首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
This paper describes the space weather effects of a major CME which was accompanied by extremely violent events on the Sun. The signatures of the event in the interplanetary medium (IPM) sensed by Ooty Radio Telescope, the solar observations by LASCO coronagraph onboard SOHO, GOES X-ray measurements, satellite measurements of the interplanetary parameters, GPS based ionospheric measurements, the geomagnetic storm parameter Dst and ground based ionosonde data are used in the study to understand the space weather effects in the different regions of the solar-terrestrial environment. The effects of this event are compared and possible explanations attempted.  相似文献   

2.
We present the current capabilities of a software tool to automatically detect coronal mass ejections (CMEs) based on time series of coronagraph images: the solar eruptive event detection system (SEEDS). The software developed consists of several modules: preprocessing, detection, tracking, and event cataloging. The detection algorithm is based on a 2D to 1D projection method, where CMEs are assumed to be bright regions moving radially outward as observed in a running-difference time series. The height, velocity, and acceleration of the CME are automatically determined. A threshold-segmentation technique is applied to the individual detections to automatically extract an approximate shape of the CME leading edge. We have applied this method to a 12-month period of continuous coronagraph images sequence taken at a 20-minute cadence by the Large Angle and Spectrometric Coronagraph (LASCO) instrument (using the C2 instrument only) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft. Our automated method, with a high computational efficiency, successfully detected about 75% of the CMEs listed in the CDAW CME catalog, which was created by using human visual inspection. Furthermore, the tool picked up about 100% more small-size or anomalous transient coronagraph events that were ignored by human visual inspection. The output of the software is made available online at . The parameters of scientific importance extracted by the software package are the position angle, angular width, velocity, peak, and average brightness. Other parameters could easily be added if needed. The identification of CMEs is known to be somewhat subjective. As our system is further developed, we expect to make the process significantly more objective.  相似文献   

3.
Basic processes of magnetic reconnection and observations of coronal mass ejection are introduced. A possible mechanism of CME caused by magnetic rcconnection in the current sheet of solar corona is suggested.  相似文献   

4.
Previous attempts to produce three-dimensional (3-D) reconstructions of coronal mass ejections (CMEs) have required either modeling efforts or comparisons with secondary associated eruptions near the solar surface. This is because coronagraphs are only able to produce sky-plane-projected images of CMEs and it has hence been impossible to overcome projection effects by using coronagraphs alone. The SECCHI suite aboard the twin STEREO spacecraft allows us to provide the means for 3-D reconstruction of CMEs directly from coronagraph measurements alone for the first time. We present these measurements from two CMEs observed in November 2007. By identifying common features observed simultaneously with the LASCO coronagraphs aboard SOHO and the COR coronagraphs aboard STEREO we have triangulated the source region of both CMEs. We present the geometrical analysis required for this triangulation and identify the location of the CME in solar-meridional, ecliptic, and Carrington coordinates. None of the two events were associated with an easily detectable solar surface eruption, so this triangulation technique is the only means by which the source location of these CMEs could be identified. We present evidence that both CMEs originated from the same magnetic structure on the Sun, but from a different magnetic field configuration. Our results reveal some insight into the evolution of the high corona magnetic field, including its behavior over time scales of a few days and its reconfiguration after a major eruption.  相似文献   

5.
The Low Frequency array (LOFAR) will be a next generation digital aperture synthesis radio telescope covering the frequency range from 10 to 240 MHz. The instrument will feature full polarisation and multi-beaming capability, and is currently in its design phase. This work highlights the solar, heliospheric and space weather applications where LOFAR, with its unique and unprecedented capabilities, can provide useful information inaccessible by any other means. The relevant aspects of the LOFAR baseline design are described, and the most promising techniques of interest are enumerated. These include tracking coronal mass ejections (CMEs) out to large distances using interplanetary scintillation (IPS) methods, tomographic reconstruction of the solar wind in the inner heliosphere using IPS, direct imaging of the radio emission from CMEs and finally possible Faraday rotation studies of the magnetic field structure of the heliosphere and the CMEs. This work is a part of an effort directed towards ensuring the compatibility of LOFAR design with solar and space weather applications, in collaboration with the wider community.  相似文献   

