首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Canadian Meteor Orbit Radar is a multi-frequency backscatter radar which has been in routine operation since 1999, with an orbit measurement capability since 2002. In total, CMOR has measured over 2 million orbits of meteoroids with masses greater than 10 μg, while recording more than 18 million meteor echoes in total. We have applied a two stage comparative technique for identifying meteor streams in this dataset by making use of clustering in radiants and velocities without employing orbital element comparisons directly. From the large dataset of single station echoes, combined radiant activity maps have been constructed by binning and then stacking each years data per degree of solar longitude. Using the single-station mapping technique described in Jones and Jones (Mon Not R Astron Soc 367:1050–1056, 2006) we have identified probable streams from these single station observations. Additionally, using individual radiant and velocity data from the multi-station velocity determination routines, we have utilized a wavelet search algorithm in radiant and velocity space to construct a list of probable streams. These two lists were then compared and only streams detected by both techniques, on multiple frequencies and in multiple years were assigned stream status. From this analysis we have identified 45 annual minor and major streams with high reliability.  相似文献   

2.
Using the CMOR system, a search was conducted through 2.5 years (more than 1.5 million orbits) of archived data for meteoroids having unbound hyperbolic orbits around the Sun. Making use of the fact that each echo has an individually measured error, we were able to apply a cut-off for heliocentric speeds both more than two, and three standard deviations above the parabolic limit as our main selection criterion. CMOR has a minimum detectable particle radius near 100 μm for interstellar meteoroids. While these sizes are much larger than reported by the radar detections of extrasolar meteoroids by AMOR or Arecibo, the interstellar meteoroid population at these sizes would be of great astrophysical interest as such particles are more likely to remain unperturbed by external forces found in the interstellar medium, and thus, more likely to be traceable to their original source regions. It was found that a lower limit of approximately 0.0008% of the echoes (for the 3σ case) were of possible interstellar origin. For our effective limiting mass of 1×10−8 kg, this represents a flux of meteoroids arriving at the Earth of 6×10−6 meteoroids/km2/h. For our 2σ results, the lower limit was 0.003%, with a flux of 2×10−5 meteoroids/km2/h. The total number of events was too low to be statistically meaningful in determining any temporal or directional variations.  相似文献   

3.
The dynamics of the two Jupiter triangular libration points perturbed by Saturn is studied in this paper. Unlike some previous works that studied the same problem via the pure numerical approach, this study is done in a semianalytic way. Using a literal solution, we are able to explain the asymmetry of two orbits around the two libration points with symmetric initial conditions. The literal solution consists of many frequencies. The amplitudes of each frequency are the same for both libration points, but the initial phase angles are different. This difference causes a temporary spatial asymmetry in the motions around the two points, but this asymmetry gradually disappears when the time goes to infinity. The results show that the two Jupiter triangular libration points should have symmetric spatial stable regions in the present status of Jupiter and Saturn. As a test of the literal solution, we study the resonances that have been extensively studied in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006). The resonance structures predicted by our analytic theory agree well with those found in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006) via a numerical approach. Two kinds of chaotic orbits are discussed. They have different behaviors in the frequency map. The first kind of chaotic orbits (inner chaotic orbits) is of small to moderate amplitudes, while the second kind of chaotic orbits (outer chaotic orbits) is of relatively larger amplitudes. Using analytical theory, we qualitatively explain the transition process from the inner chaotic orbits to the outer chaotic orbits with increasing amplitudes. A critical value of the diffusion rate is given to separate them in the frequency map. In a forthcoming paper, we will study the same problem but keep the planets in migration. The time asymmetry, which is unimportant in this paper, may cause an observable difference in the two Jupiter Trojan groups during a very fast planet migration process.  相似文献   

4.
We report exceptional fireball activity of the Orionid meteor shower in 2006. During four nights in October 2006 the autonomous fireball observatories of the Czech part of the European Fireball Network (EN) recorded 48 fireballs belonging to the Orionids. This is significantly more than the total number of Orionids recorded during about five decades long continuous operation of the EN. Based on precise multi-station photographic and radiometric data we present accurate atmospheric trajectories, heliocentric orbits, light curves and basic physical properties of 10 Orionid fireballs with atmospheric trajectories that were long enough and, with one exception, were observed from at least three stations. Seven were recorded in within a 2-h interval in the night of 20/21 October. Their basic parameters such as radiant positions and heliocentric orbits are very similar. This high fireball activity originated from a very compact geocentric radiant defined by α = 95.10° ± 0.10° and δ = 15.50° ± 0.06°. These fireballs most likely belonged to a distinct filament of larger meteoroids trapped in 1:5 resonance with Jupiter. From detailed light curves and basic fireball classification we found that these meteoroids appertain to the weakest component of interplanetary matter.  相似文献   

