首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controls on the formation of coastal ventifacts   总被引:3,自引:0,他引:3  
Jasper Knight 《Geomorphology》2005,64(3-4):243-253
Ventifacted boulders are present within the intertidal zone of a mixed sand and boulder beach in Gweebarra Bay, northwest Ireland. The boulders show features typical of wind abrasion by sand including polished surfaces, pits and grooves. Orientation of ventifact keels was measured and direction of prevailing winds responsible for ventifaction was inferred from a sample of 50 boulders in each of two adjoining locations on the beach (30 m apart). The keel orientations and inferred wind direction are both strongly clustered but results from each location differ by 90° from one another, and neither corresponds closely to the present-day regional wind regime. Since wind flow patterns were not significantly different during the Little Ice Age, when the ventifacts were likely formed, the orientation of ventifact keels cannot be used uncritically, as in many studies, as a proxy record of prevailing wind direction. It is likely that ventifact development in Gweebarra Bay was controlled by sediment availability rather than by wind direction.  相似文献   

2.
Terrestrial ventifacts – rocks that have been abraded by windblown particles – are found in desert, periglacial, and coastal environments. On Mars, their abundance suggests that aeolian abrasion is one of the most significant erosional processes on the planet. There are several conflicting viewpoints concerning the efficacy of potential abrasive agents, principally sand and dust, and the relationships between wind direction and ventifact form. Our research, supported by a review of the literature, shows that sand, rather than dust or other materials, is the principle abrasive agent on Earth and Mars. Relative to dust, sand delivers about 1000× the energy onto rock surfaces on a per particle basis. Even multiple dust collisions will do little or no damage because the stress field from the impact is much smaller than the spacing of microflaws in the rock. The abrasion profiles of terrestrial ventifacts are consistent with a kinetic energy flux due to saltating sand, not airborne dust. Furthermore, Scanning Electron Microscope images reveal surfaces that are fractured and cleaved by sand grain impact. With respect to their distribution, ventifacts are found in regions that contain sand or did so in the past, but are not found where only dust activity occurs. Contrary to some published reports, our evidence from field studies, analytical models, and wind tunnel and other experiments indicates that windward, not leeward, abrasion is responsible for facet development and feature formation (pits, flutes, and grooves). Leeward abrasion is confined to fluvial conditions, in which the high viscosity and density of water are able to entrain sand-size material in vortices. Therefore, ventifacts and abraded terrain provide an unambiguous proxy for the direction of the highest velocity winds, and can be used to reconstruct palaeowind flow.  相似文献   

3.
近年来,一些学者提出在末次盛冰期低海面时期中国大陆架以风力作用为主,并发展为干旱沙漠化环境的理论,其主要证据之一就是在南黄海海底发现了"风成砾石"。但南黄海海底砾石的扁平和长条形态,以及无定向线形风蚀沟槽分布的表面结构特征不具备风棱石的特点;海底砾石分布区与其北部"沙漠化区"以及海底黄土沉积区的位置关系和偏北风吹扬下沉积物粒度的区域分异规律不符。因此,南黄海海底砾石不宜定为"风成砾石"。另外,风棱石也不宜作为干旱沙漠环境的诊断标志。  相似文献   