6.
We have examined the relationships among coronal holes (CHs), corotating interaction regions (CIRs), and geomagnetic storms in the period 1996?–?2003. We have identified 123 CIRs with forward and reverse shock or wave features in ACE and Wind data and have linked them to coronal holes shown in National Solar Observatory/Kitt Peak (NSO/KP) daily He i 10?830 Å maps considering the Sun?–?Earth transit time of the solar wind with the observed wind speed. A sample of 107 CH?–?CIR pairs is thus identified. We have examined the magnetic polarity, location, and area of the CHs as well as their association with geomagnetic storms (Dst≤?50 nT). For all pairs, the magnetic polarity of the CHs is found to be consistent with the sunward (or earthward) direction of the interplanetary magnetic fields (IMFs), which confirms the linkage between the CHs and the CIRs in the sample. Our statistical analysis shows that (1) the mean longitude of the center of CHs is about 8°E, (2) 74% of the CHs are located between 30°S and 30°N (i.e., mostly in the equatorial regions), (3) 46% of the CIRs are associated with geomagnetic storms, (4) the area of geoeffective coronal holes is found to be larger than 0.12% of the solar hemisphere area, and (5) the maximum convective electric field E y in the solar wind is much more highly correlated with the Dst index than any other solar or interplanetary parameter. In addition, we found that there is also a semiannual variation of CIR-associated geomagnetic storms and discovered new tendencies as follows: For negative-polarity coronal holes, the percentage (59%; 16 out of 27 events) of CIRs associated with geomagnetic storms in the first half of the year is much larger than that (25%; 6 out of 24 events) in the second half of the year and the occurrence percentage (63%; 15 out of 24 events) of CIR-associated storms in the southern hemisphere is significantly larger than that (26%; 7 out of 27 events) in the northern hemisphere. Positive-polarity coronal holes exhibit an opposite tendency.  相似文献   

7.
This special issue includes a set of papers that deal with extended solar activity, the launching of CMEs at the Sun, their propagation through interplanetary space, and the detection and study of the ejecta near Earth and of their interaction with the Earth’s magnetic environment. In particular solar events that occurred on 28 October 2003, 6 and 7 November 2004, and 20 January 2005, for which the related shocks arrived at Earth about two days later, are considered. The summary paper extracts the principal outcomes that were arrived at in the areas treated during the workshop and seeks to draw conclusions both on the progress made and on possible directions for future work in these areas.  相似文献   

8.
Model calculations were carried out to determine the extent of the effects on the rotational bursting of F-coronal dust in eccentric orbits due to their interaction with the flow of coronal mass ejections (CMEs). The model included an initial limiting perihelion distance of 8 solar radii (RS) for all particles used. The parameters of the CMEs (velocity and proton number density) along with the various parameters of the dust particles (size and median density) were taken into consideration. By keeping these parameters the same and varying one of them, it was found that the velocity of the CMEs protons plays a major role in determining at which heliocentric distance the particle bursts. To a lesser degree, the median density of the particle also had a similar effect. Depending on the values of the dust particles orbital eccentricity, limiting sizes of the dust particles were found beyond which the particles do not burst. More particles bursted in regions close to their perihelion passage, however very few particles bursted near 8RS from which we conclude that the majority of the fragmented particles were outside the F-corona region. The results show that rotational bursting of the dust in eccentric orbits inside the F-corona forces the particles to fragment outside 8RS.  相似文献   

9.
A subset of CMEs, called interplanetary magnetic clouds (MCs), are observed to have systematic rotation [northward to southward (NS) or southward to northward (SN)] in their field structures. These MCs identified in the heliospheric plasma and field data at 1 AU may have different features associated with them. These structures (NS/SN) may be isolated MC moving with the ambient solar wind. MCs (NS/SN) may also be associated with shock/sheath region, formed due to compression of the ambient plasma/field ahead of them. A fraction from each of these four types of MCs have additional features, being ‘pushed’ by fast solar wind streams from coronal holes, forming interaction region (IR) between MCs and high-speed solar wind streams (HSS). Using these different sets of MCs, we have done a detailed study of the geoeffectiveness of NS and SN turning MCs and their associated features (shock/sheath, IR and HSS). To study the process that produces the geomagnetic disturbances and influences its amplitude/duration, we have utilized the interplanetary plasma and field parameters, namely, plasma velocity, density, temperature, pressure, field strength and its north-south component, during the passage of these structures with different associated properties. Differences in the geoeffectiveness of MCs with different structural and dynamical properties have been identified. The possible role of high-speed stream in influencing the recovery time (and hence duration) of geomagnetic disturbance has also been investigated. A best-fit equation representing the relation between level of the geomagnetic activity (due to MCs) and interplanetary plasma/field parameter has been obtained.  相似文献   

10.
We discuss the effects of certain dynamic features of space environment in the heliosphere, the geo-magnetosphere, and the earth’s atmosphere. In particular, transient perturbations in solar wind plasma, interplanetary magnetic field, and energetic charged particle (cosmic ray) fluxes near 1 AU in the heliosphere have been discussed. Transient variations in magnetic activity in geo-magnetosphere and solar modulation effects in the heliosphere have also been studied. Emphasis is on certain features of transient perturbations related to space weather effects. Relationships between geomagnetic storms and transient modulations in cosmic ray intensity (Forbush decreases), especially those caused by shock-associated interplanetary disturbances, have been studied in detail. We have analysed the cosmic ray, geomagnetic and interplanetary plasma/field data to understand the physical mechanisms of two phenomena namely, Forbush decrease and geomagnetic storms, and to search for precursors to Forbush decrease (and geomagnetic storms) that can be used as a signature to forecast space weather. It is shown that the use of cosmic ray records has practical application for space weather predictions. Enhanced diurnal anisotropy and intensity deficit of cosmic rays have been identified as precursors to Forbush decreases in cosmic ray intensity. It is found that precursor to smaller (less than 5%) amplitude Forbush decrease due to weaker interplanetary shock is enhanced diurnal anisotropy. However, larger amplitude (greater than 5%) Forbush decrease due to stronger interplanetary shock shows loss cone type intensity deficit as precursor in ground based intensity record. These precursors can be used as inputs for space weather forecast.  相似文献   

