首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal variability of thermocline in the Yellow Sea   总被引:5,自引:0,他引:5  
Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and thermocline intensity have similar spatial patterns to the observations. The simulated maximum MLD are 8 m and 22 m, while the corresponding observed values are 13 m and 27 m in July and October, respectively. The simulated thermocline intensity are 1.2℃/m and 0.5℃/m in July and October, respectively, which are 0.6℃/m less than those of the observations. It may be the main reason why the simulated thermocline is weaker than the observations that the model vertical resolution is less precise than that of the CTD data which is 1 m. Contours of both simulated and observed thermocline intensity present a circle in general. The wave-induced mixing plays a key role in the formation of the upper mixed layer in spring and summer. Tidal mixing enhances the thermocline intensity. Buoyancy-driven m  相似文献   

2.
Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal waves is one of the mechanisms producing internal solitary waves (ISWs), which is different from the generation mechanism in the case where the semidiurnal tidal current flows over topographic drops. In this paper, the model of internal Kelvin wave with continuous stratification is given, and an elementary numerical study of nonlinear evolution of ITWs is made for the SYS, using the generalized KdV model (GKdV model for short) for a continuous stratified ocean, in which the different effects of background barotropic ebb and flood currents are considered. Moreover, the parameterization of vertical turbulent mixing caused by ITWs and ISWs in the SYS is studied, using a parameterization scheme which was applied to numerical experiments on the breaking of ISWs by Vlasenko and Hutter in 2002. It is found that the vertical turbulent mixing caused by internal waves is very strong within the upper layer with depth less than about 30m, and the vertical turbulent mixing caused by ISWs is stronger than that by ITWs.  相似文献   

3.
Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring, thrives in summer, and fades in autumn as thermocline declines. TF intensity |ST| is defined to describe the distribution of TF. Based on the MASNUM wave-tide-circulation coupled model, temperature distribution in the Yellow Sea was simulated with and without tidal effects. Along 36°N, distribution of TF from the simulated results are compared with the observations, and a quantitative analysis is introduced to evaluate the tidal effects on the forming and maintaining processes of the TF. Tidal mixing and the circulation structure adapting to it are the main causes of the TF.  相似文献   

4.
Tidal effects on temperature front in the Yellow Sea   总被引:5,自引:0,他引:5  
Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring, thrives in summer, and fades in autumn as thermocline declines. TF intensity ⋎S T ⋎ is defined to describe the distribution of TF. Based on the MASNUM wave-tide-circulation coupled model, temperature distribution in the Yellow Sea was simulated with and without tidal effects. Along 36°N, distribution of TF from the simulated results are compared with the observations, and a quantitative analysis is introduced to evaluate the tidal effects on the forming and maintaining processes of the TF. Tidal mixing and the circulation structure adapting to it are the main causes of the TF. Supported by the National Basic Research Program of China (No. G1999043809) and the National Science Foundation of China (No. 49736190).  相似文献   

5.
In this paper, the distribution patterns and abundance of pelagic tunicates in the North Yellow Sea of China during the period 2006-2007 were analyzed. Zooplankton samples were obtained with vertical towing from bottom to surface using a WP2 plankton net(200 μm mesh size; mouth area: 0.25 m2). Five species belonging to two classes were identified: Oikopleura dioica, O. longicauda and Fritillaria borealis belonging to class Appendicularia; Salpa fusiformis and Doliolum denticulatum of class Thaliacea. O. dioica and O. longicauda were the dominant species, occurring in the samples of all four seasons, with different distribution patterns. Their maximum abundance were 1664.7 ind. m-3(spring) and 1031.7 ind. m-3(spring) respectively. Following Oikopleura spp. were D. denticulatum, which was found only in autumn with an average abundance of 149.6 ind. m-3, and S. fusiformis, which was detected all the year long except for autumn with low abundance(max. abundance 289.4 ind. m-3 in summer). Only a very small amount of F. borealis was detected in summer samples, with an average abundance of 2.7 ind. m-3. The relationship between tunicates abundances and the environmental factors was analyzed using the stepwise regression model for each species. The variation of appendicularian abundance showed a significant correlation with the surface water temperature and with the concentration of Chl-a. No relationship was found between tunicates abundance and salinity, likely due to the slight changes in surface salinity of the studied area during the four seasons. Salps abundance and that of doliolids were significantly correlated to bottom water temperature, indicating that these two species(S. fusiformis and D. denticulatum) migrate vertically in the water column. In particular D. denticulatum, known to be a warm water species, showed not only an important correlation with water temperature, but also a spatial distribution connected to the warm currents in the North Yellow Sea. The occurrence of D. denticulatum represents an interesting result never found in past research work. Water temperature, algal distribution and currents were the most relevant environmental factors influencing the tunicate abundance and distribution in the North Yellow Sea. Further research is needed in order to get more information on the ecology of these organisms and to better understand their role in the ecosystem including the oceanic food web.  相似文献   

