共查询到20条相似文献,搜索用时 15 毫秒
1.
R. O. Kuzmin E. V. Zabalueva I. G. Mitrofanov M. L. Litvak A. V. Rodin W. V. Boynton R. S. Saunders 《Solar System Research》2007,41(2):89-102
The seasonal variation of neutron emissions from Mars in different spectral intervals measured by the HEND neutron detector for the entire Martian year are analyzed. Based on these data, the spatial variations of the neutron emissions from the planet are globally mapped as a function of season, and the dynamics of seasonal variation of neutron fluxes with different energies is analyzed in detail. No differences were found between seasonal regimes of neutron fluxes in different energy ranges in the southern hemisphere of Mars, while the regime of fast neutrons (with higher energies) during the northern winter strongly differs from that during the southern winter. In winter (L s = 270°–330°), the fast neutron fluxes are noticeably reduced in the northern hemisphere (along with the consecutive thickening of the seasonal cap of solid carbon dioxide). This provides evidence of a temporary increase in the water content in the effective layer of neutron generation. According to the obtained estimates, the observed reduction of the flux of fast neutrons in the effective layer corresponds to an increase in the water abundance of up to 5% in the seasonal polar cap (70°–90°N), about 3% at mid-latitudes, and from 1.5 to 2% at low latitudes. The freezing out of atmospheric water at the planetary surface (at middle and high latitudes) and the hydration of salt minerals composing the Martian soil are considered as the main processes responsible for the temporary increase in the water content in the soil and upper layer of the seasonal polar cap. The meridional atmospheric transport of water vapor from the summer southern to the winter northern hemisphere within the Hadley circulation cell is a basic process that delivers water to the subsurface soil layer and ensures the observed scale of the seasonal increase in water abundance. In the summer northern hemisphere, the similar Hadley circulation cell transports mainly dry air masses to the winter southern hemisphere. The point is that the water vapor becomes saturated at lower heights during aphelion, and the bulk of the atmospheric water mass is captured in the near-equatorial cloudy belt and, thus, is only weakly transferred to the southern hemisphere. This phenomenon, known as the Clancy effect, was suggested by Clancy et al. (1996) as a basic mechanism for the explanation of the interhemispheric asymmetry of water storage in permanent polar caps. The asymmetry of seasonal meridional circulation of the Martian atmosphere seems to be another factor determining the asymmetry of the seasonal water redistribution in the “atmosphere-regolith-seasonal polar caps” system, found in the peculiarities of the seasonal regime of the neutron emission of Mars. 相似文献
2.
Nicolas Altobelli Linda J. Spilker Cedric Leyrat Stuart Pilorz 《Planetary and Space Science》2008,56(1):134-146
Two and a half years after Saturn orbit insertion (SOI) the Cassini composite infrared spectrometer (CIRS) has acquired an extensive set of thermal measurements (including physical temperature and filling factor) of Saturn's main rings for a number of different viewing geometries, most of which are not available from Earth. Thermal mapping of both the lit and unlit faces of the rings is being performed within a multidimensional observation space that includes solar phase angle, spacecraft elevation and solar elevation. Comprehensive thermal mapping is a key requirement for detailed modeling of ring thermal properties.To first order, the largest temperature changes on the lit face of the rings are driven by variations in phase angle while differences in temperature with changing spacecraft elevation are a secondary effect. Ring temperatures decrease with increasing phase angle suggesting a population of slowly rotating ring particles [Spilker, L.J., Pilorz, S.H., Wallis, B.D., Pearl, J.C., Cuzzi, J.N., Brooks, S.M., Altobelli, N., Edgington, S.G., Showalter, M., Michael Flasar, F., Ferrari, C., Leyrat, C. 2006. Cassini thermal observations of Saturn's main rings: implications for particle rotation and vertical mixing. Planet. Space Sci. 54, 1167-1176, doi: 10.1016/j.pss.2006.05.033]. Both lit A and B rings show that temperature decreases with decreasing rings solar elevation while temperature changes in the C ring and Cassini Division are more muted. Variations in the geometrical filling factor, β, are primarily driven by changes in spacecraft elevation. For the optically thinnest region of the C ring, β variations are found to be nearly exclusively determined by spacecraft elevation. Both a multilayer and a monolayer model provide an excellent fit to the data in this region. In both cases, a ring infrared emissivity >0.9 is required, together with a random and homogeneous distribution of the particles. The interparticle shadowing function required for the monolayer model is very well constrained by our data and matches experimental measurements performed by Froidevaux [1981a. Saturn's rings: infrared brightness variation with solar elevation. Icarus 46, 4-17]. 相似文献
3.