11.
The most rapid and dramatic evolution in the solar corona occurs in events now known as Coronal Mass Ejections (CMEs). There have considerable importance for our understanding of the evolution of the mass and energy injected into the interplanetary medium. In this work, we have studied the relation of CMEs with geomagnetic activity for the period of 1988 to 1993. Not all CMEs are capable of producing geomagnetic disturbances. Our study indicates that the maximum chance of a geomagnetic disturbance occurs two to three days after a CME in association with B-type solar flares.  相似文献   

12.
Geoeffective Analysis of CMEs Under Current Sheet Magnetic Coordinates   总被引:1,自引:0,他引:1  
Using 100 CME–ICME events during 1997.01–2002.11, based on the eruptive source locations of CMEs and solar magnetic field observations at the photosphere, a current sheet magnetic coordinate (CMC) system is established in order to statistically study the characteristics of the CME–ICME events and the corresponding geomagnetic storm intensity. The transit times of CMEs from the Sun to the Earth are also investigated, by taking into account of the angle between the CME eruption normal (defined as the vector from the Sun center to the CME eruption source) and the Sun-Earth line. Our preliminary conclusions are: 1. The distribution of the CME sources in our CMC system is obviously different from that in the ordinary heliographic coordinate system. The sources of CMEs are mainly centralized near the heliospheric current sheet (HCS), and the number of events decreases with the increment of the angular distance from the CME source to the HCS on the solar surface; 2. A large portion of the total events belong to the same–side events (referring to the CME source located on the same side of the HCS as the Earth), while only a small portion belong to the opposite–side events (the CME source located on the opposite side of the HCS as the Earth). 3. The intense geomagnetic storms are usually induced by the same–side events, while the opposite side events are commonly associated with relatively weak geomagnetic storms; 4. The angle between the CME normal and the Sun–Earth line is used to estimate the transit time of the CME in order to reflect the influence of propagation characteristic of the CME along the Sun–Earth direction. With our new prediction method in context of the CMC coordinate, the averaged absolute error for these 100 events is 10.33 hours and the resulting relative error is not larger than 30% for 91% of all the events.  相似文献   

13.
We discuss the question of loss of angular momentum through coronal expansion. From a large volume of data on Type-1 cometary tails we have confirmed the presence of a tangential component in the coronal expansion, which has not only a stochastic component but also a constant component of 9.8 km/s. Through coronal expansion the Sun has lost 80% of its angular momentum since it evolved on to the main sequence and the angular velocity of the Sun is decreasing exponentially. This result should have a large effect on the dynamical evolution of the Sun.  相似文献   

14.
Seven mediated and small ejective events on the sun observed at Ganyu Observing Station of Purple Mountain Observatory in 2000 are investigated. It is found that they were not accompanied by brightening. Their lengths were in the range 1–2.5×104 km, their widths, 3–5×103 km, and their lifetimes, 3–7 minutes. They were produced at places of weak magnetic fields and far away from large sunspots. These ejections are interpreted by numerical simulation with 1-D hydrodynamic equations of flow along magnetic arcs. As demonstrated by the results, they are different from the spicules and surges simulated by Suematsu et al. and Shibata et al. They are not matter with photospheric or chromospheric densities pushed by shock waves or rebound shock waves toward the solar corona, rather, they are ejections formed by continuous matter flows after magnetic reconnection. After evolving for about 5 minutes, they can attain a stationary hydrodynamic state.  相似文献   

15.
When coronal mass ejections (CMEs) interact with the solar corona and the interplanetary medium, emissions at different wavelengths occur. On the basis of study of the various radiation mechanisms of space plasma in the case of absence of CMEs, the radio radiation mechanisms of the plasma close to the Lagrange point L1 and affected by large CMEs from February to August 1999 are statistically analyzed. As shown by the results, the main radiation mechanisms are the Bremsstrahlung, a small amount of cyclotron radiation and a still weaker recombination radiation. Also, solar microwave bursts which are associated with CMEs in the same period are investigated. The results show that the microwave bursts are of the gradual type as well as spike bursts, and that the chief radiation mechanisms are the Bremsstrahlung, cyclotron resonance radiation, plasma radiation and electronic cyclotron maser radiation.  相似文献   

16.
Using the mixing length theory we give expressions for turbulence pressure and the equation of state and various thermodynamic quantities when turbulence is included. On this basis we examined the size of turbulence in the evolution of two stars of masses 2.8 and 7.0M from the main sequence to the red giant and the AGB stages, Our results show that in the late stages the turbulence pressure near the surface of the star can be as much as 30% of the total pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号