6.
7.
Spatial distribution of some large tintinnid species (nominally > 76 μm) is investigated on samples vertically towed in the southern Yellow Sea in winters of 2001 to 2004. Nine tintinnid species are recorded: Codonellopsis morchella, Stenosemella pacifica, S. steini, Tintinnopsis schotti, T. radix, T. karajacensis, Eutintinnus tenuis, Parafavella sp., Leprotintinnus neriticus, of which C. morchella and T. radix dominated in the warm tongue-shaped zone of the Yellow Sea Warm Current (YSWC), and S. pacifica i...  相似文献   

8.
Study of the distribution and migration of the common squid,Todarodes pacificus Steenstrup,basedon the index of important fishing ground(P) and fisheries statistics on the Yellow Sea and northern EastChina Sea during 1980—1991 showed that:1.Its catch in the fishing period(June to November) is 91.77% of the annual yield.The fishingground distributes over the northem and middle Yel1ow Sea and adjacent area of the Changjiang Estuary.2. It over-winters in the northem East China Sea and waters adjacent to Goto Island from De-cember to February and spawns in waters near Haijiao Is1and and west of Kyushu. The main stock mi-grates along 123°30′E to the ChangJiang Estuary, Haizhou Bay. offsea from Shidao to Qingdao,mideastern Yellow Sea, and offsea Weihai and Haiyang Island succesively for feeding after April. The sur-plus stock migrates again to the wintering ground in December.3.The favorable feeding temperature is 6-23℃(optimum of l3-20℃ in the Changjiang Estua-ry and 7-13℃ in the northern and middle Yel  相似文献   

9.
Synechococcus is a widely distributed photosynthetic pico-phytoplankton,which contributes mainly to carbon fixation and maintains the stability of the marine ecosystem.To investigate its distribution patterns in the Yellow Sea,seawater samples were collected during September 2018.Results of flow cytometry analysis showed that the Synechococcus abundance ranged from 6.36×102 to 4.51×104 cells mL?1,which correlated with salinity(P<0.01)and temperature(P<0.05).At deeper off-shore sites,Synecho-coccus showed high abundance at the subsurface thermo-halocline,which was in accordance with chlorophyll a(Chl a)content along the vertical column.Based on the high-throughput sequencing data of rpoC1(partial gene encoding RNA polymerase),two Synechococcus subclusters,S5.1 and S5.2,were found to coexist in the studied area.Several clades of S5.1,including Clades I,II,and III,were the dominant components,accounting for 6.63%,26.11%,and 45.5%of the total genus,respectively.Redundancy analysis(RDA)showed that nitrite was the main environmental factor that explained the genus composition among samples.Fur-thermore,co-occurrence network revealed that the main phyla that coexisted with Synechococcus were Proteobacteria,Bacteroidetes,Actinobacteria,Planctomycetes,and Verrucomicrobia,which were involved in the carbon(C),nitrogen(N),sulfur(S),and manga-nese(Mn)cycles.Overall,Synechococcus exhibited biogeographic distribution correlated with temperature-salinity and nitrite in the Yellow Sea,and their geochemical function showed diverse but should be further verified in the future.  相似文献   

10.
Petroleum geological framework and hydrocarbon potential in the Yellow Sea   总被引:2,自引:0,他引:2  
Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The NYSB is connected to Anju Basin to the east. The SYSSB extends to Subei Basin to the west. The acoustic basement of basins in the North Yellow Sea and South Yellow Sea is disparate, having different stratigraphic evolution and oil accumulation features, even though they have been under the same stress regime since the Late Triassic. The acoustic basement of the NYSB features China-Korea Platform crystalline rocks, whereas those in the SYSNB and SYSSB are of the Paleozoic Yangtze Platform sedimentary layers or metamorphic rocks. Since the Late Mesozoic terrestrial strata in the eastern of the NYSB (West Korea Bay Basin) were discovered having industrial hydrocarbon accumulation, the oil potential in the Mesozoic strata in the west depression of the basin could be promising, although the petroleum exploration in the South Yellow Sea has made no break-through yet. New deep reflection data and several drilling wells have indicated the source rock of the Mesozoic in the basins of South Yellow Sea, and the Paleozoic platform marine facies in the SYSSB and Central Rise could be the other hosts of oil or natural gas. The Mesozoic hydrocarbon could be found in the Mesozoic of the foredeep basin in the SYSNB that bears potential hydrocarbon in thick Cretaceous strata, and so does the SYSSB where the same petroleum system exists to that of oil-bearing Subei Basin.  相似文献   