5.
The velocity distribution of meteoroids at the Earth is measured using a time-of-flight measurement technique applied to data collected by the CMOR radar (29.85 MHz). Comparison to earlier velocity measurements from the Harvard Radio Meteor Project suggests that HRMP suffered from biases which underestimated the number of fragmenting meteoroids. This bias results in a systematic underestimation of the numbers of higher velocity meteoroids. Other works (cf. Taylor and Elford, 1998) have also found additional biases in the HRMP which suggest the original HRMP meteoroid velocity analysis may have underestimated the fraction of high velocity meteors by factors up to 104.  相似文献   

6.
M.D. Campbell-Brown 《Icarus》2008,196(1):144-163
Five years of meteor orbit data from CMOR (the Canadian Meteor Orbit Radar) are used to study the high-resolution orbital structure of the sporadic meteoroid complex. The large number of high quality orbits (2.35 million) allows the orbital characteristics of meteoroids to be studied not only in the five sporadic sources accessible from the latitude of London, Ontario, Canada, but at a resolution of 2 degrees. The radiant distribution of sporadic meteors is investigated, applying corrections for observing biases, and weighting to a constant limiting mass, and to a constant limiting energy. The orbital distribution of the sporadic sources is compared to other studies. The variation of average geocentric speed, semimajor axis, eccentricity, inclination and perihelion distance with meteoroid radiant is investigated. The source of a ring depleted in meteor radiants at 55 degrees from the apex is attributed to shorter collisional lifetimes inside the ring, due to a higher probability of catastrophic collisions with particles in the zodiacal cloud for the predominantly retrograde meteoroids inside the ring.  相似文献   

7.
Subdwarf B stars (sdBs) can significantly change the ultraviolet spectra of populations at age t~1 Gyr, and have been even included in the evolutionary population synthesis (EPS) models by Han et al. (Mon. Not. R. Astron. Soc. 380:1098, 2007). In this study we present the spectral energy distributions (SEDs) of binary stellar populations (BSPs) by combining the EPS models of Han et al. (Mon. Not. R. Astron. Soc. 380:1098, 2007) and those of the Yunnan group (Zhang et al. in Astron. Astrophys. 415:117, 2004; Mon. Not. R. Astron. Soc. 357:1088, 2005), which have included various binary interactions (except sdBs) in EPS models. This set of SEDs is available upon request from the authors. Using this set of SEDs of BSPs we build the spectra of Burst, E, S0–Sd and Irr types of galaxies by using the package of Bruzual and Charlot (Mon. Not. R. Astron. Soc. 344:1000, 2003). Combined with the photometric data (filters and magnitudes), we obtain the photometric redshifts and morphologies of 1502 galaxies by using the Hyperz code of Bolzonella et al. (Astron. Astrophys. 363:476, 2000). This sample of galaxies is obtained by removing those objects, mismatched with the SDSS/DR7 and GALEX/DR4, from the catalogue of Fukugita et al. (Astron. J. 134:579, 2007). By comparison the results with the SDSS spectroscopic redshifts and the morphological index of Fukugita et al. (Astron. J. 134:579, 2007), we find that the photo-z fluctuate with the SDSS spectroscopic redshifts, while the Sa–Sc galaxies in the catalogue of Fukugita et al. (Astron. J. 134:579, 2007) are classified earlier as Burst-E galaxies.  相似文献   

