首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the set-up and the results of a supercritical radiative shock experiment performed with the LULI nanosecond laser facility. Using specific designed targets filled with xenon gaz at low pressure, the propagation of a strong shock with a radiative precursor is evidenced. The main measured quantities related to the shock (electronic density, propagation velocities, temperature, radial dimension) are presented and compared with various numerical simulations.  相似文献   

2.
Based on a self-consistent solution of the equations of gas dynamics, kinetics of hydrogen atomic level populations, and radiative transfer, we analyze the structure of a shock wave that propagates in a partially ionized hydrogen gas. We consider the radiative transfer at the frequencies of spectral lines by taking into account the effects of a moving medium in the observer's frame of reference. The flux in Balmer lines is shown to be formed behind the shock discontinuity at the initial hydrogen recombination stage. The Doppler shift of the emission-line profile is approximately one and a half times smaller than the gas flow velocity in the Balmer emission region, because the radiation field of the shock wave is anisotropic. At Mach numbers M1?10 and unperturbed gas densities σ1=10?10 g cm?3, the Doppler shift is approximately one third of the shock velocity U1. The FWHM of the emission-line profile δ ? is related to the shock velocity by δ ? k ? U1, where k ? = 1, 0.6, and 0.65 for the Hα, Hβ, and Hγ lines, respectively.  相似文献   

3.
We report on the first production of “tailored” blast waves in cluster media using a 1 ps laser pulse focused to 2×1016 W/cm2. This new technique allows cylindrical blast waves to be produced with a strong axial modulation of variable spatial frequency, as a seed for instability growth. Energy deposition is modified by changing the cluster density whilst keeping the atomic density of the target constant. Electron density maps show the production of strongly modulated blast waves and the development of a thin shell structure in H at late times, and the trajectories show blast waves forming in H, and Ar. In Xe, a blast wave does not form on the timescales studied. Analysis of astrophysical similarity parameters suggests that a hydrodynamically similar situation is created in H, and that further evolution would create a regime where radiative effects may be influential in Ar and Xe.  相似文献   

4.
5.
We report submillimeter CO(6-5) observations around 15 nearby young stellar objects of low mass. The correlation between linewidth and peak temperature indicates shock heating of dense gas, presumably at the origin of molecular outflows.  相似文献   

6.
Schrijver  Carolus J. 《Solar physics》2001,198(2):325-345
Observations with the Transition Region and Coronal Explorer, TRACE, show frequent catastrophic cooling and evacuation of quiescent solar coronal loops over active regions. We analyze this process using image sequences taken in passbands showing plasma from a few million degrees down to less than 100 000 K, taken at a cadence of 90 s. The loop evacuation often occurs after plasma high in the corona has cooled to transition-region or even chromospheric temperatures. The cooling loops frequently show Lyman-α and C iv emission developing initially near the loop tops; later, that cool plasma usually slides down on both sides of the loop. The relatively cool material often forms clumps that move at speeds of up to 100 km s−1. The downward acceleration is no more than 80 m s−2, less than of the surface gravity. Cooling appears to progress with delays of the order of up to 103 s between thin, neighboring strands within flux bundles with cross-sections of at least 1–2 Mm, so that hot and cool loops are transiently outlined at essentially the same location. The falling material at temperatures of ≲ 0.1 MK shows no evidence of loop braiding on scales above the resolution of ∼1 Mm; loop cross-sections appear independent of height. Existing numerical models suggest that the observed catastrophic loop-top cooling in non-flaring conditions can occur if the loop heating precipitously drops by 1.5 orders of magnitude or more, first and most strongly high in the corona. Using order-of-magnitude geometrical arguments, we estimate that loop bundles in the interior of an active region undergo catastrophic cooling on average once every 2 days, while in a decayed bipolar region that time interval is approximately a week. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005211925515  相似文献   

7.
Up to now, exact measurements of chromospheric magnetic fields have not been as successful as those done in the photosphere. We are currently engaging in diagnostics of chromospheric magnetic fields with the Mg b2 line by employing the Multi-Channel Solar Telescope at Huairou Solar Observing Station. Therefore, how to improve accuracy in the measurement is the main issue of our present study. To this end, we first study linear calibration coefficients for longitudinal and transverse components of chromospheric fields, which vary with wavelength, in the case of a weak field assumption. Then the polarization crosstalk introduced by instruments is analyzed in detail with two numerical simulation methods. Comparisons of the po- larization signals between cases with and without correction are presented. The result indicates that polarization accuracy is greatly improved after crosstalk correction.  相似文献   