4.
Soil profiles, colluvial stratigraphy, and detailed hillslope morphology are key elements used for geomorphic interpretations of the form and long-term evolution of triangular facets on a 1200 m high, tectonically active mountain front. The facets are developed on Precambrian gneisses and Tertiary volcanic and plutonic rocks along a complexly segmented, active normal-fault zone in the Rio Grande rift of northern New Mexico. The detailed morphologies of 20− to 350 m high facets are defined by statistical and time-series analyses of 40 field transects that were keyed to observations of colluvium, bedrock, microtopography, and vegetation. The undissected parts of most facets are transport-limited hillslopes mantled with varying thicknesses (0.1 to > 1 m thick) of sand and gravel colluvium between generally sparse (≤10–30%) bedrock outcrops. Facet soils range from (a) thin (≤ 0.2 m) weakly developed soils with cumulic silty A or transitional A/B epipedons above Cox horizons in bedrock or colluvium, to (b) deep (≥0.5–1 m) moderately to strongly developed profiles containing thick cambic (Bw) and/or argillic (Bt) horizons that commonly extend into highly weathered saprolitic bedrock. The presence of strongly weathered profiles and thick colluvium suggests that rates of colluvial transport and hillslope erosion are less than or equal to rates of soil development over at least a large part of the Holocene.The catenary variation of soils and colluvium on selected facet transects indicate that the degree of soil development generally increases and the thickness of colluvium decreases upslope on most facets. This overall pattern is commonly disrupted on large facet hillslopes by irregular secondary soil variations linked to intermediate-scale (20–60 + m long) concave slope elements. These features are interpreted to reflect discontinuous transport and erosion of colluvium down-slope below bedrock outcrops. The degree of weathering in subsurface bedrock commonly increases more systematically upslope on most facets than colluvial soils. This pattern is consistent with an increase in age with height on these fault-generated facet hillslopes.The characteristic range of internal variation in soils and colluvial deposits on a given facet also varies greatly among facets with differing overall morphologies and external environments. Deep cumulic soils and thick colluvium occur consistently on steep (≥ 30°), high, and relatively undissected facets above the narrow central sections of fault segments. Much thinner and less weathered colluvium and soils overlie saprolitic bedrock at shallow depths on low, highly dissected, gently sloping (≤ 20°) facets above complex fault segment boundaries. Parametric and nonparametric analyses of variance indicate that these large-scale contrasts in facet morphology correlate primarily with a few facet subgroups related, in decreasing importance, to variations in range-front faulting, bedrock lithology, and piedmont dissection or aggradation. These factors are related to facet morphology, drainage evolution, and hillslope-soil stratigraphy in a general geomorphic model for fault-generated facets. In this model, segmentation-related changes in the geometry and/or rates of faulting most strongly affect facet size, slope gradient, the thickness of colluvium and soil development, and drainage patterns. Facets of varying heights have similar hillslope forms at the same position on the range front; these characteristic morphologies are established under prevailing tectonic and nontectonic conditions on facets as bedrock is initially exposed from beneath alluvial-covered fault scarps above a height threshold of 15–35 m.  相似文献   

5.
I nvestigations into processes of ventifact formation in the east-central Mojave Desert, California confirm the importance of topography as a control in the location, orientation, and intensity of ventifact abrasion. Ventifacts in the region appear to be relict in nature and probably formed during a period that ended several thousand years ago. Comparison of groove orientations with available wind data shows that regional flow direction has not changed in the recent past. Although west to northwest winds are the most frequent and intense, and therefore dictate the regional erosion pattern, low to moderate southeasterly flow is recorded on ventifacts near the crests of hills owing to the effects of velocity acceleration. Two conditions that affect ventifact development are considered in this paper: (1) wind acceleration through topographic constrictions; and (2) wind acceleration up the windward flanks of hills. Constrictions in the Barstow-Bristol trough allowed velocity increases that resulted in ventifaction on 70–90 percent of all exposed cobbles and boulders. Velocity acceleration towards the crests of hills caused a marked increase in sand transport and resultant abrasion, as expressed by increases in groove and pit dimensions. [Key words: Aeolian geomorphology, ventifacts, Mojave Desert, California.]  相似文献   

