首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Wind flow has been studied in situations where it encounters porous and solid windbreaks, but there has been a lack of research exploring turbulent wind dynamics around and in the lee of real vegetation elements. In dryland contexts, sparse vegetation plays an important role in modulating both the erosivity of the wind and the erodibility of surfaces. Therefore, understanding the interactions between wind and vegetation is key for improving wind erosion modelling in desert landscapes. In this study, turbulent wind flow around three typical dryland vegetation elements (a grass clump, a shrub, and a tree) was examined in Namibia using high‐frequency (10 Hz) sonic anemometry. Spatial variations in mean wind velocity, as well as Reynolds stresses and coherent turbulent structures in the flow, were compared and related to the porosities and configurations of the study elements. A shelter parameter, originally proposed by Gandemer ( 1979 , Journal of Wind Engineering and Industrial Aerodynamic 4 : 371–389), was derived to describe the combined impact of the different elements on the energy and variability of horizontal wind flow. Wind velocity was reduced by 70% in the immediate lee of the grass and 40% in the lee of the shrub, but velocity recovered exponentially to equilibrium over the same relative distance in both cases (~9 element heights downwind). Quadrant analysis of the high‐frequency wind flow data revealed that the grass clump induced a small recirculation zone in its lee, whereas the shrub did not. Also, higher Reynolds shear stress and higher ‘flow positivity magnitude’ [ratio of Q1 (outward interaction) and Q4 (sweep) quadrants to Q2 (ejection) and Q3 (inward interaction) quadrants] was generally observed in the wake of the grass. These differences arose because the porosity of the grass clump (53%) was lower than the porosity of the shrub (69%), and thus bleed flow through the shrub was more significant. The bluff‐body behaviour of the grass resulted in a more intense and more extensive sheltering effect than the shrub, which implies that overall sediment transport potential is lower in the wake of the grass. The tree displayed a different wake structure to the grass and shrub, owing to the elevation of its crown. A ‘bottom gap’ effect was observed, whereby wind velocities increased possibly due to streamline compression in the gap between the ground and the underside of the tree crown. Differences in flow momentum between the bottom gap and the low‐pressure leeward region of the crown are a probable explanation for the formation of a large recirculation vortex. The bottom gap effect led to decreased sheltering up to three tree heights downwind, but the surface became increasingly protected by the frontal impact of the crown over a further eight tree heights downwind (~30 m). The extraction of momentum from the air by the tree therefore resulted in a far more extensive sheltering effect compared to the grass and shrub. This study represents an important investigation of the impact of different vegetation types on turbulent wind flow, and results can be integrated as parameterizations into spatial sediment transport models that explore landscape‐scale change on semi‐vegetated desert surfaces. Copyright © 2016 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

2.
Wind erosion is an important soil erosion and hence a soil degradation problem in the Sahelian zone of West Africa. Potentially, the characteristic dryland vegetation with scattered trees and shrubs can provide for soil erosion protection from wind erosion, but so far adequate quantification of vegetation impacts is lacking. The aim of this study was to develop a model of wind‐blown soil erosion and sediment transport around a single shrub‐type vegetation element. Starting with the selection of a suitable transport equation from four possible sediment transport equations, the effects of a single vegetation element on wind speed were parameterized. The modified wind speed was then applied to a sediment transport equation to model the change in sediment mass flux around a shrub. The model was tested with field data on wind speed and sediment transport measured around isolated shrubs in a farmer's field in the north of Burkina Faso. The simple empirical equation of Radok (Journal of Glaciology 19 : 123–129, 1977) performed best in modelling soil erosion and sediment transport, both for the entire event duration and for each minute within an event. Universal values for the empirical constants in the sediment transport equation could not be obtained because of the large variability in soil and roughness characteristics. The pattern of wind speed, soil erosion and sediment transport behind a shrub and on either side of it was modelled. The wind speed changed in the lee of the vegetation element depending on its porosity, height and downwind position. Wind speed was recovered to the upstream speed at a downwind distance of 7·5 times the height of the shrub. The variability in wind direction created a ‘rotating’ area of influence around the shrub. Compared to field measurements the model predicted an 8% larger reduction in sediment transport in the lee of the vegetation element, and a 22% larger increase beside the vegetation element. