共查询到20条相似文献,搜索用时 15 毫秒
1.
Karl R. Atkinson John C. Zarnecki Martin C. Towner Timothy J. Ringrose Axel Hagermann Andrew J. Ball Mark R. Leese Gunter Kargl Mark D. Paton Ralph D. Lorenz Simon F. Green 《Icarus》2010,210(2):843-851
The Huygens probe landed on the then unknown surface of Titan in January 2005. A small, protruding penetrometer, part of the Surface Science Package (SSP), was pushed into the surface material measuring the mechanical resistance of the ground as the probe impacted the landing site. We present laboratory penetrometry into room temperature surface analogue materials using a replica penetrometer to investigate further the nature of Titan’s surface and examine the sensor’s capabilities. The results are then compared to the flight instrument’s signature and suggest the Titan surface substrate material consists of sand-sized particles with a mean grain size ~2 mm. A possible thin 7 mm coating with mechanical properties similar to terrestrial snow may overlie this substrate, although due to the limited data we are unable to detect any further layering or grading within the near-surface material. The unusual weakening with depth of the signature returned from Titan has, to date, only been reproduced using a damp sand target that becomes progressively wetter with depth, and supports the suggestion that the surface may consist of a damp and cohesive material with interstitial liquid contained between its grains. Comparison with terrestrial analogues highlights the unusual nature of the landing site material. 相似文献
2.
R. Grard J.J. López-Moreno I. Jernej F. Simões R. Trautner F. Ferri R. Rodrigo C. Béghin V.J.G. Brown J.M. Jeronimo T. Tokano 《Planetary and Space Science》2006,54(12):1124-1136
The permittivity, waves and altimetry (PWA) instrument was designed for the investigation of the electric properties and other related physical characteristics of the atmosphere of Titan, from an altitude around 140 km down to the surface. PWA carried sensors to measure the atmospheric conductivity, and record electromagnetic and acoustic waves up to frequencies of 11.5 and 6.7 kHz, respectively. PWA also measured the relief roughness during the descent and the permittivity of the surface after touchdown. The measurements and the results of the preliminary analysis are presented. An ionized layer is detected at altitudes above 50 km, using two independent techniques, and the presence of free electrons in the upper atmosphere is confirmed. An electric signal at around 36 Hz is observed throughout the descent, but it is not yet confirmed that this emission is unambiguously related to a resonance of the ionospheric cavity. The relative dielectric constant of Titan's surface material is nearly 2 and the electric conductivity 4×10−10 S m−1. The electric properties of the surface seem to evolve after touch-down, possibly due to a local warming of the landing site by the Huygens Probe body. 相似文献
3.
Abstract— We present a numerical simulation technique for the retrieval of the electric properties relative permittivity and conductivity of planetary, asteroid, and cometary regolith. Our simulation techniques aim at accompanying hardware development and conducting virtual experiments, e.g., to assess the response of arbitrary heterogeneous conductivity and permittivity distributions or to scrutinize possibilities for spatial reconstruction methods using inverse schemes. In a first step, we have developed a finite element simulation code on the basis of unstructured, adaptive triangular grids for arbitrary two‐dimensional axisymmetric distributions of conductivity and permittivity. The code is able to take into account the spatial geometry of the probe and allows for possible inductive effects. In previous studies, the non‐inductive approach has been used to convert potential and phase data into apparent material properties. By our simulations, we have shown that this approach is valid for the frequency range from 102 Hz to 107 Hz and electric conductivities of 10?8 S/m that are typical for the near‐surface region of asteroids and comets composed of chondritic materials and/or frozen volatiles such as H2O and CO2 ice. We prove the accuracy of our code to be better than 10%, using mixed types of boundary conditions and present a simulated vertical log through a horizontally stratified subsurface layer as a representative example of a heterogeneous distribution of the electrical properties. Resolution studies for the given electrode separation reveal that the material parameters of layers having thicknesses of less than about half the electrode spread are not reconstructible if only apparent quantities are considered. Therefore, spatial distributions of the complex sensitivity are presented having in mind a future data inversion concept that will permit the multi‐dimensional reconstruction of material parameters in heterogeneous environments. 相似文献
4.
5.
