首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been hypothesized that many soil profiles reach a steady‐state thickness. In this work, such profiles were simulated using a one‐dimensional model of reaction with advective and diffusive solute transport. A model ‘rock’ is considered, consisting of albite that weathers to kaolinite in the presence of chemically inert quartz. The model yields three different steady‐state regimes of weathering. At the lowest erosion rates, a local‐equilibrium regime is established where albite is completely depleted in the weathering zone. This regime is equivalent to the transport‐limited regime described in the literature. With an increase in erosion rate, transition and kinetic regimes are established. In the transition regime, both albite and kaolinite are present in the weathering zone, but albite does not persist to the soil–air interface. In the weathering‐limited regime, here called the kinetic regime, albite persists to the soil–air interface. The steady‐state thickness of regolith decreases with increasing erosion rate in the local equilibrium and transition regimes, but in the kinetic regime, this thickness is independent of erosion rate. Analytical expressions derived from the model are used to show that regolith production rates decrease exponentially with regolith thickness. The steady‐state regolith thickness increases with the Darcy velocity of the pore fluid, and in the local equilibrium regime may vary markedly with small variations in this velocity and erosion rate. In the weathering‐limited regime, the temperature dependences for chemical weathering rates are related to the activation energy for the rate constant for mineral reaction and to the ΔH of dissolution, while for local equilibrium regimes they are related to the ΔH only. The model illustrates how geochemical and geomorphological observations are related for a simple compositional system. The insights provided will be useful in interpreting natural regolith profiles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Matrix diffusion can attenuate the rate of plume migration in fractured bedrock relative to the rate of ground water flow for both conservative and nonconservative solutes of interest. In a system of parallel, equally spaced constant aperture fractures subject to steady-state ground water flow and an infinite source width, the degree of plume attenuation increases with time and travel distance, eventually reaching an asymptotic level. The asymptotic degree of plume attenuation in the absence of degradation can be predicted by a plume attenuation factor, beta, which is readily estimated as R' (phi(m)/phi(f)), where R' is the retardation factor in the matrix, phi(m) is the matrix porosity, and phi(f) is the fracture porosity. This dual-porosity relationship can also be thought of as the ratio of primary to secondary porosity. Beta represents the rate of ground water flow in fractures relative to the rate of plume advance. For the conditions examined in this study, beta increases with greater matrix porosity, greater matrix fraction organic carbon, larger fracture spacing, and smaller fracture aperture. These concepts are illustrated using a case study where dense nonaqueous phase liquid in fractured sandstone produced a dissolved-phase trichloroethylene (TCE) plume approximately 300 m in length. Transport parameters such as matrix porosity, fracture porosity, hydraulic gradient, and the matrix retardation factor were characterized at the site through field investigations. In the fractured sandstone bedrock examined in this study, the asymptotic plume attenuation factors (beta values) for conservative and nonconservative solutes (i.e., chloride and TCE) were predicted to be approximately 800 and 12,210, respectively. Quantitative analyses demonstrate that a porous media (single-porosity) solute transport model is not appropriate for simulating contaminant transport in fractured sandstone where matrix diffusion occurs. Rather, simulations need to be conducted with either a discrete fracture model that explicitly incorporates matrix diffusion, or a dual-continuum model that accounts for mass transfer between mobile and immobile zones. Simulations also demonstrate that back diffusion from the matrix to fractures will likely be the time-limiting factor in reaching ground water cleanup goals in some fractured bedrock environments.  相似文献   

3.