6.
The geological features now exposed at Mormon Point, Death Valley, reveal processes of extension that continue to be active, but are concealed beneath the east side of Death Valley. Late Cenozoic sedimentary rocks at Mormon Point crop out in the hangingwall of the Mormon Point low-angle normal fault zone, a fault zone that formed within a releasing bend of the oblique-slip (right-normal slip) fault zone along the east side of Death Valley. The late Cenozoic sedimentary rocks were part of the valley when the low-angle fault zone was active, but during late Quaternary time they became part of the Black Mountains block and were uplifted. Rocks and structures exposed at Mormon Point are an example of the types of features developed in a releasing bend along the margins of a major pull-apart structure, and in this example they are very similar to features associated with regional detachment faults. The oldest sedimentary rocks in the hangingwall of the Mormon Point low-angle fault zone dip steeply to moderately east or north-east and were faulted and rotated in an extensional kinematic environment different from that recorded by rocks and structures associated with younger rocks in the hangingwall. Some of the younger parts of the late Cenozoic sedimentary rocks were deposited, faulted and rotated during movement on the Mormon Point low-angle normal fault. Progressively, strata are less faulted and less rotated. The Mormon Point low-angle normal fault has an irregular fault surface whose segments define intersections that plunge 18°-30°, N10°-40°W, with a maximum of 22°, N22°W that we interpret to be the general direction of slip. Thus, even though Death Valley trends north, movement on the faults responsible for its formation was at least locally north-northwest. Gouge and disrupted conglomerates along the faults are interpreted to have formed either as adjustments to accommodate space problems at the corners of blocks or along faults that bounded blocks during their displacement and rotation. The younger units of the late Cenozoic sedimentary rock sequence and the geomorphic surfaces developed on them are rarely faulted, not rotated, and overlap the Mormon Point low-angle faults. Active faults cut Holocene alluvium north of the late Cenozoic rocks and form the present boundary between Mormon Point and the Black Mountains. The distribution of active faults defines a releasing bend that mimics the older releasing bend formed by the Mormon Point low-angle fault zone. Rocks and structures similar to those exposed above the Mormon Point low-angle fault zone are probably forming today beneath the east side of Death Valley north-west of Mormon Point.  相似文献   

7.
科尔沁沙地奈曼旗近5年来风况及合成输沙势   总被引:21,自引:13,他引:8  
应用奈曼沙漠化研究站1998-2002年的气象资料, 统计分析了奈曼旗近5a来的风况特征和输沙势。结果表明: ①研究区3~5月起沙风发生频数最高, 占全年起沙风的38%~58%; 平均风速和最大风速值最大, 分别为6.0~7.5m·s-1和9.5~16.9m·s-1。该风况特征与地表冻融、裸露、干旱疏松相耦合, 形成了区内的风沙活动期。②在风沙活动期内, 风环境基本为锐双峰风况, 西北风居主导地位, 频数占54%; 南风和西南风次之, 频数占38%。③在风沙活动期内, 研究区属于高风能环境, 合成输沙势RDP为66.3VU(风速以m·s-1为单位), 合成输沙方向RDD为ESE113°。  相似文献   

8.
基于RBFN模型的新疆土壤风蚀危险度评价   总被引:3,自引:2,他引:1  
选取影响土壤风蚀的相关指标,运用GIS技术提取各指标数据,建立了RBFN(径向基函数网络)模型,并根据不同风蚀危险程度标准,选取了12个市县相关数据进行训练,确定了网络模型参数,对新疆87个市县的土壤风蚀危险度进行了评价。结果显示,东疆的吐鲁番-哈密盆地为新疆土壤风蚀危险度极强区,南疆塔里木盆地、北疆的昌吉市—沙湾县沿线、富蕴县、福海县以及伊吾盆地是土壤风蚀的强度危险区,北疆西部、伊犁谷地和克孜勒苏柯尔克孜自治州的大部分市县为土壤风蚀的中度危险区,轻度危险区仅在阿勒泰市、伊犁谷地有零星分布。  相似文献   