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Attempts to reconstruct past changes in climate‐related forcing of dryland landscapes are hampered by the lack of an adequate quantitative framework for understanding the production and interpretation of dated sedimentary records. In drylands, as in other environments, information on past forcing conditions is progressively modified, degraded and removed from the available stratigraphic record by a series of ‘filters’ involving changes in the primary forcing factors themselves, geomorphological processes and the sampling/dating procedures. In this paper we describe a quantitative model that includes these effects, and use the model to examine the nature of preserved dryland sedimentary records and their relationships to primary forcing conditions: thicker preserved sedimentary records reflect periods of more intense aeolian activity; localized switching between erosion and deposition results in discontinuous and highly variable stratigraphic sequences; a preservation bias towards younger deposits is observed, potentially leading to a continuum of accumulation that decays approximately in proportion to . Time periods not represented by deposition can in some cases be interpreted as periods of higher precipitation and/or lower wind energy. An asymmetry exists between the efficiency with which past ‘drier’ and ‘wetter’ episodes can be identified, which relates to the time‐separation of depositional periods and the correct distinction between hiatuses due to forcing conditions and those due to under‐sampling. Relevant to this is the effect of random dating errors (statistical uncertainty), which (increasingly with age) filter‐out higher frequency events from the record. A new data treatment method (termed Accumulation Rate Variability) provides an efficient proxy for accumulation rates, and therefore the intensity of aeolian activity, with significant improvements over existing date–frequency methods. The filtering problem discussed applies to all attempts at understanding the timing and nature of past events, independent of the proxies and dating methods employed. Further explicit analysis of these issues would be beneficial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Raindrop impact is an important process in soil erosion. Through its pressure and shear stress, raindrop impact causes a significant detachment of the soil material, making this material available for transport by sheet flow. Thanks to the accurate Navier–Stokes equations solver Gerris, we simulate the impact of a single raindrop of diameter D, at terminal velocity, on water layers of different thickness h: , , D, 2D, in order to study pressures and shear stresses involved in raindrop erosion. These complex numerical simulations help in understanding precisely the dynamics of the raindrop impact, quantifying in particular the pressure and the shear stress fields. A detailed analysis of these fields is performed and self‐similar structures are identified for the pressure and the shear stress on the soil surface. The evolution of these self‐similar structures are investigated as the aspect ratio h/D varies. We find that the pressure and the shear stress have a specific dependence on the ratio between the drop diameter and the water layer thickness, and that the scaling laws recently proposed in fluid mechanics are also applicable to raindrops, paving the road to obtain effective models of soil erosion by raindrops. In particular, we obtain a scaling law formula for the dependence of the maximum shear stress on the soil on the water depth, a quantity that is crucial for quantifying erosion materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Sunset Crater in north‐central Arizona (USA) is a 900‐year‐old scoria‐cone volcano. Wind action has redistributed its widespread tephra deposit into a variety of aeolian dune forms that serve as a terrestrial analog for similar landforms and aeolian processes on Mars. Fieldwork was conducted to collect essential geomorphological and sedimentological data, and to establish a baseline for the type and morphometry of dunes, physical properties, interactions with topography, and saltation pathways. Our analyses focused primarily on coppice dunes, falling dunes, wind ripples, and sand streaks. For all collected volcaniclastic aeolian sediment samples, the sand‐size fraction dominated, ranging from almost 100% sand to 74.6% sand. No sample contained more than 1.6% silt. The composition is overwhelmingly basaltic with non‐basaltic particles composing 2 to 6% of the total. Coppice (nebkha) dunes form where clumps of vegetation trap saltating particles and create small mounds or hummocks. Mean grain size for coppice dune samples is coarse sand. Measured dune height for 15 coppice dunes ranged from 0.3 to 3.3 m with a mean of 1 m. Mean length was 6.7 m and mean width was 4.8 m. Falling dunes identified in this study are poorly developed and thin, lacking a prominent ramp‐like structure. Mean wavelength for three sets of measured ripples ranged from 22 to 36 cm. Sand streaks extend downwind for more than a kilometer and are up to 200 m in width. They commonly occur on the lee side of mesas and similar landforms and are typically the downwind continuation of falling dunes. Falling dunes, wind ripples, and sand streaks have been identified on Mars, while coppice dunes are similar to Martian shadow or lee dunes in which sand accumulates in the lee of obstacles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In the semi‐arid western United States, water availability plays a defining role in land use. Soil moisture, vegetation, and microtopography are key variables in the hydrologic function of these ecosystems. Previous research has not addressed the influence of site‐specific aspect, vegetation, or slope gradient on terracette soil moisture patterns in semi‐arid rangelands. Therefore, the objectives of this study were to: (1) assess the influence of terracette site aspect, vegetation cover, and slope on soil moisture; (2) conceptualize conditions at the hillslope scale given terracette morphology; and (3) estimate the extent of terracettes at a regional scale. The