Landscape curvature evolves in response to physical, chemical, and biological influences that cannot yet be quantified in models. Nonetheless, the simplest models predict the existence of equilibrium hillslope profiles. Here, we develop a model describing steady‐state regolith production caused by mineral dissolution on hillslopes which have attained an equilibrium parabolic profile. When the hillslope lowers at a constant rate, the rate of chemical weathering is highest at the ridgetop where curvature is highest and the ridge develops the thickest regolith. This result derives from inclusion of all the terms in the mathematical definition of curvature. Including these terms shows that the curvature of a parabolic hillslope profile varies with distance from the ridge. The hillslope model (meter‐scale) is similar to models of weathering rind formation (centimeter‐scale) where curvature‐driven solute transport causes development of the thickest rinds at highly curved clast corners. At the clast scale, models fit observations. Here, we similarly explore model predictions of the effect of curvature at the hillslope scale. The hillslope model shows that when erosion rates are small and vertical porefluid infiltration is moderate, the hill weathers at both ridge and valley in the erosive transport‐limited regime. For this regime, the reacting mineral is weathered away before it reaches the land surface: in other words, the model predicts completely developed element‐depth profiles at both ridge and valley. In contrast, when the erosion rate increases or porefluid velocity decreases, denudation occurs in the weathering‐limited regime. In this regime, the reacting mineral does not weather away before it reaches the land surface and simulations predict incompletely developed profiles at both ridge and valley. These predictions are broadly consistent with observations of completely developed element‐depth profiles along hillslopes denuding under erosive transport‐limitation but incompletely developed profiles along hillslopes denuding under weathering limitation in some field settings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
An innovative approach for regionalizing the 3‐D effective porosity field is presented and applied to two large, overexploited, and deeply weathered crystalline aquifers located in southern India. The method derives from earlier work on regionalizing a 2‐D effective porosity field in that part of an aquifer where the water table fluctuates, which is now extended over the entire aquifer using a 3‐D approach. A method based on geological and geophysical surveys has also been developed for mapping the weathering profile layers (saprolite and fractured layers). The method for regionalizing 3‐D effective porosity combines water table fluctuation and groundwater budget techniques at various cell sizes with the use of satellite‐based data (for groundwater abstraction), the structure of the weathering profile, and geostatistical techniques. The approach is presented in detail for the Kudaliar watershed (983 km2) and tested on the 730 km2 Anantapur watershed. At watershed scale, the effective porosity of the aquifer ranges from 0.5% to 2% in Kudaliar and between 0.3% and 1% in Anantapur, which agrees with earlier works. Results show that (a) depending on the geology and on the structure of the weathering profile, the vertical distribution of effective porosity can be very different and that the fractured layers in crystalline aquifers are not necessarily characterized by a rapid decrease in effective porosity and (b) that the lateral variations in effective porosity can be larger than the vertical ones. These variations suggest that within a same weathering profile, the density of open fractures and/or degree of weathering in the fractured zone may significantly vary from a place to another. The proposed method provides information on the spatial distribution of effective porosity that is of prime interest in terms of flux and contaminant transport in crystalline aquifers. Implications for mapping groundwater storage and scarcity are also discussed, which should help in improving groundwater resource management strategies.  相似文献   

5.
李博  韩同城  符力耘 《地球物理学报》1954,63(12):4578-4591
了解储层岩石的介电特性在石油工业的各个方面都有重要的应用.小尺度裂隙是影响岩石介电性质的地质因素之一,获得裂隙对含裂隙岩石介电性质影响的定量关系具有重要的理论和实践意义.以含裂隙人造砂岩的三维微观数字结构为基础,通过基于三维有限差分算法计算的岩石介电性质与实验数据的对比验证数值计算方法的有效性.在此基础上,通过理论模型获得不同孔隙度基质的介电性质,并在不含裂隙人造砂岩的三维微观数字结构中人为添加以裂隙密度和纵横比为定量表征参数的裂隙,应用验证后的数值算法模拟随频率变化的含裂隙砂岩的介电性质,分析和研究不同孔隙度基质中定向排列裂隙对砂岩介电性质的影响.结果表明,当裂隙孔隙度随裂隙纵横比或裂隙密度发生改变时,含裂隙砂岩的介电性质与裂隙密度以及裂隙纵横比呈正相关关系,而当裂隙孔隙度保持不变时,含裂隙砂岩的介电性质随裂隙纵横比的减小而增大;裂隙参数的改变对不同基质孔隙度的含裂隙砂岩的介电性质的影响趋势较为一致,但随着基质孔隙度的减小,裂隙对砂岩介电性质的影响逐渐增大.裂隙参数和基质孔隙度对含裂隙砂岩介电性质影响的研究结果为基于介电特性的裂缝性油气储层的定量表征提供了依据,在油气勘探开发中具有重要的应用前景.  相似文献   

6.