Sediment transport by surficial flow likely occurs on Titan. Titan is thought to have a volatile cycle, such as on Earth and likely in the past on Mars, which would entail surficial liquid flow. And surficial flow is implied in interpretations of Cassini-Hyugens data as showing fluvial channels, which would require sediment transport by surficial flow to form the observable features. We present calculations from basic hydraulic formulae of sediment entrainment and transport by surficial flow. First, we describe the conditions for (non-cohesive) sediment entrainment by grain size through use of the Shields' threshold curve. We then calculate settling velocities by grain size to describe the type of sediment transport—washload, suspended load, or bedload—that would follow entrainment. These calculations allow derivation of required flow depths for sediment transport by grain size over a given slope. A technique to estimate required flow velocities and unit discharges is also presented. We show the results of these calculations for organic and water ice sediment movement by liquid methane flow under Titan gravity. For comparative purposes, plots for movement of quartz sediment by water on Earth and basalt sediment by water on Mars are also included. These results indicate that (non-cohesive) material would move more easily on Titan than on Earth or Mars. Terrestrial field observations suggest that coarse grain transport is enhanced by hyperconcentration of fine-grained sediment; and the apparent availability of organic (fine grained) sediment on Titan, in conjunction with the possibility of convection-driven rainstorms, may lead to hyperconcentrated flows. Thus, significant sediment transport may occur on Titan during individual overland flow events. 相似文献
6.
Ralph D. Lorenz 《Icarus》2002,156(1):176-183
General constraints on geyser phenomena are developed and applied to speculative methane geysers on Titan. Variation of boiling point with depth of ethane-methane-nitrogen fluids is found to be of order 0.3 K m−1, in contrast with around 2 K m−1 for water on Earth. It is found that geysers are possible on Titan but require enhancements of ∼100 above global-average geothermal heat flux, a factor similar to that required on Earth. Eruption velocities of order 25 m s−1 appear to be typical for 10-m-deep geyser vents on both Earth and Titan. While eruption velocities on Earth are usually limited by the low sound speed in water-steam mixtures, sound speeds in Titan fluids are higher and the Titan limit is imposed by the available energy in the boiling fluid. Eruption intervals should be nearly the same for geysers with equivalent plumbing. There is an interesting symmetry between geysers on Titan and those on Earth: The volatility of the relevant fluid scales with the available heat flow. 相似文献
7.
Natalia Artemieva 《Icarus》2003,164(2):471-480
We conduct three-dimensional hydrodynamical simulations of hypervelocity impacts into the crust of Titan to determine the fraction of liquid water generated, under the reasonable assumption that the crust is largely water ice, and to track the fate of the organic-rich layer that is thought to overlie the ice over much of the surface. Impactors larger than a kilometer in diameter are only slightly affected by the atmosphere, while those well under that size are strongly decelerated and broken up before reaching the surface. Impact of a 2 km diameter icy projectile into the crust at velocities of 7 km per second or higher, and angles of impact between 30° and 45°, generate about 2-5% melt by volume within the crater. Our results for the amount of aqueous melt generated in impacts on Titan are broadly consistent with the analytic model developed by Thompson and Sagan (1992) although our numerical model allows us to more precisely quantify the fraction of melt, and fate of the organics, as a function of the impact parameters. While much of the organic surface layer is heavily shocked and ejected from the immediate region of the crater, a significant fraction located behind the oblique impact trajectory is only lightly shocked and is deposited in the liquid water at the crater base. Simple calculations suggest that the resulting aqueous organic phase may remain liquid for hundreds of years or longer, enough time for the synthesis of simple precursor molecules to the origin of life. 相似文献
8.
D. R. Gonçalves A. Mampaso R. L. M. Corradi C. Quireza 《Monthly notices of the Royal Astronomical Society》2009,398(4):2166-2176
We obtained optical long-slit spectra of four planetary nebulae (PNe) with low-ionization pair of knots, namely He 1-1, IC 2149, KjPn 8 and NGC 7662.
These data allow us to derive the physical parameters and excitation of the pairs of knots, and those of higher ionization inner components of the nebulae, separately.
Our results are as follows. (1) The electron temperatures of the knots are within the range 9500–14 500 K, similar to the temperatures of the higher ionization rims/shells. (2) Typical knots' densities are 500–2000 cm−3 . (3) Empirical densities of the inner rims/shells are higher than those of the pairs of knots, by up to a factor of 10. Theoretical predictions, at variance with the empirical results, suggest that knots should be denser than the inner regions, by at least a factor of 10. (4) Empirical and theoretical density contrasts can be reconciled if we assume that at least 90 per cent of the knots' gas is neutral (likely composed of dust and molecules). (5) By using the new Raga et al. shock modelling and diagnostic diagrams appropriated for spatially resolved PNe, we suggest that high-velocity shocked knots travelling in the photoionized outer regions of PNe can explain the emission of the pairs of knots analysed in this paper. 相似文献
These data allow us to derive the physical parameters and excitation of the pairs of knots, and those of higher ionization inner components of the nebulae, separately.