9.
新月形沙丘与线性沙丘共存区域风况特征   总被引:2,自引:2,他引:0  
马芳  吕萍 《中国沙漠》2019,39(3):98-106
与火星类似,柴达木盆地的新月形沙丘和线性沙丘共存现象引起了众多学者的关注。为探究该现象的发育环境和形成条件,以全球典型新月形沙丘和线性沙丘共存区域为研究对象,选取研究区域附近气象站点3a风速、风向数据,分析这些典型区的风况特征。结果表明:不同的新月形沙丘与线性沙丘共存区域,风速存在明显差异,柴达木盆地和塔克拉玛干沙漠共存区域年平均风速和最大风速均小于沙特阿拉伯沙漠和撒哈拉沙漠;起沙风风向控制沙丘走向,多数共存区域全年起沙风风向较单一,部分区域存在明显的主次风,且主次风风向夹角为锐角;新月形沙丘和线性沙丘可共存于在高、中、低风能环境,中、低风向变率锐双峰或宽单峰风况,沙丘发育受风能环境影响较小,可能受风向变率、下垫面和沙源供应影响大;合成输沙势方向与沙丘走向一致且季节变化小,输沙方向稳定。部分气象站点距离研究区较远,对于研究区的风况指示意义有限。  相似文献   

10.
An extensive ( 25 km2) landslide complex covers a large area on the west side of the Williams Fork Mountains in central Colorado. The complex is deeply weathered and incised, and in most places geomorphic evidence of sliding (breakaways, hummocky topography, transverse ridges, and lobate distal zones) are no longer visible, indicating that the main mass of the slide has long been inactive. However, localized Holocene reactivation of the landslide deposits is common above the timberline (at about 3300 m) and locally at lower elevations. Clasts within the complex, as long as several tens of meters, are entirely of crystalline basement (Proterozoic gneiss and granitic rocks) from the hanging wall of the Laramide (Late Cretaceous to Early Tertiary), west-directed Williams Range thrust, which forms the western structural boundary of the Colorado Front Range. Late Cretaceous shale and sandstone compose most footwall rocks. The crystalline hanging-wall rocks are pervasively fractured or shattered, and alteration to clay minerals is locally well developed. Sackung structures (trenches or small-scale grabens and upslope-facing scarps) are common near the rounded crest of the range, suggesting gravitational spreading of the fractured rocks and oversteepening of the mountain flanks. Late Tertiary and Quaternary incision of the Blue River Valley, just west of the Williams Fork Mountains, contributed to the oversteepening. Major landslide movement is suspected during periods of deglaciation when abundant meltwater increased pore-water pressure in bedrock fractures.A fault-flexure model for the development of the widespread fracturing and weakening of the Proterozoic basement proposes that the surface of the Williams Range thrust contains a concave-downward flexure, the axis of which coincides approximately with the contact in the footwall between Proterozoic basement and mostly Cretaceous rocks. Movement of brittle, hanging-wall rocks through the flexure during Laramide deformation pervasively fractured the hanging-wall rocks.  相似文献   

11.
The Northern Death Valley fault zone is a major right-lateral structure that has accommodated 70 km or more of regional transtensional deformation in Tertiary to Recent time. Extension parallel to its north-west transport direction in the Death Valley region of California has produced ‘pull-apart’ structures that are responsible for opening the central Death Valley rhombochasm. In several ranges along the length of the Northern Death Valley fault zone, there is also evidence for extension directed to the south-west, normal to strike-slip movement. Evidence from the Funeral, Grapevine and Cottonwood Mountains suggests that a significant amount of down-dip slip has occurred on the Northern Death Valley fault zone and parallel structures (together referred to as the Northern Death Valley fault system) coeval with the majority of right-lateral slip and transform-parallel extension. As a result of both these components of extension, a separate basin opened in northern Death Valley with an orientation and architecture very different from that of central Death Valley. In addition, the Northern Death Valley fault system may be responsible for the present topography of the Funeral and Grapevine Mountains. Transform-normal extension appears to be the result of a misorientation of the Northern Death Valley fault zone within the regional stress field over the past 6 Myr, as suggested by simple geometric calculations.  相似文献   

12.
柴达木盆地风沙地貌区风况特征   总被引:10,自引:6,他引:4  
鲍锋  董治宝  张正偲 《中国沙漠》2015,35(3):549-554
利用自动气象观测仪所记录的1年风速数据,计算并分析了柴达木盆地风速、风向及输沙势等风况特征的时空变化。结果表明:该区风速最大值出现在春季,最小值出现在冬季,季节变化明显,且在空间上表现为自西北向东南递增的趋势;起沙风风向以NW、WNW为主,主风向和次风向的组合在空间分布上存在明显不同,风况与沙丘类型比较吻合;常年以稳定的西北气流为主,东南气流所占比重小,仅出现在夏季;柴达木盆地整体属于中风能环境,一年中风沙活动最强烈的季节为春季,风沙活动强度由西北向东南逐渐增强。  相似文献   