Erosion processes in bedrock‐floored rivers shape channel cross‐sectional geometry and the broader landscape. However, the influence of weathering on channel slope and geometry is not well understood. Weathering can produce variation in rock erodibility within channel cross‐sections. Recent numerical modeling results suggest that weathering may preferentially weaken rock on channel banks relative to the thalweg, strongly influencing channel form. Here, we present the first quantitative field study of differential weathering across channel cross‐sections. We hypothesize that average cross‐section erosion rate controls the magnitude of this contrast in weathering between the banks and the thalweg. Erosion rate, in turn, is moderated by the extent to which weathering processes increase bedrock erodibility. We test these hypotheses on tributaries to the Potomac River, Virginia, with inferred erosion rates from ~0.1 m/kyr to >0.8 m/kyr, with higher rates in knickpoints spawned by the migratory Great Falls knickzone. We selected nine channel cross‐sections on three tributaries spanning the full range of erosion rates, and at multiple flow heights we measured (1) rock compressive strength using a Schmidt hammer, (2) rock surface roughness using a contour gage combined with automated photograph analysis, and (3) crack density (crack length/area) at three cross‐sections on one channel. All cross‐sections showed significant (p < 0.01 for strength, p < 0.05 for roughness) increases in weathering by at least one metric with height above the thalweg. These results, assuming that the weathered state of rock is a proxy for erodibility, indicate that rock erodibility varies inversely with bedrock inundation frequency. Differences in weathering between the thalweg and the channel margins tend to decrease as inferred erosion rates increase, leading to variations in channel form related to the interplay of weathering and erosion rate. This observation is consistent with numerical modeling that predicts a strong influence of weathering‐related erodibility on channel morphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
We present a model of chemical reaction within hills to explore how evolving porosity (and by inference, permeability) affects flow pathways and weathering. The model consists of hydrologic and reactive-transport equations that describe alteration of ferrous minerals and feldspar. These reactions were chosen because previous work emphasized that oxygen- and acid-driven weathering affects porosity differently in felsic and mafic rocks. A parameter controlling the order of the fronts is presented. In the absence of erosion, the two reaction fronts move at different velocities and the relative depths depend on geochemical conditions and starting composition. In turn, the fronts and associated changes in porosity drastically affect both the vertical and lateral velocities of water flow. For these cases, estimates of weathering advance rates based on simple models that posit unidirectional constant-velocity advection do not apply. In the model hills, weathering advance rates diminish with time as the Darcy velocities decrease with depth. The system can thus attain a dynamical steady state at any erosion rate where the regolith thickness is constant in time and velocities of both fronts become equal to one another and to the erosion rate. The slower the advection velocities in a system, the faster it attains a steady state. For example, a massive rock with relatively fast-dissolving minerals such as diabase – where solute transport across the reaction front mainly occurs by diffusion – can reach a steady state more quickly than granitoid rocks in which advection contributes to solute transport. The attainment of a steady state is controlled by coupling between weathering and hydrologic processes that force water to flow horizontally above reaction fronts where permeability changes rapidly with depth and acts as a partial barrier to fluid flow. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

8.
The paper uses a case study in Scotland to examine the amount and processes of landscape modification by Quaternary ice sheets. There is an inverse correlation between the distribution of landforms of glacial erosion and pre-glacial landscape remnants in northeast Scotland. The implication is that in places ice sheets can preserve a pre-glacial landscape unscathed, while elsewhere they remove the pre-glacial weathered rock. The location of glacial protection or erosion is strongly influenced by the topography and its influence on former ice sheet flow and basal thermal regime. The classic glacially eroded landscape of areal scouring can be produced by the removal of only 10–50 m of weathered rock. Furthermore rock basins, often regarded as the hallmark of glacial erosion, may be directly inherited from the pre-glacial pattern of deep weathering.  相似文献   

9.