8.
We present a survey of 97 spectra of mainly sporadic meteors in the magnitude range +3 to −1, corresponding to meteoroid sizes 1-10 mm. For the majority of the meteors, heliocentric orbits are known as well. We classified the spectra according to relative intensities of the lines of Mg, Na, and Fe. Theoretical intensities of these lines for a chondritic composition of the meteoroid and a wide range of excitation and ionization conditions were computed. We found that only a minority of the meteoroids show chondritic composition. Three distinct populations of Na-free meteoroids, each comprising ∼10% of sporadic meteoroids in the studied size range, were identified. The first population are meteoroids on asteroidal orbits containing only Fe lines in their spectra and possibly related to iron-nickel meteorites. The second population are meteoroids on orbits with small perihelia (q?0.2 AU), where Na was lost by thermal desorption. The third population of Na-free meteoroids resides on Halley type cometary orbits. This material was possibly formed by irradiation of cometary surfaces by cosmic rays in the Oort cloud. The composition of meteoroids on Halley type orbits is diverse, probably reflecting internal inhomogeneity of comets. On average, cometary dust has lower than chondritic Fe/Mg ratio. Surprisingly, iron meteoroids prevail among millimeter-sized meteoroids on typical Apollo-asteroid orbits. We have also found varying content of Na in the members of the Geminid meteoroid stream, suggesting that Geminid meteoroids were not released from their parent body at the same time.  相似文献   

9.
We propose a method to account for the Earth oblateness effect in preliminary orbit determination of satellites in low orbits with radar observations. This method is an improvement of the one described in Gronchi et al. (Mon Not R Astron Soc 451(2):1883–1891, 2015b), which uses a pure Keplerian dynamical model. Since the effect of the Earth oblateness is strong at low altitudes, its inclusion in the model can sensibly improve the initial orbit, giving a better starting guess for differential corrections and increasing the chances to obtain their convergence. The input set consists of two tracks of radar observations, each one composed of at least four observations taken during the same pass of the satellite. A single observation gives the topocentric position of the satellite, where the range is very accurate, while the line-of-sight direction is poorly determined. From these data, we can compute by a polynomial fit the values of the range and range rate at the mean epochs of the two tracks. In order to obtain a preliminary orbit, we wish to compute the angular velocity, which is the rate of change of the line of sight. In the same spirit of Gronchi et al. (Mon Not R Astron Soc 451(2):1883–1891, 2015b), we also wish to correct the values of the angular measurements, so that they fit the selected dynamical model if the same holds for the radial distance and velocity. The selected model is a perturbed Keplerian dynamics, where the only perturbation included is the secular effect of the \(J_2\) term of the geopotential.  相似文献   

10.
In our work, the method that can help to predict the existence of distant objects in the Solar system is demonstrated. This method is connected with statistical properties of a heliocentric orbital complex of meteoroids with high eccentricities. Heliocentric meteoroid orbits with high eccentricities are escape routes for dust material from distant parental objects with near-circular orbits to Earth-crossing orbits. Ground-based meteor observations yield trajectory information from which we can derive their place of possible origin: comets, asteroids, and other objects (e.g. Kuiper Objects) in the Solar system or even interstellar space. Statistical distributions of radius vectors of nodes, and other parameters of orbits of meteoroids contain key information about position of greater bodies. We analyze meteor orbits with high eccentricities that were registered in 1975–1976 in Kharkiv (Ukraine). The orbital data of the Kharkiv electronic catalogue are received from observations of radiometeors with masses 10−6−10−3 g.  相似文献   

11.
The distribution of meteor signals reflected from a backscatter radar is considered according to their duration. This duration time (T) is used to classify the meteor echoes and to calculate the mass index (S) of different meteoroids of shower plus sporadic background. Observational data on particle size distribution of the Geminid meteor shower are very scarce, particularly at low latitudes. In this paper the observational data from Gadanki radar (13.46°N, 79.18°E) have been used to determine the particle size distribution and the number density of meteoroids inside the stream of the Geminid meteor shower. The mean variation of meteor number density across the stream has been determined for three echo duration classes, T<0.4, T=0.4–1 and T>1 s. We are more interested in the appearance of echoes of various durations and therefore meteors of various masses in order to understand more on the filamentary structure of the stream. It is observed that the faint particle flux peaks earlier than the larger particles. We found a decreasing trend in the mass index values from the day of peak activity to the next observation days. The mass index profile was found to be U-shaped with a minimum value near the time of peak activity. The observed minimum s values are 1.64±0.05 and 1.65±0.04 in the years 2003 and 2005, respectively. The activity of the shower indicates the mass segregation of meteoroids inside the stream. Our results are best comparable with the “scissors” structure model of the meteoroid stream formation of Ryabova [2007. Mathematical modeling of the Geminid meteoroid stream. Mon. Not. R. Astron. Soc. 375, 1371–1380] by considering the asteroid 3200 Phaethon as an extinct comet.  相似文献   

