共查询到20条相似文献,搜索用时 62 毫秒
1.
面向对象的遥感影像模糊分类方法研究 总被引:5,自引:0,他引:5
传统的基于像素的遥感影像处理方法都是基于遥感影像光谱信息极其丰富,地物间光谱差异较为明显的基础上进行的。对于只含有较少波段的高分辨率遥感影像,传统的分类方法,就会造成分类精度降低,空间数据的大量冗余,并且其分类结果常常是椒盐图像,不利于进行空间分析。本文采用面向对象的影像分类方法,考虑了对象的不同特征值,例如光谱值,形状和纹理,结合上下文关系和语义的信息,这种分类技术不仅能够使用影像属性,而且能够利用不同影像对象之间的空间关系。在对诸多对象进行分类后,再进行精度分析。在此研究提出了一种面向对象的方法结合模糊理论把许多的对象块分成不同的类别。这一过程主要有两个步骤:第一个步骤是分割。图像分割将整个图像分割成若干个对象,在这个过程中,分割尺度的选择会影响到后续的分类结果和精度。第二个步骤是分类。在这个步骤中,特征值的选择和隶属度函数的选择都对分类结果有着至关重要的影响。 相似文献
2.
介绍了单张高空间分辨率的航空遥感数据在没有其他专题图辅助的情况下进行面向对象的信息提取的方法。以山西省平顺县为研究区,ADS40彩色航空影像为数据源,对不同的地物采取不同尺度的多尺度分割,形成具有"同质性"的对象,然后分别采取不同的信息提取策略,得到研究区信息分类成果,且有效避免了"同谱异物"、"同物异谱"及"椒盐现象",对高分辨率遥感影像信息提取技术研究具有一定的实践指导意义。 相似文献
3.
多分类器组合的遥感影像分类方法 总被引:1,自引:0,他引:1
针对传统遥感影像分类方法效果不够理想,单一分类器各自存在不足等问题,该文提出了一种基于多分类器组合的遥感影像分类方法。采用级联和并联相结合的方式对多种子分类器进行组合;利用改进的基于先验知识的投票表决规则,实现遥感影像准确分类。以岳阳市TM遥感影像为例,采用多分类器组合方法进行分类处理,并将处理结果与单一分类器处理结果进行比较。通过误差矩阵对比可知,多分类器的Kappa系数精度高于单一分类器;对分类效果图进行对比分析,在细部效果方面多分类器分类效果优于单一分类器。研究结果表明:组合分类器的遥感影像分类效果明显优于单一分类器,且具有更好的扩展性。 相似文献
4.
5.
6.
7.
8.
高分辨率遥感影像信息提取方法综述 总被引:5,自引:4,他引:5
感知地物信息最直接的载体就是遥感影像,从遥感影像中提取地形地物等专题信息是当前遥感技术面临的一个迫在眉睫的问题。遥感影像的空间分辨率伴随着遥感技术的飞速发展从公里级发展到厘米级,同时遥感影像所包含的信息正越来越丰富化。高空间分辨率遥感影像具有数据量极大、数据复杂以及尺度依赖的特点,使得高空间分辨率的遥感影像的数据处理以及影像信息提取具有一定的难度,面临一些急需解决的问题。文中介绍了高分辨率遥感影像信息提取的国内外研究现状和趋势,分析了几种遥感影像的分类方法,指出了面向对象的遥感影像信息提取的技术及高分辨率遥感影像的多尺度分割,并指出了国内外在遥感影像信息提取技术方面的不足和迫切需要解决的问题。 相似文献
9.
基于面向对象和规则的遥感影像分类研究 总被引:54,自引:4,他引:54
讨论了面向对象和规则的光学遥感影像分类方法。首先利用多尺度分割形成影像对象,建立对象的层次结构,计算对象的光谱特征、几何特征、拓扑特征等,利用对象、特征形成分类规则,并通过不同对象层间信息的传递和合并实现对影像的分类。并以北京城市土地利用分类为例,对该方法进行了验证。 相似文献
10.
11.
12.
高分一号多光谱遥感数据的面向对象分类 总被引:3,自引:0,他引:3
文章针对高分一号(GF-1)高分辨率遥感数据,提出了一种基于多特征的面向对象遥感图像分类算法:首先,对GF-1卫星数据进行分水岭分割,并利用仿射不变矩形状特征算子获得遥感图像的几何特征;其次,利用主成分分析和灰度共生矩阵获得遥感图像的纹理特征;然后,基于多特征数据进行均值漂移滤波,并利用自动标记分水岭分割方法实现遥感图像分割;最后,结合基于像元的最大似然监督分类结果做投票分类处理,从而实现面向像元与面向对象相结合的遥感数据分类.以高分一号遥感数据进行分类实验,结果表明:本文方法可有效地提高遥感图像分类精度. 相似文献
13.
14.
面向对象的高分辨率遥感影像土地覆盖信息提取 总被引:3,自引:0,他引:3
利用高分辨率影象提取土地覆盖信息的关键技术在于如何利用丰富的纹理信息来弥补光谱信息的不足。面向对象的图像分类技术改变了传统的面向像素的分类技术:(1)用来解译图像的信息并不在单个像元中,而是在图像对象和其相互关系中;采用多分辨率对象分割方法生成图像对象,提高了分类信息的信噪比;基于对象的分类技术不同于纯粹的光谱信息分类,图像对象还包含了许多的可用于分类的一些其他特征:形状、纹理、相互关系、上下关系等信息。面向对象的土地覆盖分类结果与传统分类方法相比,其特征提取算子更加地适合于几何信息和结构信息丰富的高分辨率图像的自动识别分类。 相似文献
15.
16.
面向对象土地利用信息提取的多尺度分割 总被引:1,自引:0,他引:1
以往面向对象影像分析的分割尺度主要依靠经验并结合目视来进行选择,带有一定的主观性.本文针对利用高分辨率遥感影像进行土地利用信息提取的目的,采用面向对象的方法完成了两个典型实验区域的多尺度分割.主要研究了分割参数的选择;重点提出了一种最优分割尺度计算模型.结果表明,此模型计算最优分割尺度方便快捷,而且计算出的最优分割尺度... 相似文献
17.
18.
19.