Simultaneous Heat and Water (SHAW) model was used to simulate soil water dynamics of terracettes given variations in site conditions. These results were coupled with time‐of‐flight laser scans to quantify terracette bench and riser percent‐area, and statewide assessments of terracette extent using digital orthoimagery and a geographical information system (GIS). Modeling results indicated site aspect had minimal influence (±0.005 m3 m?3) on terracette soil moisture. Vegetation, represented as leaf area index (LAI), had the single‐most influential effect on terracette volumetric water content (θ v) demonstrated by an inverse relationship of LAI to mean terracette hillslope θ v; and slope increases of ≥15% on northern azimuths increased mean θ v which contrasted with southern azimuths for similar slope increases. Laser scanning results indicated bench width and riser length could be estimated from mean site slope (R 2 = 0.82 risers and R 2 = 0.93 benches). Aerial orthoimagery/GIS assessments estimated >159 000 ha of terracettes throughout the State of Idaho, with >41 000 ha (~26%) occurring on lands managed as grazing allotments. These findings provide an increased understanding of rangeland hydrologic processes as influenced by cattle density, vegetation, and terracettes which can aide land managers in their selection and application of best management practices on these lands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Soil loss caused by wind erosion is a widespread phenomenon in the Sahelian zone of West Africa. According to Sahelian farmers, scattered vegetation standing in amongst the crop has the potential for a wind erosion control strategy. This study was conducted to study the effect of single vegetation elements on the pattern of average wind speed and sediment transport. This was done by two experiments that were carried out during the rainy seasons of 2002 and 2003 in north Burkina Faso, West Africa. Wind speeds were measured using three sonic anemometers, at a sampling frequency of 16 Hz. Sediment transport was determined by calculating the mass fluxes from 17 MWAC catchers. In this study, a shrub was defined as a vegetation element with branches until ground and a tree as a vegetation element with a distinctive trunk below a canopy. Behind shrubs wind speed near the soil surface was reduced up to approximately seven times the height of the shrub. The observed reduction in wind speed in the area where wind speed was reduced was 15 per cent on average. At the sides of the shrub, wind speed was increased, by on average 6 per cent. As the area of increase in wind speed is one‐third of the area of decrease in wind speed, the net effect of a shrub is a reduction in wind speed. A similar pattern was visible for the pattern of sediment transport around a shrub. Downwind of a shrub, sediment transport was diminished up to seven times the height of the shrub. Probably most of this material was trapped by the shrub. Trees showed a local increase of wind around the trunk, which is expected to relate to an increase in sediment transport around the trunk. Mass flux measurements of sediment transport were not made, but visual observations in the field substantiate this. Behind the canopy of a tree, a tree acts similarly to a shrub regarding its effects on average wind speed, but as a tree is generally a larger obstacle than a shrub the extent of this effect is larger than for shrubs. Thus, whereas shrubs are more effective than trees regarding their direct effect on soil loss by trapping sand particles near the soil surface, trees are more effective in affecting soil loss indirectly by reducing the wind speed downwind more effectively than shrubs. Therefore, to reduce soil loss in an area, the presence of both trees and shrubs is crucial. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Ebb-tidal deltas are highly dynamic environments affected by both waves and currents that approach the coast under various angles. Among other bedforms of various scales, these hydrodynamics create small-scale bedforms (ripples), which increase the bed roughness and will therefore affect hydrodynamics and sediment transport. In morphodynamic models, sediment transport predictions depend on the roughness height, but the accuracy of these predictors has not been tested for field conditions with strongly mixed (wave–current dominated) forcing. In this study, small-scale bedforms were observed in the field with a 3D Profiling Sonar at five locations on the Ameland ebb-tidal delta, the Netherlands. Hydrodynamic conditions ranged from wave dominated to current dominated, but were mixed most of the time. Small-scale ripples were found on all studied parts of the delta, superimposed on megaripples. Even though a large range of hydrodynamic conditions was encountered, the spatio-temporal variations in small-scale ripple dimensions were relatively small (height 0.015 m, length 0.11 m). Also, the ripples were always highly three-dimensional. These small dimensions are probably caused by the fact that the bed consists of relatively fine sediment. Five bedform height predictors were tested, but they all overestimated the ripple heights, partly because they were not created for small grain sizes. Furthermore, the predictors all have a strong dependence on wave- and current-related velocities, whereas the ripple heights measured here were only related to the near-bed orbital velocity. Therefore, ripple heights and lengths in wave–current-dominated, fine-grained coastal areas ( mm) may be best estimated by constant values rather than values dependent on the hydrodynamics. In the case of the Ameland ebb-tidal delta, these values were found to be m and m. ©2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

9.