Our results are as follows. (1) The electron temperatures of the knots are within the range 9500–14 500 K, similar to the temperatures of the higher ionization rims/shells. (2) Typical knots' densities are 500–2000 cm
9.
F. Tosi R. Orosei A. Coradini G. Filacchione F. Capaccioni A. Adriani A. Negrão R.H. Brown M. Janssen J.W. Barnes R.N. Clark T.B. McCord J.M. Soderblom The Cassini VIMS RADAR Teams 《Icarus》2010,208(1):366-384
We apply a multivariate statistical method to Titan data acquired by different instruments onboard the Cassini spacecraft. We have searched through Cassini/VIMS hyperspectral cubes, selecting those data with convenient viewing geometry and that overlap with Cassini/RADAR scatterometry footprints with a comparable spatial resolution. We look for correlations between the infrared and microwave ranges the two instruments cover. Where found, the normalized backscatter cross-section obtained from the scatterometer measurement, corrected for incidence angle, and the calibrated antenna temperature measured along with the scatterometry echoes, are combined with the infrared reflectances, with estimated errors, to produce an aggregate data set, that we process using a multivariate classification method to identify homogeneous taxonomic units in the multivariate space of the samples.In medium resolution data (from 20 to 100 km/pixel), sampling relatively large portions of the satellite’s surface, we find regional geophysical units matching both the major dark and bright features seen in the optical mosaic. Given the VIMS cubes and RADAR scatterometer passes considered in this work, the largest homogeneous type is associated with the dark equatorial basins, showing similar characteristics as each other on the basis of all the considered parameters.On the other hand, the major bright features seen in these data generally do not show the same characteristics as each other. Xanadu, the largest continental feature, is as bright as the other equatorial bright features, while showing the highest backscattering coefficient of the entire satellite. Tsegihi is very bright at 5 μm but it shows a low backscattering coefficient, so it could have a low roughness on a regional scale and/or a different composition. Another well-defined region, located southwest of Xanadu beyond the Tui Regio, seems to be detached from the surrounding terrains, being bright at 2.69, 2.78 and 5 μm but having a low radar brightness. In this way, other units can be found that show correlations or anti-correlations between the scatterometric response and the spectrophotometric behavior, not evident from the optical remote sensing data. 相似文献
10.
B.J. Buratti C. Sotin M.D. Hicks J.A. Mosher R. Jaumann P.D. Nicholson D.P. Simonelli 《Planetary and Space Science》2006,54(15):1498-1509
Cassini observations of the surface of Titan offer unprecedented views of its surface through atmospheric windows in the 1-5 μm region. Images obtained in windows for which the haze opacity is low can be used to derive quantitative photometric parameters such as albedo and albedo distribution, and physical properties such as roughness and particle characteristics. Images from the early Titan flybys, particularly T0, Ta, and T5 have been analyzed to create albedo maps in the 2.01 and 2.73 μm windows. We find the average normal reflectance at these two wavelengths to be 0.15±0.02 and 0.035±0.003, respectively. Titan's surface is bifurcated into two albedo regimes, particularly at 2.01 μm. Analysis of these two regimes to understand the physical character of the surface was accomplished with a macroscopic roughness model. We find that the two types of surface have substantially different roughness, with the low-albedo surface exhibiting mean slope angles of ∼18°, and the high-albedo terrain having a much more substantial roughness with a mean slope angle of ∼34°. A single-scattering phase function approximated by a one-term Henyey-Greenstein equation was also fit to each unit. Titan's surface is back-scattering (g∼0.3-0.4), and does not exhibit substantially different backscattering behavior between the two terrains. Our results suggest that two distinct geophysical domains exist on Titan: a bright region cut by deep drainage channels and a relatively smooth surface. The two terrains are covered by a film or a coating of particles perhaps precipitated from the satellite's haze layer and transported by eolian processes. Our results are preliminary: more accurate values for the surface albedo and physical parameters will be derived as more data is gathered by the Cassini spacecraft and as a more complete radiative transfer model is developed from both Cassini orbiter and Huygens Lander measurements. 相似文献
11.
