high resolution pollen records, Caunahue from mid-latitudes and Harberton from high latitudes, illustrate the issues in defining the Younger Dryas episode in records from southern South America. At mid-latitudes in the Chilean lake region, previous claims for the existence of a substantially cooler and wetter episode between 11,000 and 10,000 BP can no longer be supported by new pollen records with high temporal and paleoenvironmental resolution, such as Caunahue. The transition from glacial to interglacial conditions occurred in several steps, one shortly after 13,000 BP, when open Nothofagus woodland was replaced by cool-temperate North Patagonian forest, and one at 9,500 BP, when warmtemperate Validivian forest elements replaced the North Patagonian elements. At high latitudes, on the other hand, high resolution records do show marked short-term changes during the late-glacial, inclding the 11,000 to 10,000 BP Interval. However, neither the exact timing nor the duration of these changes is synchronous for specific taxa, neither within one record nor between different records. One of the two intervals of low pollen influx that has been singled out as evidence for a cooler episode is consistently dated between 11,000 and 12,000 BP, while the other interval dates between 10,800 and 9,000 BP. Based on all this information I believe that there is no evidence of Younger Dryas episode for the midlatitudes. For the high latitudes, on the other hand, the overall high paleoenvironmental variability in the records offers multiple choices for a Younger Dryas-type interval if specific taxa are selected without considering the overall context. However, the lack of synchroneity between short-term changes of specific taxa between different records suggests primarily a response to local disturbances, rather than a response to a global forcing.  相似文献   

7.
The Getsjö area of Kolmärden is located within the Swedish terminal moraines. The pollen diagrams reflect a Younger Dryas flora. Some radiocarbon dates have been obtained from the oldest sediment with some organic matter. Diatom profiles show the Baltic Ice Lake diatom flora.  相似文献   

8.
A composite stratigraphical sequence, the Fnjóskadalur Sequence, reveals ten cycles of glacier advances and formation of ice-dammed lakes in Fnjóskadalur in central North Iceland. Chemical analyses of the Skógar Tephra, with its type locality in this valley, have enabled a correlation with Ash zone I in deep sea sediments of the North Atlantic and with the Vedde Ash Bed on land in western Norway, where it is dated to 10,600 BP. The Skógar Tephra is composed of two layers, a basaltic tephra (STP-1) and a rhyolitic tephra (STP-2) erupted almost simultaneously from two different Icelandic volcanoes. The STP-1 tephra originates from the Katla volcano in South Iceland, and the öræfajökull volcano in Southeast Iceland is considered a plausible source of the STP-2 tephra. This new dating of the Skógar Tephra puts the three youngest glacier advances of the Fnjóskadalur Sequence within a 1000 year period between 10,600 and 9650 BP. The redated Late Weichselian glacial history now extracted from the Fnjóskadalur Sequence shows that glaciers in North Iceland were more extended in Younger Dryas and Preboreal times than previously assumed. This fits with the revised deglaciation pattern which has evolved in recent years.  相似文献   

9.
An exhaustive 14C dating programme of molluscs from the Fossvogur sediments in Reykjavik. Iceland is presented. For the first time all the fossiliferous units of the sediments are dated. The results confirm earlier conclusions of a widespread occurrence of marine sediments of Allerød age in Reykjavik. The set of dates from the Fossvogur sediments shows a narrow 14C age distribution (standard deviation of ±235 years) of molluscs from all localities and from successive marine units in vertical sections. The weighted mean conventional 14C age is 11,400 BP. Assuming a reservoir effect of 400 years. this corresponds to a reservoir-corrected age of I1,000 BP. i.e. the Allerød- Younger Dryas transition for the sampled units, These new 14C dates from Fossvogur confirm the need for a revision of the Upper Pleistocene chronology of the Reykjavik region. They also have a bearing on the Late Weichselian record of glacier readvances and sea-level changes in the area. The dates suggest that the marine units in Fossvogur accumulated within a restricted time-span of a few hundred years. The sediments in Fossvogur are of volcaniclastic origin and are extremely lithified, indicating local geothermal activity soon after their deposition. This may explain anomalously high D/L amino acid ratios measured in molluscs from the Fossvogur sediments. δ13C and δ18O results suggest that temperatures may have ranged up to 60°C.  相似文献   