Stochastic models of hot planetary and satellite coronas: Total water loss in the Martian atmosphere
V. I. Shematovich G. A. Tsvetkov M. A. Krestyanikova M. Ya. Marov 《Solar System Research》2007,41(2):103-108
Estimates of the total thermal and nonthermal losses of hydrogen and the total nonthermal loss of oxygen from the atmosphere of Mars are discussed, and their ratio is analyzed. It is shown that an H to O ratio of 2:1 has not been achieved in any of the current models of various authors. The closest ratio, H:O = 4:1, has been obtained by Krestyanikova and Shematovich (2006) in the model of formation of a hot oxygen corona. 相似文献
4.
5.
We present simulated images of energetic neutral atoms (ENAs) produced in charge exchange collisions between solar wind protons and neutral atoms in the exosphere of Venus, and make a comparison with earlier results for Mars. The images are found to be dominated by two local maxima. One produced by charge exchange collisions in the solar wind, upstream of the bow shock, and the other close to the dayside ionopause. The simulated ENA fluxes at Venus are lower than those obtained in similar simulations of ENA images at Mars at solar minimum conditions, and close to the fluxes at Mars at solar maximum. Our numerical study shows that the ENA flux decreases with an increasing ionopause altitude. The influence of the Venus nighttime hydrogen bulge on the ENA emission is small. 相似文献
6.
M. Fränz J.D. Winningham E. Roussos S. Barabash M. Holmström M. Yamauchi R.A. Frahm J.R. Scherrer Y. Soobiah D.O. Kataria T. Säles W. Schmidt J. Kozyra E. Roelof S. Livi K.C. Hsieh M. Grande J.-A. Sauvaud J.-J. Thocaven S. Orsini M. Maggi P. Bochsler K. Asamura 《Icarus》2006,182(2):406-412
Using data of the ASPERA-3 instrument on board the European Mars Express spacecraft we investigate the effect of the martian crustal fields on electrons intruding from the magnetosheath. For the crustal field strength we use published data obtained by the Mars Global Surveyor MAG/ER instrument for a fixed altitude of 400 km. We use statistics on 13 months of 80-100 eV electron observations to show that the electron intrusion altitude determined by a probability measure is approximately linearly dependent on the total field strength at 400 km altitude. We show that on the dayside the mean electron intrusion altitude describes the location of the Magnetic Pile-Up Boundary (MPB) such that we can quantify the effect of the crustal fields on the MPB. On the nightside we quantify the shielding of precipitating electrons by the crustal fields. 相似文献
7.
O. A. Mazeeva 《Solar System Research》2007,41(2):118-128
This study analyzes the evolution of 2 × 105 orbits with initial parameters corresponding to the orbits of comets of the Oort cloud under the action of planetary, galactic, and stellar perturbations over 2 × 109 years. The dynamical evolution of comets of the outer (orbital semimajor axes a > 104 AU) and inner (5 × 103 < a (AU) < 104) parts of the comet cloud is analyzed separately. The estimates of the flux of “new” and long-period comets for all perihelion distances q in the planetary region are reported. The flux of comets with a > 104 AU in the interval 15 AU < q < 31 AU is several times higher than the flux of comets in the region q < 15 AU. We point out the increased concentration of the perihelia of orbits of comets from the outer cloud, which have passed several times through the planetary system, in the Saturn-Uranus region. The maxima in the distribution of the perihelia of the orbits of comets of the inner Oort cloud are located in the Uranus-Neptune region. “New” comets moving in orbits with a < 2 × 104 AU and arriving at the outside of the planetary system (q > 25 AU) subsequently have a greater number of returns to the region q < 35 AU. The perihelia of the orbits of these comets gradually drift toward the interior of the Solar System and accumulate beyond the orbit of Saturn. The distribution of the perihelia of long-period comets beyond the orbit of Saturn exhibits a peak. We discuss the problem of replenishing the outer Oort cloud by comets from the inner part and their subsequent dynamical evolution. The annual rate of passages of comets of the inner cloud, which replenish the outer cloud, in the region q < 1 AU in orbits with a > 104 AU (~ 5.0 × 10?14 yr?1) is one order of magnitude lower than the rate of passage of comets from the outer Oort cloud (~ 9.1 × 10?13 yr?1). 相似文献
8.