8.
Recent observations of the compact source embedded within the supernova remnant RCW 103 rekindle interest in the origin of this object's emission. We contrast several models in which neutron-star cooling powers RCW 103. Specifically, either the presence of an accreted envelope or a sufficiently intense magnetic field can account for the X-ray emission from this object.  相似文献   

9.
10.
We have calculated emission by CO molecules from interstellar shock waves. Two approximations have been used to determine the population densities,   nJ   , of the rotational levels, J : steady state  (∂/∂ t ≡ 0)  and statistical equilibrium  (d/d t ≡ 0)  . A large-velocity-gradient approximation to the line-transfer problem was adopted in both cases. We find that there can be substantial differences between the values of the integrated rotational line intensities calculated in steady state and in the limit of statistical equilibrium. On the other hand, although CO can be the dominant coolant towards the rear of the cooling flow which follows the dynamical heating of the gas, the rate of cooling computed assuming statistical equilibrium is likely to be reasonably accurate, given that the limit of statistical equilibrium is approached in this region.  相似文献   

11.
Relativistic shocks provide an efficient method for high-energy particle acceleration in many astrophysical sources. Multiple shock systems are even more effective and of importance, for example, in the internal shock model of gamma-ray bursts. We investigate the reacceleration of pre-existing energetic particles at such relativistic internal shocks by the first order Fermi process of pitch angle scattering. We use a well established eigenfunction method to calculate the resulting spectra for infinitely thin shocks. Implications for GRBs and relativistic jets are discussed. Paul Dempsey would like to thank IRCSET for their financial support.  相似文献   

12.
The central arcminute of the Perseus cooling flow galaxy, NGC 1275, has been mapped with the JCMT in 12CO(2–1) at 21-arcsec resolution, with detections out to at least 36 arcsec (12 kpc). Within the limits of the resolution and coverage, the distribution of gas appears to be roughly east–west, consistent with previous observations of CO, X-ray, Hα and dust emission. The total detected molecular hydrogen mass is ∼ 1.6 × 1010 M, using a Galactic conversion factor. The inner central rotating disc is apparent in the data, but the overall distribution is not one of rotation. Rather, the line profiles are bluewards-asymmetric, consistent with previous observations in H  i and [O  iii ]. We suggest that the blueshift may be due to an acquired mean velocity of ∼ 150 km s−1 imparted by the radio jet in the advancing direction. Within the uncertainties of the analysis, the available radio energy appears to be sufficient, and the interpretation is consistent with that of Bo¨hringer et al. for displaced X-ray emission. We have also made the first observations of 13CO(2–1) and 12CO(3–2) emission from the central 21-arcsec region of NGC 1275 and combined these data with IRAM data supplied by Reuter et al. to form line ratios over equivalent, well-sampled regions. An LVG radiative transfer analysis indicates that the line ratios are not well reproduced by single values of kinetic temperature, molecular hydrogen density and abundance per unit velocity gradient. At least two temperatures are suggested by a simple two-component LVG model, possibly reflecting a temperature gradient in this region.  相似文献   

13.
The evolution of star-forming core analogues undergoing inside-out collapse is studied with a multipoint chemodynamical model which self-consistently computes the abundance distribution of chemical species in the core. For several collapse periods the output chemistry of infalling tracer species such as HCO+, CS and N2H+ is then coupled to an accelerated Λ-iteration radiative transfer code, which predicts the emerging molecular line profiles using two different input gas/dust temperature distributions. We investigate the sensitivity of the predicted spectral line profiles and line asymmetry ratios to the core temperature distribution, the time-dependent model chemistry, as well as to ad hoc abundance distributions. The line asymmetry is found to be strongly dependent on the adopted chemical abundance distribution. In general, models with a warm central region show higher values of blue asymmetry in optically thick HCO+ and CS lines than models with a starless core temperature profile. We find that in the formal context of Shu-type inside-out infall, and in the absence of rotation or outflows, the relative blue asymmetry of certain HCO+ and CS transitions is a function of time and, subject to the foregoing caveats, can act as a collapse chronometer. The sensitivity of simulated HCO+ line profiles to linear radial variations, subsonic or supersonic, of the internal turbulence field is investigated in the separate case of static cores.  相似文献   