Accurate knowledge of the surface roughness and the resultant wind speed are important for many applications, such as climatic models, wind power meteorology, agriculture and erosion hazards, especially on sand dunes in arid and semi‐arid environments, where vegetation cover is scarce. In this study we aimed at quantifying the effects of vegetation cover and topography on surface roughness over a stabilizing dune field on the southern coast of Israel. Forty‐six wind measurements were made at various distances from the coastline, ranging from 10 to 2800 m, and z0 values were calculated from the wind measurements based on the ratio between the wind gust and the average wind speed. We estimated vegetation cover using the soil adjusted vegetation index (SAVI) from Landsat satellite images for the upwind sector at various lengths, ranging from 15 to 400 m, and based on digital elevation models and differential GPS field measurements we calculated the topographic variable of the relative heights of the stations. z0 values were positively correlated with the winter SAVI values (r = 0·87 at an upwind length of 200 m) and negatively correlated with the relative height (r = ?0·68 at an upwind length of 200–400 m for the inland dune stations). Using these variables we were able to create a map of estimated z0 values having an accuracy of over 64%. Such maps provide a better understanding of the spatial variability in both wind speed and sand movement over coastal dune areas. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Forest fires and post-fire practices influence sediment connectivity (SC). In this study, we use the ‘aggregated index of connectivity’ (AIC) to assess SC in five Mediterranean catchments (198–1090 ha) affected by a wildfire in 2012 in south-eastern Spain. Two temporal scenarios were considered, immediately after the fire and before post-fire management, and 2 years after the fire including all practices (hillslope barriers, check-dams, afforestation, salvage logging and skid trails). One LiDAR (light detection and ranging)-derived digital elevation model (DEM, 2 m × 2 m resolution) was generated, per scenario. The five catchment outlets were established as the computation target (AICOUT), and structural and functional SC were calculated. Index outputs were normalized to make the results of the non-nested catchments comparable (AICN-OUT). The output analysis includes the SC distribution along the catchments and at local scale (929 sub-catchments, 677 in the burned area), the hillslope and channel measures' effect on SC, and a sedimentological analysis using observed area-specific sediment yield (SSY) at 10 new (built after post-fire practices) concrete check-dams located in the catchments (SSY = 1.94 Mg ha−1 yr−1; σ = 1.22). The catchments with more circular shapes and steeper slopes were those with higher AICN-OUT. The structural SC maps – removing the rainfall erosivity influence – allowed evaluating the actual role played by the post-fire practices that reduced SC ( x¯= − 1.19%; σ = 0.41); while functional SC was linked to the actual change of SC ( x¯= + 5.32%; σ = 0.62). Hillslope treatments resulted in significant changes on AICN-OUT at sub-catchment scale with certain disconnectivity. A good and positive correlation was found between the SSY and the changes of AICN-OUT. However, the coarse DEM resolution explained the lack of effect of the rock check-dams – located on the secondary channels – on AICN-OUT. AICN-OUT proved to be a useful tool for decision making in post-fire restoration, but an optimal input data is still necessary to refine calculations.  相似文献   

11.