We present and compare energetic neutral atom (ENA) images that are calculated from plasma parameters given by three different simulation models of the interaction between the solar wind and Mars. The images are calculated by combining a model for the ion flow with a model of the neutral atmosphere using the cross-sections for the charge exchange collisions. The three ion models are: an empirical model that is based on Phobos 2 measurements; a three-dimensional hybrid simulation; and a three-dimensional MHD simulation. For the empirical and MHD models the images are obtained by integration of the ENA emission along lines of sight to a virtual ENA instrument. In the case of the hybrid model images are obtained by summing the contributions from all ions, whose positions, velocities, and weights are saved in files at regular intervals.Differences between the models can be detected in the images, for example the hybrid model produces ENA emissions from a larger region than the MHD model does. An asymmetry in the oxygen ion density develops in the hybrid model and can be seen in the oxygen ENA images. The images are influenced by finite gyro radius effects, which are included in the hybrid model but not in the other two. The total production rates of hydrogen ENAs are , , and for the empirical, hybrid and MHD models respectively.This study shows the importance of considering both the type of simulation model used and the proper inclusion of relevant physical phenomena and boundary conditions, when modelling the interaction between planets and the solar wind. Although the different models agree fairly well in terms of macroscopic plasma parameters they produce ENA images that differ substantially. 相似文献
9.
V. V. Mikhal’chuk 《Solar System Research》2007,41(2):150-161
Formulas for refining the phase of a spherical planet located a small distance from the Sun are derived. Finite heliocentric distance of the planet results in the formation on its visible disk of the geometric terminator, which is not coincident with the orthographic terminator. The visible disk is assumed to be observed from Earth in orthographic projection. We suggest introducing linear and surface phases for the geometric terminator in accordance with two existing definitions of the phase of a planet. Linear and surface phases of a planet are shown to be given by different sets of formulas. An example of the computation of the phase of Mercury is given. 相似文献
10.
We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ? 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration.We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the underlying population amounts ≥ 15% even through a 5 arcsec aperture. The model leads to a limit on the direct absorption of Lyman continuum photons by dust situated inside the ionised areas, which in turn, with standard gas-to-dust ratios, translates into small characteristic sizes for the individual coexisting H II regions of the massive starburst area (clusters containing ∼ 102 ionising stars). We show that room is left for IMFs extending to 120 M⊙, rather than truncated at ∼ 60 M⊙ as most conservative studies conclude. High internal velocity dispersions (≥ 20 km s−1) are then needed for the H II regions. An original feature of this work is to base the analysis of near-infrared spectral galaxy observations on a large wavelength range, using models constructed with spectral stellar data observed with the same instrument. However a broader use of this spectral evolution model on other spectral or photometric data samples is possible if the spectral resolution of the model is adapted to observations or if colours are derived from the energy distributions.Catherine J. Cesarsky 相似文献
11.
We review the composition of Jupiter-family comet (JFC) dust as inferred from infrared spectroscopy. We find that JFCs have silicate emission features with fluxes roughly 20-25% over the dust continuum (emission strength 1.20-1.25), similar to the weakest silicate features in Oort Cloud (OC) comets. We discuss the grain properties that alter the silicate emission feature (composition, size, and structure/shape), and emphasize that thermal emission from the comet nucleus can have significant influence on the derived silicate emission strength. Recent evidence suggests that grain porosity is the is different between JFCs and OC comets, but more observations and models of silicates in JFCs are needed to determine if a consistent set of grain parameters can explain their weak silicate emission features. Models of 8 m telescope and Spitzer Space Telescope observations have shown that JFCs have crystalline silicates with abundances similar to or less than those found in OC comets, although the crystalline silicate mineralogy of comets 9P/Tempel and C/1995 O1 (Hale-Bopp) differ from each other in Mg and Fe content. The heterogeneity of comet nuclei can also be assessed with mid-infrared spectroscopy, and we review the evidence for heterogeneous dust properties in the nucleus of comet 9P/Tempel. Models of dust formation, mixing in the solar nebula, and comet formation must be able to explain the observed range of Mg and Fe content and the heterogeneity of comet 9P/Tempel, although more work is needed in order to understand to what extent do comets 9P/Tempel and Hale-Bopp represent comets as a whole. 相似文献
12.