13.
《Urban geography》2013,34(8):684-704
This paper examines a social movement among affluent homeowners in Los Angeles. It argues that the social movement is highly institutionalized and durable, and that it has achieved many important citywide and statewide goals during the past 20 years. The paper further argues that this social movement should rightly be considered a stable branch of the urban elite along with local business and local government. However, the homeowners movement pursues a fundamentally different sociospatial agenda than either local business or local government, and those differing agendas suggest the absence of a unified governing regime in the city. The paper examines the structure, agenda, and political alliances of the movement through the case study of the debate surrounding the spatial and political reorganization of the City of Los Angeles, the most salient element of which is the possibility of San Fernando Valley secession.  相似文献   

14.
戈壁地区公路防沙措施防沙效应的风洞试验   总被引:2,自引:2,他引:0  
 以穿越河西走廊西部戈壁荒漠的嘉峪关至安西一级公路为研究对象,基于风洞模拟试验,针对不同类型公路路基横断面和防护措施设计模型,采用粒子图像测速系统,研究模型的流场变化,进而探讨戈壁公路风沙危害形成机理及防沙措施。研究结果表明:①由于研究区内风沙活动以不饱和风沙流为主,携沙风对公路路基掏蚀、磨蚀严重,需要对路基边坡进行有效砌护;②为了在公路表面形成输沙通道,中央隔离带地表与行车路面应保持同一高度,隔离带采用空隙度大于30%的疏透型;③在公路两侧沙源丰富地段,公路边坡的坡角应小于40°,并且取消防洪沟,以防止沟内积沙;④在沙源丰富地区,公路两侧由外到内依次铺设草方格、覆盖砾石、设置积沙沟的防沙带,可以减少气流中的含沙量,阻止流沙上路,有效解决公路风沙危害问题。  相似文献   

15.
甘肃瓜州锁阳城南雅丹地貌区起沙风况与输沙势特征   总被引:4,自引:2,他引:2  
以2016-2018年定位气象观测数据为依据,分析了甘肃瓜州锁阳城南雅丹地貌区的起沙风况及输沙势变化情况。结果表明:(1)研究区起沙风由两组风向近似相反的风所组成,主风向为NE-E,占全年起沙风的68.86%,次风向为WSW-WNW向,占27.67%;(2)年平均起沙风频率为19.0%,春季和夏季起沙风频率最高,分别占全年的33.57%和34.69%,各季起沙风向分布特征基本一致;(3)研究区风况类型为高风能环境和中等风向变率的钝双峰型风况。输沙势的大小和方向变率具有明显的季节性,春、夏季的总输沙势(DP)和合成输沙势(RDP)较高,夏季和冬季的方向变率RDP/DP值较高,合成输沙方向(RDD)245.45°~253.01°(WSW);(4)研究区雅丹地貌长轴走向与主输沙方向一致,说明风力是其形成的主要动力条件。  相似文献   

16.
沙粒启动机制的理论分析   总被引:10,自引:9,他引:1  
赵建华  张强  袁铁  隆霄 《中国沙漠》2005,25(6):853-862
从理论上对沙粒的初始启动与垂直抬升作了理论分析。结果指出,沙粒脱离地面的位置顺序是沙平面上凸拐点处、斜面上外突较大的地方、极大值点、水平面、极小值点以及凹槽的拐点处;提出了沙丘的平化运动、缩移运动与持相运动;气动力起沙的条件是:小粒径沙粒、大风、涡度场(与水平风同符号)、不稳定(层结不稳定与切变不稳定)以及粘性流;冲击起沙的条件是:大粒径沙粒、小风、涡度场(宜与水平风反符号)、稳定大气以及湍流;最后提出了沙尘暴启动的交替循环机制。  相似文献   