11.
A complete set of one-month Acoustic Doppler Profiler (ADP) current data at a station in the southern Yellow Sea (SYS) is analyzed using the rotary spectrum method. The results revealed different rotary properties between barotropic and baroclinic tidal currents. The barotropic and baroclinic tidal currents rotate elliptically counter-clockwise and clockwise, respectively. Meanwhile, baroclinic bottom tidal currents are almost along-isobath. The baroclinic cross-isobath velocities attenuate quickly at the bottom, implying important effects of bottom topography on the cross-isobath motions.  相似文献   

12.
Community structure changes of macrobenthos in the South Yellow Sea   总被引:3,自引:0,他引:3  
The ecological environment in the Yellow Sea has changed greatly from the 1950s to 1990s and this has had significant impact on marine organisms. In this study, data on soft-sediment macrobenthos occurring in depths from 25 m to 81 m in the South Yellow Sea were used to compare changes in community structure. The agglomerative classification (CLUSTER) and multidimensional scaling (MDS) methods were applied. Five communities were recognized by cluster analysis: 1. The Yellow Sea Cold Water Mass community dominated by cold water species, which changed slightly in species composition since the 1950s; 2. The mixed community with the coexistence of cold water species and warm water species, as had been reported previously; 3. The polychaete-dominated eurythermal community in which the composition changed considerably as some dominant species disappeared or decreased; 4. The Changjiang (Yangtze) River Estuarine community, with some typical estuarine species; 5. The community affected by the Yellow Sea Warm Current. The greatest change occurred in the coastal area, which indicated that the change may be caused by human activities. Macrobenthos in the central region remained almost unchanged, particularly the cold water species shielded by the Yellow Sea Cold Water Mass. The depth, temperature and median grain size of sediments were important factors affecting the distributions of macrobenthos in the South Yellow Sea.  相似文献   

13.
The distribution of sediment chloroplastic pigments (Chl-a, i.e. chlorophyll a and Pha-a, i.e. phaeophorbide a) in the Southern Yellow Sea of China was studied. Samples were collected from four cruises in January and June 2003, and January and June 2004. The results show that the vertical distribution of Chl-a and Pha-a in the sediment layers 0-2cm, 2-5cm and 5-8cm, follows a stable ratio, 5:3:2. The average ratio of Pha-a to Chl-a in sediment is 2.83. Spearman 2-tailed rank correlation analysis shows that Chl-a and Pha-a contents in each sediment layer have a highly significant correlation. The average contents of Chl-a and Pha-a in the sediment of the 0-8cm layer in the investigated area are 0.31 -0.47μgg-1 and 1.28-1.40 μgg-1 sediment (dry weight), respectively. The average Chl-a and Pha-a contents in sediment are higher in summer than in winter. ANOVA analysis shows that there is a highly significant variation among the Chl-a contents (P = 0.002 <0.01) of the four cruies, but this is not true for the case of Pha-a content (P = 0.766>0.05). The average Chl-a and Pha-a contents in the 2 sediment layers (0-2cm and 2-5cm) have significant or highly significant correlations with organic matter (OM), median diameter (Mdφ), silt plus clay percentage in the January 2003 cruise. In the June 2003 cruise, the average Chl-a content in the 3 sediment layers (0-2cm, 2-5cm, and 5-8cm) has a significant correlation with meiofauna biomass, and Pha-a content has highly significant correlations with water depth, bottom water temperature, OM and Mdφ The contents of Chl-a and Pha-a are lower than those in estuaries and intertidal areas, but close to those in the same area studied previously.  相似文献   

14.
We tested and modified the quasi-analytical algorithm (QAA) using 57 groups of field data collected in the spring of 2003 in the Yellow Sea and East China Sea. The QAA performs well in deriving total absorption coefficients of typical coastal waters. The average percentage difference (APD) is in a range of 13.9%–38.5% for the total absorption coefficient (13.9% at 440 nm), and differences in particle backscattering coefficient bbp(λ) are less than 50% (in the case of the updated QAA). To obtain improved res...  相似文献   

15.
Based on survey data from April to May 2009, distribution and its influential factors of dissolved inorganic nitrogen (DIN) over the continental slopes of the Yellow Sea (YS) and East China Sea (ECS) are discussed. Influenced by the Changjiang (Yangtze) River water, alongshore currents, and the Kuroshio current off the coast, DIN concentrations were higher in the Changjiang River estuary, but lower (<1 μmol/L) in the northern and eastern YS and outer continental shelf area of the ECS. In the YS, the thermocline formed in spring, and a cold-water mass with higher DIN concentration (about 11 μmol/L) formed in benthonic water around 123.2°E. In Changjiang estuary (around 123°E, 32°N), DIN concentration was higher in the 10 m layer; however, the bottom DIN concentration was lower, possibly influenced by mixing of the Taiwan Warm Current and offshore currents.  相似文献   