12.
Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space \(\mathbb H\). Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275–2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into \(\mathbb R^n\), and a space of compact subsets of \(\mathbb H\) with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of \(\mathbb H\) and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in \(\mathbb H\) under coordinates change is discussed.  相似文献   

13.
The orbits of (69230) Hermes and 2002 SY50 are similar and the Earth approaches both of them twice: at the end of October the local orbital minimum distances are smaller than 0.007 AU, and at the end of April the distances are smaller than 0.04 AU. This gives us opportunities to observe the meteors associated with these asteroids. Using the geocentric parameters of the orbital close encounters (the theoretical radiants) and our D N distance function (Valsecchi et al. Mon. Not. R. Astron. Soc. 304 (1999) 743), we searched for meteoroids originated by Hermes and 2002 SY50. A search among 1830 good quality photographic meteors gave negative results: we found no meteor dynamically similar to Hermes or 2002 SY50. In a second search, done in a set of 62150 radio meteors, we applied two methods (M1, M2) and in both cases we found two streams; the streams found with the M1 method had 43 and 30 members, those found with the M2 method had 39 and 14 members. However, these results do not look convincing, due to the small number of common members in the corresponding streams. We therefore conclude that amongst the IAU meteors used in our search there are no compact streams associated with Hermes and 2002 SY50.  相似文献   

14.
M. Seiß  F. Spahn  Jürgen Schmidt 《Icarus》2010,210(1):298-317
Saturn’s rings host two known moons, Pan and Daphnis, which are massive enough to clear circumferential gaps in the ring around their orbits. Both moons create wake patterns at the gap edges by gravitational deflection of the ring material (Cuzzi, J.N., Scargle, J.D. [1985]. Astrophys. J. 292, 276-290; Showalter, M.R., Cuzzi, J.N., Marouf, E.A., Esposito, L.W. [1986]. Icarus 66, 297-323). New Cassini observations revealed that these wavy edges deviate from the sinusoidal waveform, which one would expect from a theory that assumes a circular orbit of the perturbing moon and neglects particle interactions. Resonant perturbations of the edges by moons outside the ring system, as well as an eccentric orbit of the embedded moon, may partly explain this behavior (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S., Burns, J.A., Dones, L. [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S. [2009]. Astron. J. 138, 272-286). Here we present an extended non-collisional streamline model which accounts for both effects. We describe the resulting variations of the density structure and the modification of the nonlinearity parameter q. Furthermore, an estimate is given for the applicability of the model. We use the streamwire model introduced by Stewart (Stewart, G.R. [1991]. Icarus 94, 436-450) to plot the perturbed ring density at the gap edges.We apply our model to the Keeler gap edges undulated by Daphnis and to a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of the latter ringlet, induced by the perturbations of Pan (Burns, J.A., Hedman, M.M., Tiscareno, M.S., Nicholson, P.D., Streetman, B.J., Colwell, J.E., Showalter, M.R., Murray, C.D., Cuzzi, J.N., Porco, C.C., and the Cassini ISS team [2005]. Bull. Am. Astron. Soc. 37, 766), can be well described by our analytical model. Our analysis yields a Hill radius of Pan of 17.5 km, which is 9% smaller than the value presented by Porco (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236), but fits well to the radial semi-axis of Pan of 17.4 km. This supports the idea that Pan has filled its Hill sphere with accreted material (Porco, C.C., Thomas, P.C., Weiss, J.W., Richardson, D.C. [2007]. Science 318, 1602-1607). A numerical solution of a streamline is used to estimate the parameters of the Daphnis-Keeler gap system, since the close proximity of the gap edge to the moon induces strong perturbations, not allowing an application of the analytic streamline model. We obtain a Hill radius of 5.1 km for Daphnis, an inner edge variation of 8 km, and an eccentricity for Daphnis of 1.5 × 10−5. The latter two quantities deviate by a factor of two from values gained by direct observations (Jacobson, R.A., Spitale, J., Porco, C.C., Beurle, K., Cooper, N.J., Evans, M.W., Murray, C.D. [2008]. Astron. J. 135, 261-263; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767), which might be attributed to the neglect of particle interactions and vertical motion in our model.  相似文献   