17.
库姆塔格沙漠羽毛状沙垄风沙活动强度特征   总被引:2,自引:2,他引:0  
以库姆塔格沙漠腹地的羽毛状沙垄为床面,通过风季实地观测与分析,研究了羽毛状沙垄的近地面风况、粒度特征及风沙流结构等。结果表明:羽毛状沙垄近地面风况具有明显的季节性,冬季盛行东风,其他季节盛行东北风;全年平均风速5.94 m·s-1,大于起沙风频率占总量的46.76%;新月形沙垄粒度变化在1.22~1.86之间,分选较好,垄间沙埂粒度变化在1.35~2.11之间,风选属于中偏差;随着风速的增大,地面以上0—2 cm高度层所含沙量有明显减少的趋势,2—20 cm所含沙量有增加的趋势,0—20 cm所含沙量占总输沙量的92.28%以上;在地面以上0—40 cm高度内,输沙率同2 m高处1 min平均风速为幂函数关系,不同性质的地表对输沙率有较大的影响;羽毛状沙垄的风速变化表现为新月形沙垄和垄间沙埂不同部位气流的增速和减速,风向变化表现为同风场下沙垄与沙埂风向夹角的存在。  相似文献   

18.
A devastating landslide on 18 August 1998 near Malpa Village in Kali Valley of Higher Kumaun Himalaya killed 221 persons. The landslide was a complex rock fall–debris flow. The mass movement generated around one million cubic metres of debris and partially blocked the Kali River, Malpa Gad (a tributary of Kali) being blocked completely. The rock mass failed primarily due to the near vertical slopes hanging over the valley along joints, the formation of structural wedges along the free face, the sheared rock mass due to the close proximity of major tectonic planes, and the enhanced pore–water pressure due to prolonged heavy precipitation in the preceding days. The mesoscopic shear zone, exhibiting ramp and flat structure in quartzites, shows a southward thrust movement that might have generated shear stress in the rocks. The slide clearly demonstrates the distressed state of the rock mass in the Himalayan region due to the ongoing northward drift of the Indian plate.  相似文献   

19.
The nutrient status of soils surrounding ten snow petrel Pagodroma nivea nests was investigated by sampling along four transects (One up-slope and three down-slope) from each nest. The highest levels for total N and P.% C. nitrite and ammonia (but not nitrate) were associated with the nest itself. Elevated levels of all nutrients still occurred at I m from the nest but dropped to levels similar to those of non-bird influenced soils at 2 m or 5 m from the nest. Highest bacterial and algal numbers were also associated with the nest. An experiment to examine the breakdown of guano showed nitrification levels to be insignificant and nutrient release levels very slow.  相似文献   

20.
杨馥宁  吕萍  马芳  曹敏  肖南  顾立霞  杨迎 《中国沙漠》2023,43(1):107-115
沙丘的形态变化与移动蕴含区域风沙环境和地貌演化的关键信息,是风沙地貌研究的重要内容。以腾格里沙漠南缘的长格状和方格状沙丘为研究对象,利用风况资料和Google Earth卫星影像,监测2009—2020年两种格状沙丘的形态变化并分析其移动特征。结果表明:(1)腾格里沙漠西南缘和东南缘的主风向均为西北风,长格状沙丘分布区的次风向为东南风,方格状沙丘分布区次风向为东风和东南风,都属于低风能环境、中变率风况。西南部风能环境大于东南部,研究区近10年风动力呈衰减趋势。(2)格状沙丘的主副梁长度和间距在增加,其中,长格状沙丘高度增加,方格状沙丘高度在降低。沙丘主梁向东偏移,副梁向南偏移,形态整体保持稳定。(3)长格状沙丘平均移动速率为1.57~1.71 m·a-1,方格状沙丘平均移动速率为1.63~2.01 m·a-1,沙丘平均移动方向与合成输沙方向基本一致,沙丘的体积是造成移动速率差异的主因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号