A list of volatile nitriles, not yet detected in the atmosphere of Titan, but likely to be present in this environment, has been selected: acetonitrile, propionitrile, acrylonitrile, crotononitrile, allyl cyanide, methacrylonitrile, and cyanopropyne. The spectra of these compounds in the gas phase have been systematically studied, in the mid- and far-infrared ranges. For each selected nitrile, the most intense vibration bands have been determined. Their strengths have been characterized by estimating the monochromatic absorption coefficient at the maximum(s) of the bands, and the integrated absorbance over the entire band. Then, in order to estimate the detectability of the selected compounds by infrared spectroscopy in the atmosphere of Titan, the data obtained have been extrapolated to the case of Titan. 相似文献
12.
Tetsuya Tokano 《Icarus》2005,173(1):222-242
The latitudinal profile of near-surface air temperature on Titan retrieved by Voyager 1 has been difficult to understand and raised several speculations about possible exotic processes that might be occurring near Titan's surface, while the thermal properties of the surface itself are unknown. This study systematically investigates the seasonal and spatial variation of the surface temperature and air temperature in the lower troposphere by a 3-dimensional general circulation model for different putative surface types (porous icy regolith, rock-ice mixture, hydrocarbon lakes). For any viable surface type the surface temperature is unlikely to be constant through the year and should more or less vary seasonally and even diurnally, most likely by a few K. Recent observations of tropospheric clouds may be evidence of seasonal variation of the surface temperature and the model predicts in the case of solid surface the development of a convective layer with superadiabatic lapse rates near the surface exactly at those latitudes and seasons where clouds have been identified. The latitudinal profile of the surface temperature retrieved from Voyager 1 infrared spectra can be explained without invoking exotic effects, provided the thermal inertia of the surface is relatively small and/or the surface albedo is low. A dominance of water ice (high thermal inertia and high albedo) at the surface is unfavorable to reproduce the observation. The latitudinal gradient of the surface temperature is particularly large at the hydrocarbon lake surface due to low albedo and small surface drag. Local anomalies of the surface albedo or surface thermal inertia are likely to cause substantial inhomogeneities of the surface temperature. Quasi-permanent accumulation of stratospheric haze at both poles would create a perennial equator-to-pole contrast of the surface temperature, but also a substantially lower global-mean surface temperature due to an enhanced anti-greenhouse effect in summer. The air temperature in the lower troposphere exhibits a tiny latitudinal gradient and a pole-to-pole gradient due to the presence of a pole-to-pole Hadley circulation, indicating that the temperature within the planetary boundary layer may exhibit a vertical profile characteristic of season, location and scenario. There may be a shallow near-surface inversion layer in cold seasons and a shallow convective layer in warm seasons. 相似文献
13.
A procedure is shown for extracting weak resonances from the responses of electromagnetic systems excited by electric discharges. The procedure, based on analysis of the late-time system response, is first checked using an analytical function and later with the data for the electric field generated by the computational simulation of Titan's atmosphere using the Transmission Line Matrix (TLM) method. Finally, the low frequency spectrum of the natural electric field in Titan's atmosphere sent by the mutual impedance sensor (MIP) included in the Huygens probe is analyzed employing this technique. The MIP sensor was initially designed to measure the horizontal component of the electric field during a quiet descent. Fortunately, the swinging that occurred during the descent allowed the MIP to measure the radial component of the electric field mixed with the horizontal one. Application of the late-time analysis technique shown in this paper confirms the signature of lightning reported by preliminary data observations, bringing out the expected eigenfrequencies of the Titan-ionosphere electromagnetic cavity, known as Schumann resonances. These resonances are the resonant frequencies of the lower TMr (transverse magnetic to r) modes, which are quasi-transverse electromagnetic modes because they present vertical or radial components of the electric field two orders of magnitude higher than the associated horizontal, azimuthal and zenithal, components. The sequence of Schumann resonances is unique for each celestial body with an ionosphere, since these resonances are fully determined by the dimensions of the planet or satellite and the corresponding atmospheric conductivity profile. Detecting these frequencies in an atmosphere is clear proof of electrical activity, since it implies the existence of an electromagnetic-energy source, which is essential to create and maintain them. 相似文献
14.