10.
Considerable uncertainty surrounds the timing of glacier advance and retreat during the Younger Dryas or Loch Lomond Stade (LLS) in the Scottish Highlands. Some studies favour ice advance until near the end of the stade (c. 11.7 ka), whereas others support the culmination of glacier advance in mid‐stade (c. 12.6–12.4 ka). Most published 10 Be exposure ages reported for boulders on moraines or deglacial sites post‐date the end of the LLS, and thus appear to favour the former view, but recalibration of 33 10 Be ages using a locally derived 10 Be production rate and assuming rock surface erosion rates of zero to 1 mm ka?1 produces exposure ages 130–980 years older than those originally reported. The recalibrated ages are filtered to exclude anomalous data, and then employed to generate aggregate probability density distributions for the timing of moraine deposition and deglaciation. The results suggest that the most probable age for the timing of the deposition of the sampled outermost moraines lies in the interval 12.4–12.1 ka or earlier. Deglacial ages obtained for sites inside Loch Lomond Stadial glacier limits imply that glaciers at some or all of the sampled sites were retreating prior to 12.1 ka. Use of aggregated data does not exclude the possibility of asynchronous glacier behaviour at different sites, but confirms that some glaciers reached their maximum limits and began to retreat several centuries before the rapid warming that terminated the LLS at 11.7–11.6 ka, consistent with the retrodictions of recent numerical modelling experiments and with geomorphological evidence for gradual oscillatory ice‐margin retreat under stadial conditions.  相似文献   

11.
We propose that prior to the Younger Dryas period, the Arctic Ocean supported extremely thick multi-year fast ice overlain by superimposed ice and firn. We re-introduce the historical term paleocrystic ice to describe this. The ice was independent of continental (glacier) ice and formed a massive floating body trapped within the almost closed Arctic Basin, when sea-level was lower during the last glacial maximum. As sea-level rose and the Barents Sea Shelf became deglaciated, the volume of warm Atlantic water entering the Arctic Ocean increased, as did the corresponding egress, driving the paleocrystic ice towards Fram Strait. New evidence shows that Bering Strait was resubmerged around the same time, providing further dynamical forcing of the ice as the Transpolar Drift became established. Additional freshwater entered the Arctic Basin from Siberia and North America, from proglacial lakes and meltwater derived from the Laurentide Ice Sheet. Collectively, these forces drove large volumes of thick paleocrystic ice and relatively fresh water from the Arctic Ocean into the Greenland Sea, shutting down deepwater formation and creating conditions conducive for extensive sea-ice to form and persist as far south as 60°N. We propose that the forcing responsible for the Younger Dryas cold episode was thus the result of extremely thick sea-ice being driven from the Arctic Ocean, dampening or shutting off the thermohaline circulation, as sea-level rose and Atlantic and Pacific waters entered the Arctic Basin. This hypothesis focuses attention on the potential role of Arctic sea-ice in causing the Younger Dryas episode, but does not preclude other factors that may also have played a role.  相似文献   

12.
Cosmogenic 36Cl was measured in bedrock and moraine boulders in the Za Mnichem Valley (High Tatra Mountains). The post‐LGM deglaciation of the study area occurred about 15.9 ka ago. The northernmost part of the valley slopes was ice‐free around 15 ka ago. The terminal moraine on the valley threshold was finally stabilized 12.5 ka ago during the Younger Dryas cold event (Greenland Stadial 1). At that time, the Za Mnichem glacier was 1.3 km long and had an area of 0.57 km2. The AAR equilibrium line of the glacier was located at 1990 m a.s.l., which corresponds to an ELA depression of ~500 m compared to today. The mean summer temperature was colder by 4°–4.5°C than the present‐day temperature. The mean annual temperature was colder by 6°C than today. Such conditions suggest a decrease of the annual precipitation by ~15–25% compared with the present‐day annual average. These data indicate a probable uniform temperature change across central and western Europe, with the precipitation being the most significant factor affecting the mass balance of mountain glaciers. The spatial distribution of balance data suggests increasing continentality towards the east during the Younger Dryas.  相似文献   

13.
Pasanen, A., Lunkka, J. P. & Putkinen, N. 2009: Reconstruction of the White Sea Basin during the late Younger Dryas. Boreas, 10.1111/j.1502‐3885.2009.00128.x. ISSN 0300‐9483 The Weichselian Scandinavian Ice Sheet (SIS) in the White Sea Basin retreated from its maximum position to the Kalevala end moraine between 17 000 and 11 500 years ago. Even though the deglaciation history is relatively well known, the palaeoenvironments in front of the ice sheet are still poorly understood and partly controversial. In the present paper, we use geomorphological, sedimentological and ground‐penetrating radar survey methods to study glaciofluvial plains and shorelines at the Kalevala end moraine. These data are used to define the shoreline gradient for the area and to numerically reconstruct the palaeotopography and the area and volume of the water body in the White Sea Basin during the late Younger Dryas 11 500 years ago. The results indicate that at three sites glaciofluvial plains represent Gilbert deltas deposited to the same water level next to the ice margin. Using the shoreline gradient of 0.42 m/km, it is shown that the water body in the White Sea Basin was extensive and relatively deep, inundating large, currently onshore, areas on the western side of the White Sea and the Arkhangelsk area to the east. The ice margin terminated in the White Sea, which was connected to the Barents Sea via the Gorlo Strait and separated from the Baltic drainage basin to the south.  相似文献   