In this paper, we analyze the results of ground-based and space-born photometric observations of the major satellites of Uranus—Miranda, Ariel, Umbriel, Titania, and Oberon. All sets of photometric observations of the satellites available in the literature were examined for uniformity and systematic differences and summarized to a unified set by wavelength ranging from 0.25 to 2.4 μm. This set covers the interval of phase angles from 0.034° to 35°. The compound phase curves of brightness of the satellites in the spectral bands at 0.25, 0.41, 0.48, 0.56, 0.75, 0.91, 1.4, and 1.8 μm, which include a pronounced opposition surge and linear part, were constructed. For each satellite, the geometric albedo was found in different spectral bands taking into account the brightness opposition effect, and its spectral dependence was studied. It has been shown that the reflectance of the satellites linearly depends on the wavelength at different phase angles, but has different spectral gradients. The parameters of the phase functions of brightness, including the amplitude and the angular width of the brightness opposition surge, the phase coefficient, and the phase angle at which the nonlinear increase in brightness starts, were determined and their dependences on wavelength and geometric albedo were analyzed. Our investigations show that, in their optical properties, the satellites Miranda and Ariel, Titania and Oberon, and Umbriel present three types of surfaces. The observed parameters of the brightness opposition effect for the Uranian satellites, some ice satellites of Jupiter and Saturn, and the E-and S-type asteroids are analyzed and compared within the framework of the coherent backscattering and mutual shadowing mechanisms. 相似文献
13.
E. E. Biryukov 《Solar System Research》2007,41(3):211-219
This paper analyzes the capture of comets into Halley-type and Jupiter-family orbits from the nearparabolic flux of the Oort cloud. Two types of capture into Halley-type orbits are found. The first type is the evolution of near-parabolic orbits into short-period orbits (with heliocentric orbital periods P < 200 years) as a result of close encounters with giant planets. This process is followed by a very slow drift of cometary orbits into the inner part of the Solar System. Only those comets may pass from short-period orbits into Halley-type and Jupiter-family orbits, which move in orbits with perihelion distances q < 13 au. In the second type of capture, the perihelion distances of cometary orbits become rather small (< 1.5 au) during the first stage of dynamic evolution under the action of perturbations from the Galaxy, and then their semimajor axes decrease as a result of diffusion. The capture takes place, on average, in 500 revolutions of the comet about the Sun, whereas in the first case, the comet is captured, on average, after 12500 revolutions. The region of initial orbital perihelion distances q > 4 au is found to be at least as important a source of Halley-type comets as the region of perihelion distances q < 4 au. More than half of the Halley-type comets are captured from the nearly parabolic flux with q > 4 au. The analysis of the dynamic evolution of objects moving in short-period orbits shows that the distribution of Centaurs orbits agrees well with the observed distribution corrected for observational selection effects. Hence, the hypothesis associating the origin of Centaurs with the Edgeworth-Kuiper belt and the trans-Neptunian region exclusively should be rejected. 相似文献
14.
During the descent of the Huygens probe through Titan's atmosphere in January 2005, the Descent Imager/Spectral Radiometer (DISR) will perform upward and downward looking measurements at various spectral ranges and spatial resolutions. This internal radiation density could be estimated by radiative transfer calculations for Titan's atmosphere. However, to do this, the optical properties—i.e. volume extinction coefficient, single scattering albedo and scattering phase function—have to be prescribed at every altitude, and these are apriori not known. Herein, an inverse approach is investigated, which retrieves the single scattering albedo and the phase function of the aerosols from DISR observations. The method uses data from a DISR subinstrument, the Solar Aureole imager (SA), to estimate the optical properties of the atmospheric layer between two successive observation altitudes. A unique solution for one layer can in principle be calculated directly from a linear system of equations, but due to the sparseness of the data and the unavoidable noise in the measurements, the inverse problem is ill-posed. The problem is stabilized by the regularization method requiring smoothness of the resultant solution. A consistent set of solutions for all layers is obtained by iterating several times downward and upward through the layers. The method is tested in a simulated radiation density scenario for Titan, which is based on a microphysical aerosol model for the haze layer. Within this scenario, the expected coverage of SA data allows a reconstruction of the angular dependence of the scattering phase function with an explained variance better than 90%. 相似文献
15.