15.
Isamu Matsuyama 《Icarus》2013,222(1):411-414
The unusual shape of the Moon given its present rotational and orbital state has been explained as due to a fossil figure preserving a record of remnant rotational and tidal deformation (Jeffreys, H. [1915]. Mem. R. Astron. Soc. 60, 187–217; Lambeck, K., Pullan, S. [1980]. Phys. Earth Planet. Interiors 22, 29–35; Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652–655). However, previous studies assume infinite rigidity and ignore deformation due to changes in the rotational and orbital potentials as the Moon evolves to the present state. We interpret the global lunar figure with a physical model that takes into account this deformation. Although the Moon deforms in response to rotational and orbital changes, a fossil figure capable of explaining the observed figure can be preserved by an elastic lithosphere.  相似文献   

16.
We present a method to calculate the radiation pressure force to gravity ratio on meteoroids from their atmospheric flight. Radiation pressure corrections to meteor orbits are negligible for fireballs; of the order of or less than the measurement errors (≈ 1%) for photographic meteors; of the order of and in some cases substantially larger than the measurement errors (≈ 10%) for radar meteors.  相似文献   

17.
Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or \(\pi \), the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273–281,  https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun–Neptune–TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.  相似文献   

18.
Jupiter and Saturn produce important gravitational impulses on meteoroids released by comet 109P/Swift-Tuttle. The meteoroids from this comet once released follow retrograde orbits that during their periodic approaches to these planets (within 1.6 and 0.9 A.U., respectively) are impulsed gaining orbital energy. This perturbation effect is translated into a net inward shift in the node of the perturbed meteoroids. Such geometry with Jupiter occurred in 2004 over a meteoroid trail ejected by this comet during the 1862 A.D. return of the comet to perihelion. In order to study the predicted outburst produced by one-revolution meteoroids, the Spanish Photographic Meteor Network (SPMN) performed an extensive campaign. As a part of this observational effort here are presented 10 accurate meteoroid orbits. We discuss their origin by comparing them with the theoretical orbital elements of the dust trails intercepting the Earth during the 2004 Perseid return.  相似文献   

19.
Efforts to link minor meteor showers to their parent bodies have been hampered both by the lack of high-accuracy orbits for weak showers and the incompleteness of our sample of potential parent bodies. The Canadian Meteor Orbital Radar (CMOR) has accumulated over one million meteor orbits. From this large data set, the existence of weak showers and the accuracy of the mean orbits of these showers can be improved. The ever-growing catalogue of near-Earth asteroids (NEAs) provides the complimentary data set for the linking procedure. By combining a detailed examination of the background of sporadic meteors near the orbit in question (which the radar data makes possible) and by computing the statistical significance of any shower association (which the improved NEA sample allows) any proposed shower–parent link can be tested much more thoroughly than in the past. Additional evidence for the links is provided by a single-station meteor radar at the CMOR site which can be used to dispel confusion between very weak showers and statistical fluctuations in the sporadic background. The use of these techniques and data sets in concert will allow us to confidently link some weak streams to their parent bodies on a statistical basis, while at the same time showing that previously identified minor showers have little or no activity and that some previously suggested linkages may simply be chance alignments.  相似文献   

20.
The Local Group galaxies enable us to study the impact of metallicity on the structure and evolution of massive stars through spectroscopic analyses. However, color-based target selection for spectroscopy (in absence of known spectral types), though relatively successful, usually produces lists dominated by B-type modest-mass stars. We have developed a friends of friends code to find OB associations in Local Group galaxies (Garcia et al. in Astron. Astrophys. 502:1015, 2009; Bull. Soc. R. Sci. Liege 80:381, 2011a). The interpretation of the association’s color-magnitude diagrams (CMDs) and the automatic determination of evolutionary masses for the members, allow a more insightful choice of candidates for spectroscopy and to spot out potential advanced evolutionary stages (Garcia et al. in Astron. Astrophys. 523:A23, 2010). We show our results on the dwarf irregular IC 1613 as illustration of the potential of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号