At high latitudes, the albedo and energy budget of shrub‐tundra landscapes is determined by the relationship between the fractional snow cover and the fraction of vegetation protruding above the snowpack. The exposed vegetation fraction is affected by the bending and/or burial of shrubs in winter and their spring‐up during melt. Little is known about the meteorological conditions and snowpack and shrub properties required to cause bending, and few quantitative measurements of bending processes exist. Here, a model combining the few, mostly qualitative, observations available with a biomechanical model representing branches as cantilevers is proposed to provide a first approximation of bending mechanisms. The exposed vegetation fraction is then calculated using structural parameters of shrubs measured at two sites in Canada: the Granger Basin in the Yukon Territory and Trail Valley Creek in the Northwest Territories. The exposed vegetation fraction is in turn used to calculate albedo, which is evaluated against measurements at the two sites. The model considerably improves modelled albedo compared to a model which only buries but does not bend shrubs at TVC, where shrubs become completely buried. However, the model overestimates albedo at GB where only a few shrubs get buried. The bending model is then used to calculate a compression factor for use in a simple parameterization of the exposed vegetation fraction proposed by previous investigators. The parameterization, which is simpler and computationally less expensive than the full model, is evaluated and found to perform well. Despite the need for further developments, the model provides a first approximation of bending processes and contributes to the identification of measurements that are needed in order to improve the model and our understanding of the bending of shrubs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
T. H. Brikowski 《水文研究》2015,29(7):1746-1756
Adaptation and mitigation efforts related to global trends in climate and water scarcity must often be implemented at the local, single‐catchment scale. A key requirement is understanding the impact of local climate and watershed characteristics coupled with these regional trends. For surface water, determination of multi‐parameter runoff elasticities is a promising tool for achieving such understanding, as explored here for two surface‐water dependent basins in Texas. The first basin is the water supply for Dallas‐Ft. Worth (DFW), and exhibits relatively high precipitation elasticity (proportional change in runoff to change in precipitation) εP = 2.64, and temperature elasticity εT = ? 0.41. Standard precipitation–temperature elasticity diagrams exhibit unusual concave contours of runoff change, indicating influence of additional parameters, which can be isolated using multi‐parameter approaches. The most influential local parameter in DFW is unexpected reduced runoff fraction in cooler wetter years. Those years exhibit increased summer (JJA) precipitation fraction, but predominant cracking soils in DFW minimize JJA runoff, yielding negative . A comparative basin near Houston shows positive , reflecting the local impact of tropical cyclones and lesser abundance of cracking soils. Both basins exhibit positive elasticity to 1‐year previous precipitation (e.g. DFW εP ? 1 = 1.24), reflecting the influence of soil moisture storage. Only DFW exhibits negative elasticity to 2‐year previous precipitation (εP ? 2 = ? 0.65), reflecting multi‐year influence of vegetation growth and increased evapotranspiration. Using these elasticities, analysis of historical multi‐decadal climate departures for DFW indicates the 80% decrease in runoff during the 1950–1957 drought of record was primarily caused by reduced precipitation. Runoff 56% above‐normal during an unprecedented 1986–1998 wet period was primarily caused by increased precipitation. Since 2000, despite precipitation slightly above normal, runoff has decreased 20%, primarily in response to ~ 1°C warming. Future precipitation droughts superimposed on this new drier normal are likely to be much more severe than historical experience would indicate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Soils in post‐wildfire environments are often characterized by a low infiltration capacity with a high degree of spatial heterogeneity relative to unburned areas. Debris flows are frequently initiated by run‐off in recently burned steeplands, making it critical to develop and test methods for incorporating spatial variability in infiltration capacity into hydrologic models. We use Monte Carlo simulations of run‐off generation over a soil with a spatially heterogenous saturated hydraulic conductivity (Ks) to derive an expression for an aerially averaged saturated hydraulic conductivity ( ) that depends on the rainfall rate, the statistical properties of Ks, and the spatial correlation length scale associated with Ks. The proposed method for determining is tested by simulating run‐off on synthetic topography over a wide range of spatial scales. Results provide a simplified expression for an effective saturated hydraulic conductivity that can be used to relate a distribution of small‐scale Ks measurements to infiltration and run‐off generation over larger spatial scales. Finally, we use a hydrologic model based on to simulate run‐off and debris flow initiation at a recently burned catchment in the Santa Ana Mountains, CA, USA, and compare results to those obtained using an infiltration model based on the Soil Conservation Service Curve Number.  相似文献   

15.