I. A. Simonia 《Solar System Research》2007,41(2):129-131
The nature of unidentified cometary emission lines is discussed. A model of ice particles in cometary halos as a mixture of frozen polycyclic aromatic hydrocarbons (PAHs) and acyclic hydrocarbons is considered. The properties of frozen hydrocarbon particles are described and 5–7% of the unidentified cometary emission lines are considered as the photoluminescence of frozen hydrocarbons. The positions of unidentified emission lines in the spectrum of Comet 19P/Borrelly are compared with the positions of quasi-lines in the photoluminescence spectra of PAHs that were dissolved in acyclic hydrocarbons at a temperature of 77 K and that constitute a polycrystalline solution. 相似文献
16.
The drag coefficients and the patterns of supersonic flows around rectangular parallelepipeds (bodies with rectangular and square faces-bricks and tiles, respectively) were found from numerical experiments. These drag coefficients c x are considerably different from the values used, in particular, in the meteor-related literature to calculate the motion of brick-shaped meteor bodies. The values of c x and the flow pattern near the face of the body weakly depend on the relative size of the body within the parameter range considered. 相似文献
17.
We show that the retrospective evolution method yields excessively large inaccuracies in determining the age of meteorid streams. The cause is in its sensitivity to the errors in the initial conditions. The study was fulfilled with the Geminid, Quadrantid, Orionid, Perseid, and Leonid meteor showers as an example. 相似文献
18.
M. I. Gritsevich 《Solar System Research》2007,41(6):509-514
A great volume of data has been accumulated thus far related to the photoregistration of the paths of meteor bodies in the terrestrial atmosphere. Most images have been obtained by four bolide networks, which operate in the USA, Canada, Europe, and Spain in different time periods. The approximation of the actual data using theoretical models makes it possible to achieve additional estimates, which do not directly follow from the observations. In the present study, we suggest an algorithm to find such parameters of the theoretical relationship between the height and the velocity of the bolide motion that help to fit observations along the luminous part of the trajectories in the best way. The main difference from previous studies is that the given observations are approximated using the analytical solution of the equations of meteor physics. The model presented in this study was applied to a number of bright meteors observed by the Canadian camera network and by the US Prairie network and to the Benésov bolide, which is one of the largest fireballs registered by the European network. The correct mathematical modeling of meteor events in the atmosphere is necessary for further estimates of the key parameters, including the extra-atmospheric mass, the ablation coefficient, and the effective enthalpy of evaporation of entering bodies. In turn, this information is needed by some applications, namely, those aimed at studying the problems of asteroid and comet security, to develop measures of planetary defense, and to determine the bodies that can reach Earth’s surface. 相似文献
19.
V. V. Prokof’eva-Mikhailovskaya Yu. V. Batrakov V. V. Bochkov V. V. Busarev L. G. Karachkina 《Solar System Research》2007,41(4):307-313
We discuss the results of the analysis of three sets of observations of asteroid 21 Lutetia—spectrophotometry, simultaneous BVR photometry, and spectrometry—which show that the asteroid is not a monolithic body. The frequency analysis of the B-V and V-R color indices and the V values, which were obtained from simultaneous BVR measurements in 2004 and calculated from the spectrophotometric observations performed in 2000 (the synthetic values and the color indices), allowed us to demonstrate that the known rotation period of 8.h172 of the asteroid does not exist at all. At a rather high confidence level, six new periods were found: 2.h0, 2.h93, 16.h8, 1.d25, 3.d25, and 60d. During spectral observations with a 1.25-m telescope at the southern laboratory of the Sternberg Astronomical Institute in Nauchnyi (Crimea) in 2004, the spectra of two components spaced 2.8″ apart were registered. In the short-wavelength spectral range, quick variations of the reflectance of the components were observed. They show the changes in their spectral types from S to C. The analysis of the synthetic values of the color indices determined from the spectrophotometric observations in 2000 confirmed the presence of quick spectral variations. We conclude that asteroid 21 Lutetia is a complex satellite system. This statement is confirmed by the analysis of data published in different sources. 相似文献
20.
Among the terrestrial planets, Mercury's composition is characterized by two specific features: a high density and a low surface FeO content. Based on these two constraints, different geochemical models have been proposed, according to different formation scenarios. Here thermodynamical modeling is used to derive the mantle and crust mineralogy associated with these geochemical models. For each mineralogy, the electrical conductivity profile and associated electromagnetic data are computed. Due to the very different oxide/silicate ratios, most geochemical models proposed for Mercury's formation show very different electromagnetic signatures. As a result, future measurements with MESSENGER and BepiColombo missions will help differentiating between different interior models and different formation scenarios. 相似文献