14.
李潮流  康世昌 《冰川冻土》2006,28(4):568-576
大约发生在12.9~11.6 ka BP的新仙女木事件(YD)在气候突变的研究中占有重要地位,然而对其触发时间、触发地点、触发机制以及YD事件是否是一个全球性的事件一直存在很大争议,并且该事件触发机制的研究对目前全球温度快速升高背景下未来气候变化的预测也有很大的意义.综述了近年来世界范围内YD事件恢复的最新研究,分析了该事件在全球不同区域发生时间和强度的异同,目前北半球对该事件的记录比较一致,南半球还有很大分歧.介绍了YD事件的可能触发机制,YD事件的触发除了北大西洋温盐环流终止之外,也可能受到诸如太阳辐射减少和赤道大洋的影响.最后讨论了有待加强的研究区域和未来的研究方向.  相似文献   

15.
16.
Annually resolved tree-ring width variations and radiocarbon ages were measured from a collection of 120 Lateglacial pine stumps excavated on the Swiss Plateau. These data – representing the oldest absolutely dated wood samples worldwide – extend the absolute tree-ring chronology from Central Europe by 183 years back to 12 593 cal. yr BP (10 644 cal. yr BC). They also yield a 1420-year floating chronology covering the entire Allerød and the early Younger Dryas (14 170–12 750 cal. yr BP). Radiocarbon data suggest a 250-year jump in the 14C reservoir correction around the time of the Allerød to Younger Dryas transition, although calendric dating of the floating chronology – by filling a ∼150 year gap – is necessary for confirmation. Various subgroups, based on the year of germination, were used to assess temporal changes in growth characteristics along the Allerød to Younger Dryas transition. Comparison of these Lateglacial data with a reference data set of living and historic pines from the Swiss Valais (AD 940–2000) revealed differences in both growth trend and level. The generally slower Lateglacial growth was likely influenced by higher geomorphic activity and severe climatic conditions. After removal of the biological age-trend, a strong common signal found in the tree-ring data suggests some skill in estimating interannual to multidecadal Lateglacial climatic variations.  相似文献   

17.
Radiocarbon dated lacustrine sequences in Perú show that the chronology of glaciation during the late glacial in the tropical Andes was significantly out-of-phase with the record of climate change in the North Atlantic region. Fluvial incision of glacial-lake deposits in the Cordillera Blanca, central Perú, has exposed a glacial outwash gravel; radiocarbon dates from peat stratigraphically bounding the gravel imply that a glacier advance culminated between 11,280 and 10,990 14C yr B.P.; rapid ice recession followed. Similarly, in southern Perú, ice readvanced between 11,500 and 10,900 14C yr B.P. as shown by a basal radiocarbon date of 10,870 14C yr B.P. from a lake within 1 km of the Quelccaya Ice Cap. By 10,900 14C yr B.P. the ice front had retreated to nearly within its modern limits. Thus, glaciers in central and southern Perú advanced and retreated in near lockstep with one another. The Younger Dryas in the Peruvian Andes was apparently marked by retreating ice fronts in spite of the cool conditions that are inferred from the ∂18O record of Sajama ice. This retreat was apparently driven by reduced precipitation, which is consistent with interpretations of other paleoclimatic indicators from the region and which may have been a nonlinear response to steadily decreasing summer insolation.  相似文献   

18.
A thick alluvial sequence in central New Mexico contains the Scholle wet meadow deposit that traces upstream to a paleospring. The wet meadow sediments contain an abundant fauna of twenty-one species of freshwater and terrestrial mollusks and ten species of ostracodes. The mollusks and ostracodes are indicative of a local high alluvial water table with spring-supported perennial flow but without standing water. Pollen analysis documents shrub grassland vegetation with sedges, willow, and alder in a riparian community. Stable carbon isotopes from the wet meadow sediments have δ13C values ranging from ? 22.8 to ? 23.3‰, indicating that 80% of the organic carbon in the sediment is derived from C3 species. The wet meadow deposit is AMS dated 10,400 to 9700 14C yr BP, corresponding to 12,300 to 11,100 cal yr BP and overlapping in time with the Younger Dryas event (YD). The wet meadow became active about 500 yr after the beginning of the YD and persisted 400 yr after the YD ended. The Scholle wet meadow is the only record of perennial flow and high water table conditions in the Abo Arroyo drainage basin during the past 13 ka.  相似文献   

19.
地貌产生于构造活动和各种地表营力驱动的侵蚀夷平和堆积过程,如在构造抬升活跃的地区,河流强烈的侵蚀作用往往造就深切的峡谷地貌。对于这样的地区河流下切速率往往被用来衡量构造抬升速率[1,2]。然而河流下切速率的变化不仅与构造抬升有关,而且与气候变化有关。因此,正确理解  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号