Organic carbon (OC) in valley bottom downed wood and soil that cycles over short to moderate timescales (101 to 105 years) represents a large, dynamic, and poorly quantified pool of carbon whose distribution and residence time affects global climate. We sought to quantify this potentially important OC pool at the watershed scale to estimate its magnitude and age, as well as determine the controls on its variability within watersheds. To do this, we compared four disparate mountain river basins to show that mountain river valley bottoms store substantial estimated OC stocks in floodplain soil and downed wood (median OC of MgC/ha, n = 178). Although soil OC is generally young (exhibiting a median radiocarbon fraction modern value of , n = 121), geomorphic processes regulate soil burial and processes that limit microbial respiration, preserving aged OC in especially deep, unconfined, wet, and/or high-elevation floodplain soils. We statistically modeled OC stocks to show that valley bottom morphology and hydrology regulate variability in floodplain soil retention and resulting variability in OC stock and age in floodplain soil throughout river networks. Comparing the distribution of OC stocks between wood and soil, we find that where floodplain soils are present, their OC stocks are generally greater than OC stocks stored in wood. Our results suggest that although mountain rivers may accumulate large OC stocks relatively rapidly, those stocks are highly sensitive to alterations in soil and wood retention, implying that human alterations to either disturb or restore floodplain wood and soil storage may have substantial impacts on OC storage in river corridors. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
Recent studies of soil loss by the integrated action of raindrop impact and wind transport have demonstrated the significance of this mechanism. This paper presents data obtained during wind‐tunnel experiments examining the ‘Raindrop Detachment and Wind‐driven Transport’ (RD‐WDT) process to investigate average sand particle trajectory and the spatial extent at which the process operates. In the experimental design, at the same time as the horizontal wind velocities of 6·4, 10, and 12 m s–1 passed through the tunnel, rainfall was simulated falling on very well sorted dune sand. The aspect and slope of the sand bed was varied to reproduce both windward (Ww) and leeward (Lw) slopes of 4º and 9º with respect to the prevailing wind direction. The average sand particle trajectories by the RD‐WDT process ( ) were estimated by a mass‐distribution function, which was integrated over a 7‐m uniform slope segment. The results showed that depended statistically upon the wind shear velocity (u*), and the effect of the slope gradient (θ) was insignificant on . This was different from that of the windless rain process ( ), ‘Raindrop Detachment and Splash‐driven Transport’ (RD‐ST), the spatial range of which relies strongly on θ. Additionally, was approximately 2·27 ± 2·2 times greater than the average path of a typical saltating sand particle of the rainless wind ( ), ‘Wind Erosion Saltation Transport’ (WE‐ST). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Field‐measured patterns of mean velocity and turbulent airflow are reported for isolated barchan dunes. Turbulence was sampled using a high frequency sonic anemometer, deriving near‐surface Reynolds shear and normal stresses. Measurements upwind of and over a crest‐brink separated barchan indicated that shear stress was sustained despite a velocity reduction at the dune toe. The mapped streamline angles and enhanced turbulent intensities suggest the effects of positive streamline curvature are responsible for this maintenance of shear stress. This field evidence supports an existing model for dune morphodynamics based on wind tunnel turbulence measurements. Downwind, the effect of different dune profiles on flow re‐attachment and recovery was apparent. With transverse incident flow, a re‐attachment length between 2·3 and 5·0h (h is dune brink height) existed for a crest‐brink separated dune and 6·5 to 8·6h for a crest‐brink coincident dune. The lee side shear layer produced elevated turbulent stresses immediately downwind of both dunes, and a decrease in turbulence with distance characterized flow recovery. Recovery of mean velocity for the crest‐brink separated dune occurred over a distance 6·5h shorter than the crest‐brink coincident form. As the application of sonic anemometers in aeolian geomorphology is relatively new, there is debate concerning the suitability of processing their data in relation to dune surface and streamline angle. This paper demonstrates the effect on Reynolds stresses of mathematically correcting data to the local streamline over varying dune slope. Where the streamline angle was closely