14.
We describe experiments that investigate the capability of an experimental platform, based on laser-driven blast waves created in a medium of atomic clusters, to produce results that can be scaled to astrophysical situations. Quantitative electron density profiles were obtained for blast waves produced in hydrogen, argon, krypton and xenon through the interaction of a high intensity (I ≈ 1017 Wcm−2), sub-ps laser pulse. From this we estimate the local post-shock temperature, compressibility, shock strength and adiabatic index for each gas. Direct comparisons between blast wave structures for consistent relative gas densities were achieved through careful gas jet parameter control. From these we investigate the applicability of different radiative and Sedov-Taylor self-similar solutions, and therefore the (ρ,T) phase space that we can currently access.  相似文献   

15.
Patrick Michel  Willy Benz 《Icarus》2004,168(2):420-432
In this paper, we analyze the effect of the internal structure of a parent body on its fragment properties following its disruption in different impact energy regimes. To simulate an asteroid breakup, we use the same numerical procedure as in our previous studies, i.e., a 3D SPH hydrocode to compute the fragmentation phase and the parallel N-body code pkdgrav to compute the subsequent gravitational re-accumulation phase. To explore the importance of the internal structure in determining the collisional outcome, we consider two different parent body models: (1) a purely monolithic one and (2) a pre-shattered one which consists of several fragments separated by damaged zones and small voids. We present here simulations spanning two different impact energy regimes—barely disruptive and highly catastrophic—corresponding to the formation of the Eunomia and Koronis families, respectively. As we already found for the intermediate energy regime represented by the Karin family, pre-shattered parent bodies always lead to outcome properties in better agreement with those of real families. In particular, the fragment size distribution obtained by disrupting a monolithic body always contains a large gap between the largest fragment and the next largest ones, whereas it is much more continuous in the case of a pre-shattered parent body. In the latter case, the ejection speeds of large fragments are also higher and a smaller impact energy is generally required to achieve a similar degree of disruption. Hence, unless the internal structure of bodies involved in a collision is known, predicting accurately the outcome is impossible. Interestingly, disrupting a pre-shattered parent body to reproduce the Koronis family yields a fragment size distribution characterized by four almost identical largest objects, as observed in the real family. This peculiar outcome has been found before in laboratory experiments but is obtained for the first time following gravitational re-accumulation. Finally, we show that material belonging to the largest fragments of a family originates from well-defined regions inside the parent body (the extent and location of which are dependent upon internal structure), despite the many gravitational interactions that occur during the re-accumulation process. Hence fragment formation does not proceed stochastically but results directly from the velocity field imparted during the impact.  相似文献   

16.
Progress in understanding the Langmuir waves which accompany collisionless shocks everywhere in the solar system is briefly reviewed, with some emphasis on the discovery papers, and with discussion and illustrative examples of the most recent progress.  相似文献   

17.
18.
The role of excited molecular hydrogen as a powerful observational tool is examined in the context of shock phenomena in molecular clouds, particularly in star forming regions. Conclusions that may be drawn from line intensities and line profiles, and the properties of J and C shocks in a bow shock structure are discussed.  相似文献   

19.
Viscous resistance to changes in the volume of a gas arises when different degrees of freedom have different relaxation times. Collisions tend to oppose the resulting departures from equilibrium and, in so doing, generate entropy. Even for a classical gas of hard spheres, when the mean free paths or mean flight times of constituent particles are long we find a non-vanishing bulk viscosity. Here we apply a method recently used to uncover this result for a classical rarefied gas to radiative transfer theory, and derive an expression for the radiative stress tensor for a grey medium with absorption and Thomson scattering. We determine the transport coefficients through the calculation of the comoving entropy generation. When scattering dominates absorption, the bulk viscosity may be much larger than either the shear viscosity or the thermal conductivity.  相似文献   

20.
Radiative transfer calculations for interstellar H2O have been performed using accelerated A-iteration (ALI) techniques. The results show strong maser action from known maser transitions, as well as predicting new strong maser transitions for > 1.5 THz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号