16.
An N-shape thermal front in the western South Yellow Sea (YS) in winter was detected using Advanced Very High Resolution Radiation (AVHRR) Sea Surface Temperature data and in-situ observations with a merged front-detecting method. The front, which exists from late October through early March, consists of western and eastern wings extending roughly along the northeast-southwest isobaths with a southeastward middle segment across the 20–50 m isobaths. There are north and south inflexions connecting the middle segment with the western and eastern wings, respectively. The middle segment gradually moves southwestward from November through February with its length increasing from 62 km to 107 km and the southern inflexion moving from 36.2°N to 35.3°N. A cold tongue is found to coexist with the N-shape front, and is carried by the coastal jet penetrating southward from the tip of the Shandong Peninsula into the western South YS as revealed by a numerical simulation. After departing from the coast, the jet flows as an anti-cyclonic recirculation below 10 m depth, trapping warmer water originally carried by the compensating Yellow Sea Warm Current (YSWC). A northwestward flowing branch of the YSWC is also found on the lowest level south of the front. The N-shape front initially forms between the cold tongue and warm water involved in the subsurface anti-cyclonical recirculation and extends upwards to the surface through vertical advection and mixing. Correlation analyses reveal that northerly and easterly winds tend to be favorable to the formation and extension of the N-shape front probably through strengthening of the coastal jet and shifting the YSWC pathway eastward, respectively.  相似文献   

17.
To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDPI02, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modem Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modem warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BE and synchronously the modem TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7-6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BP. Thus,the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC,indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BE caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BP. The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr BP.  相似文献   

18.
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolutions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and controlling tests led to the following conclusions, In winter, the direction of the Yellow Sea Coastal Current in the surface layer was controlled partly by tide instead of wind, In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.  相似文献   

19.
Seven surveys were carried out in April, September, October, December 2006 and March, May, August 2007 in the Yellow Sea, China. Variations in the spatial and temporal distribution of Synechococcus, picoeukaryotes and heterotrophic bacteria are quantified using flow cytometry. Synechococcus and heterotrophic bacteria are most abundant from late spring to autumn, while picoeukaryotes concentration is high in spring. Synechococcus and heterotrophic bacteria concentrated high in the northwest part of the Yellow Sea in spring and autumn, while picoeukaryotes distributed evenly over the whole study area except for a small frontal zone in the coastal area on the west (in spring) and central Yellow Sea (in autumn). Under mixing conditions, the vertical distribution of the three picoplankton groups showed a well-mixed pattern. Upon a well-established stratification, the maximum abundance of picoplankton occurred above the mixed layer depth (~30 m). Cell sizes of Synechococcus and picoeukaryotes were estimated by converting forward scatter signals (FSC) from cytometry analysis to cell diameter, showing the results of 0.65–0.82 μm for Synechococcus and 0.85–1.08 μm for picoeukaryotes. The average integrated carbon biomasses ranged 15.26–312.62 mgC/m2 for Synechococcus, 18.54–61.57 mgC/m2 for picoeukaryotes, and 402.63–818.46 mgC/m2 for heterotrophic bacteria. The distribution of Synechococcus and heterotrophic bacteria was temperature dependent, and picoplankton presence was poor in the Yellow Sea Cold Water Mass.  相似文献   

20.
NUMERICAL STUDY ON THE TIDAL FRONT IN THE WESTERN YELLOW SEA   总被引:1,自引:0,他引:1  
The formation and evolution of the tidal front in the western Yellow Sea are studied by means of a two-dimensional model in which wind and tide mixing, sun radiation and wind stress, and realistic topography are incorporated. In this numerical study, the schemes employed are stable for time step t= 900 s, so the model can be run for 4 months to simulate the front evolution. The authors examined the effects of mixing and atmospheric forcing on the tidal front under conditions of : mixing and solar heating without wind stress on the sea surface; mixing, solar heating and 50 hours of wind stress; mixing, solar heating and long time periodical wind stress, Results show that (1) the tidal front forms at the beginning of May, and strengthens with the increasing of heat input, (2) the temperature structure in the shallow well-mixed water is dominated by mixing, while in the front and deeper stratified regions, it is controlled by the joint effects of (mainly) mixing and advection, 0) the currents and front all  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号