related to the surface (windward slope), time‐averaged shear stress agreed best with previous wind tunnel findings when data were rotated along streamlines. In the close lee, however, the angle of downwardly projected (separated) flow was not aligned with the flat ground surface. Here, shear stress appeared to be underestimated by streamline correction, and corrected shear stress values were less than half of those uncorrected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Release of nitrogen compounds into groundwater, particularly those compounds from excessive agricultural fertilization, is a major concern in an aquifer recharge. Among the nitrogen compounds, ammonium ( ) is a common one. In order to assess the risk of agricultural fertilizer contamination to an aquifer through infiltration, adsorption onto a loamy agricultural soil profile (0–0.60 m depth) was studied using a soil column experiment and modelling simulation. The soil used in the experiment was drawn from an agricultural field in Xinzhen, Fangshan district, Beijing, China, and reconstituted in laboratory soil columns. Column experiments were conducted using bromide (conservative tracer) and ‐bearing aqueous solutions. The ammonium concentrations in the soil water samples were measured, and their values were plotted as the breakthrough curves. The chemical's soil–water distribution coefficients (Kd) were calculated using breakthrough curves. Then the retardation factor (R) in saturated soil was calculated. For the ‐bearing aqueous solutions, the strongest adsorption occurred at the soil depth of 0.30–0.45 m. The convection–dispersion equation model and chemical non‐equilibrium model in Hydrus‐1D were used to simulate transport in the loamy soil. The two‐site chemical non‐equilibrium model in Hydrus‐1D was best to simulate transport through the soil column. Parameter sensitivity study was conducted to investigate the influences of solute transport by Kd, the fraction of exchange sites assuming to be in equilibrium with the solution phase (f), the longitudinal dispersivity (λ), and the first‐order rate coefficients (ω). The sensitivity analysis results indicate Kd is the most critical parameter.  相似文献   

19.
Laboratory experiments were conducted to investigate the formation of river bedforms under sediment supply-limited conditions, i.e. when a motionless substratum is bared by the dynamics of the mobile sediments. Three series of experiments were organized in a laboratory flume by fixing all the hydrodynamic and morphodynamic parameters but varying the thickness of the initial layer of mobile sediments which covers the rigid bottom of the flume. At the end of all the experiments, which lasted for the same amount of time, the formation of transverse sand dunes was observed. For decreasing , the rigid bottom of the flume was bared progressively earlier during the experiment and the measurements showed a clear tendency of the bedforms to lengthen, i.e. to increase their crest-to-crest distance. Moreover, under strong supply limitation, the two-dimensional transverse dunes turned into three-dimensional barchanoid forms and into isolated barchan dunes characterized by an abrupt reduction in bedform heights. A two-dimensional Fourier analysis of the bottom profile was performed, providing the amplitude of the main streamwise and spanwise harmonic components of the bottom morphology as a function of . © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
The Wind Erosion Prediction System (WEPS) and Revised Wind Erosion Equation (RWEQ) are widely used for estimating wind‐induced soil erosion at a field scale. Wind is the principal erosion driver in the two models. Wind erosivity, which describes the capacity of wind to cause soil erosion, is defined as erosive wind power density (WPD) in WEPS, and wind value (W) in RWEQ. In this study, the daily average WPD (AWPD) and the daily average W (Wf) were chosen to investigate the effect of averaging time on wind erosivity estimation based on observed wind data. We compare the daily AWPD and Wf calculated from 1, 5, 10, 15, 30, and 60 minute average wind speed data. The results of comparisons indicate that averaging wind speed can significantly influence estimates of wind erosivity. Compared with the daily AWPD and Wf calculated from one minute average wind speed data, all daily AWPD and Wf values calculated from 5, 10, 15, 30, and 60 minute averaged wind speeds tend to be significantly lower than values calculated from one minute values. In general, longer averaging times tend to produce smaller values of daily AWPD or Wf, which may lead to an under‐estimation of wind erosion. Further studies are needed to extend and apply the findings obtained in this study to actual wind erosion predictions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号