Ralph D. Lorenz Hasso B. Niemann Dan N. Harpold Stanley H. Way John C. Zarnecki 《Meteoritics & planetary science》2006,41(11):1705-1714
Abstract— A simple thermal model is developed to determine the temperature history of the inlet tube of the Huygens probe gas chromatograph mass spectrometer (GCMS) after its fortuitous emplacement on the surface of Saturn's moon Titan. The model parameters are adjusted to match the recorded temperature history of a nearby heater, taking into account heat losses by conduction to the rest of the probe and to Titan's cold atmosphere. The model suggests that after impact when forced convective cooling ceased, the inlet temperature rose from ?110 K to an asymptotic value of only ?145 K. This requires that the inlet was embedded in a surface that acted as an effective heat sink, most plausibly interpreted as wet or damp with liquid methane. The data appear inconsistent with a tar or dry, fine‐grained surface, and the inlet was not warm enough to devolatilize methane hydrate. 相似文献
15.
Viscous relaxation of impact craters on icy planetary surfaces: Determination of viscosity variation with depth 总被引:1,自引:0,他引:1
Spacecraft images show that the icy Galilean satellites have surfaces with very low topographic relief. Impact craters on Ganymede and Callisto are anomalously shallow and are characterized by sharp well-defined rims and domed floors. These morphological characteristics can be explained by viscous relaxation of topography on an icy crust in which the viscosity is uniform or decreases with depth. Under these conditions, large craters relax more rapidly than small craters, therefore explaining a possible underabundance of large craters. Viscous relaxation on an icy crust that is thin compared to the crater diameter or on a thick icy crust in which viscosity increases with depth could not produce this crater morphology and would result in the more rapid relaxation of small craters rather than large craters. The results of this study suggest that more detailed analysis of relaxing impact crater morphology may resolve the rate of viscosity decrease with depth and so provide evidence on the interior thermal evolution of icy planetary bodies. 相似文献
16.
Ralph D. Lorenz 《Icarus》2006,182(2):559-566
The Huygens probe lost heat to its cold environment during its descent through Titan's atmosphere and after landing. Here I report measurements of the probe's thermal behavior and comparison with ground tests (1) to provide a context for other scientific investigations, such as the release of volatiles from the landing site, and (2) to place constraints on Titan environmental parameters directly, such as the thermal conductivity of the surface material and the strength of winds at the surface. Near-surface winds are constrained to be less than 0.2 m s−1, and probably much less. 相似文献
17.
Leslie M. Golden 《Icarus》1979,38(3):451-455
To account for surface roughness, the transmission of microwave radiation through a planetary surface to an observer is treated by a Monte Carlo technique. Sizable effects are found near the limb of the planet, and they should be included in analyses of high-resolution observations and high-precision integrated disk observations. 相似文献
18.
Richard J. Pike 《Icarus》1976,27(4):577-583
Inadvisable departures from tradition in naming newly mapped features on Mars, Mercury, and the Moon have been implemented and proposed since 1970. Functional need for place names also has become confused with cartographic convenience. Much of the resulting new nomenclature is neither unique, efficient, nor imaginative. The longstanding classical orientation in Solar System geography needs to be firmly reasserted. The Mädler scheme for designating smaller craters on the Moon should be retained and extended to the farside. Names of surface features on other bodies might best reflect the traditional connotations of planet and satellite names: for example, most crates on Mars would be named for mythical heroes and military personalities in ancient history, craters on Mercury might commemorate explorers or commercial luminaries, and features on Venus would bear the names of famous women. 相似文献
19.
A method and an algorithm for determining the coordinates of points on the planetary surface are described. The coordinates are determined using photographs. To solve the problem, the spacecraft coordinates need to be determined at five trajectory points. The spacecraft trajectory is considered to be a plane. The method is applicable for determining the coordinates of points on the Earth’s surface and on the surface of other planets. 相似文献
20.
《Planetary and Space Science》2007,55(13):1959-1963
It is possible to determine the mean molecular mass of a planetary atmosphere using pressure and temperature measurements made by an entry probe descending at terminal velocity. The descent trajectory of an entry probe can be determined from pressure, temperature, and mean molecular mass data. This technique offers redundancy for large entry probes in the event of a mass spectrometer failure and increases the potential scientific yield of small entry probes that do not carry mass spectrometers. This technique is demonstrated on Huygens atmospheric structure instrument (HASI) data from Titan. Accurate knowledge of entry probe and parachute drag coefficients is required for this technique to be useful. 相似文献