Patterns of erosion and deposition are difficult to identify and measure at catchment and regional scale but it may be possible to infer their distribution from remote sensing using easily measured surrogate variables. Airborne geophysical surveys provide data on gamma ray emissions from surface and near‐surface material and allow estimation of K, Th and U content. Gamma ray signatures are largely determined by lithology but also change with weathering and with erosion and deposition, and may be used as a partial surrogate for those processes. Comparison of gamma ray signatures with topographic characteristics closely related to sediment transport capacity, downstream sorting of sediments, and the extent of erosion and deposition shows strong linkages. Studies in four small catchments in southeastern Australia indicate that K consistently increases as slopes become steeper while Th and U may either increase or decrease. This suggests the presence of fresh rock rather than weathered material and implies removal of material by erosion, although some patterns may result from systematic changes in lithology across catchments. Analysis by lithology confirms the increase in K with slope in granites, metamorphosed sediments and basalt, and also shows a tendency for U to decrease with slope in the granites and basalt. Gamma ray emissions vary only slightly with catchment area (a surrogate measure of water discharge) suggesting that water erosion is limited or that discharge is not closely related to area. Gamma radiometric profiles down hillslopes, averaged across the full range of gradients, show that, in most cases, radioelements initially decrease, probably reflecting increased weathering, but then increase close to valley floors because of accumulation of fine sediments. Analysis by lithology confirms the increase in radioelements close to valley floors in granites and metamorphosed sediments but the trend is less clear in basalt. Gamma ray profiles down floodplains are variable and indicate the amount of deposition and accumulation of weathered material in valley openings and exposure of bedrock in valley constrictions. Simple erosion and deposition models, based on the conservation of mass equation, and applied to the four catchments, show that all radioelements increase as the potential for deposition increases. They reach a low point in zones of no net erosion or deposition and subsequently increase as erosion becomes more intense and weathered material is lost from slopes. Analysis by lithology largely confirms this pattern. The usefulness of airborne geophysical survey data is limited by flight line spacing with most data being flown at a 200–400 m spacing in Australia. However, general trends in erosion and deposition can still be distinguished and there is capacity for calibrating long‐term erosion and deposition models once better approaches to interpretation of gamma ray data have been developed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
The Equotip surface hardness tester is becoming a popular method for rock and stone weathering research. In order to improve the reliability of Equotip for on‐site application this study tested four porous limestones under laboratory conditions. The range of stone porosity was chosen to represent likely porosities found in weathered limestones in the field. We consider several key issues: (i) its suitability for soft and porous stones; (ii) the type of probe required for specific on‐site applications; (iii) appropriate (non‐parametrical) statistical methods for Equotip data; (iv) sufficient sampling size. This study shows that the Equotip is suitable for soft and porous rock and stone. From the two tested probes the DL probe has some advantages over the D probe as it correlates slightly better with open porosity and allows for more controlled sampling in recessed areas and rough or curved areas. We show that appropriate sampling sizes and robust non‐parametric methods for subsequent data evaluation can produce meaningful measures of rock surface hardness derived from the Equotip. The novel Hybrid dynamic hardness, a combination of two measuring procedures [single impact method (SIM) and repeated impact method (RIM)], has been adapted and is based on median values to provide a more robust data evaluation. For the tested stones in this study we propose a sample size of 45 readings (for a confidence level of 95%). This approach can certainly be transferred to stone and rock with similar porosities and hardness. Our approach also allows for consistent comparisons to be made across a wide variety of studies in the fields of rock weathering and stone deterioration research. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Honeycomb weathering occurs in two environments in Late Cretaceous and Eocene sandstone outcrops along the coastlines of south‐west Oregon and north‐west Washington, USA, and south‐west British Columbia, Canada. At these sites honeycomb weathering is found on subhorizontal rock surfaces in the intertidal zone, and on steep faces in the salt spray zone above the mean high tide level. In both environments, cavity development is initiated by salt weathering. In the intertidal zone, cavity shapes and sizes are primarily controlled by wetting/drying cycles, and the rate of development greatly diminishes when cavities reach a critical size where the amount of seawater left by receding tides is so great that evaporation no longer produces saturated solutions. Encrustations of algae or barnacles may also inhibit cavity enlargement. In the supratidal spray zone, honeycomb weathering results from a dynamic balance between the corrosive action of salt and the protective effects of endolithic microbes. Subtle environmental shifts may cause honeycomb cavity patterns to continue to develop, to become stable, or to coalesce to produce a barren surface. Cavity patterns produced by complex interactions between inorganic processes and biologic activity provide a geological model of ‘self‐organization’. Surface hardening is not a factor in honeycomb formation at these study sites. Salt weathering in coastal environments is an intermittently active process that requires particular wind and tidal conditions to provide a supply of salt water, and temperature and humidity conditions that cause evaporation. Under these conditions, salt residues may be detectable in honeycomb‐weathered rock, but absent at other times. Honeycomb weathering can form in only a few decades, but erosion rates are retarded in areas of the rock that contain cavity patterns relative to adjacent non‐honeycombed surfaces. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Recent developments in long term landform evolution modelling have created a new demand for quantitative salt weathering data, and in particular data describing the size distribution of the weathered rock fragments. To enable future development of rock breakdown models for use in landscape evolution and soil production models, laboratory work was undertaken to extend existing schist/salt weathering fragmentation studies to include an examination of the breakdown of sub‐millimetre quartz chlorite schist particles in a seasonally wet tropical climate. Laser particle sizing was used to assess the impact of different experimental procedures on the resulting particle size distribution. The results reveal that salt weathering under a range of realistic simulated tropical wet season conditions produces a significant degree of schist particle breakdown. The fragmentation of the schist is characterized by splitting of the larger fragments into mid‐sized product with finer material produced, possibly from the breakdown of mid‐sized fragments when weathering is more advanced. Salinity, the salt addition method and temperature were all found to affect weathering rates. Subtle differences in mineralogy also produce variations in weathering patterns and rates. It is also shown that an increase in drying temperature leads to accelerated weathering rates, however, the geometry of the fracture process is not significantly affected. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
— The success of the Soultz-sous-Forêts Hot-Dry-Rock project depends on the ability to maintain fluid circulation in a fractured granite. Fractures represent the main fluid pathways. To understand the behavior of this granite in respect to thermal fluid-rock interaction the important aspects are (1) the porous network around these fractures and (2) the thermal conductivity of the rock. This granite is altered and composed of different weathered facies. Variations of porosity and thermal conductivity take place in regard to the alteration and fracturing of the granite. Two types of porosity measurements were performed, mercury injection and water porosity on two samples sizes. The two methods give similar porosity values between 0.3% and 10%. Thermal conductivity measurements were performed in two perpendicular directions to look at anisotropy with two methods at different scale and value ranges from 2.3 to 3.9 W.m?1.K?1. Optical scanning provides us with a good knowledge of local increase of thermal conductivity due to sealed fracture or quartz-cemented matrix. The relationship between porosity and thermal conductivity is not obvious and has to be studied in details, and results show three cases: (1)?a relationship between conductivity and porosity (increase of conductivity with a decrease of porosity), (2)?a relationship between conductivity and sealed fractures (increase of conductivity related to an increase of fracture density), (3)?and a combination of the two previous ones. The results are carefully compared for different types of granite: alterated, fractured or both. These first results indicate that parameters such as thermal conductivity are linked to the porous medium, the structure and the mineralogy of the rock.  相似文献   

14.
Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. We demonstrate the importance of climate and in particular the rate of water recharge to the subsurface, using numerical models that incorporate hydrologic flowpaths, chemical weathering, and geomorphic rules for soil production and transport. We track alterations in both solid phase (plagioclase to clay) and water chemistry along hydrologic flowpaths that include lateral flow beneath the water table. To isolate the role of recharge, we simulate dry and wet cases and prescribe identical landscape evolution rules. The weathering patterns that develop differ dramatically beneath the resulting parabolic interfluves. In the dry case, incomplete weathering is shallow and surface parallel, whereas in the wet case, intense weathering occurs to depths approximating the base of the bounding channels, well below the water table. Exploration of intermediate cases reveals that the weathering state of the subsurface is strongly governed by the ratio of the rate of advance of the weathering front itself controlled by the water input rate, and the rate of erosion of the landscape. The system transitions between these end‐member behaviours rather abruptly at a weathering front speed ‐ erosion rate ratio of approximately 1. Although there are undoubtedly direct roles for tectonics and rock type in critical zone architecture, and yet more likely feedbacks between these and climate, we show here that differences in hillslope‐scale weathering patterns can be strongly controlled by climate.  相似文献   

15.
Source rock lithology and immediate modifying processes, such as chemical weathering and mechanical erosion, are primary controls on fluvial sediment supply. Sand composition and Chemical Index of Alteration (CIA) of parent rocks, soil and fluvial sand of the Savuto River watershed, Calabria (Italy), were used to evaluate the modifications of source rocks through different sections of the basin, characterized by different geomorphic processes, in a sub‐humid Mediterranean climate. The headwaters, with gentle topography, produce a coarse‐grained sediment load derived from deeply weathered gneiss, having sand of quartzofeldspathic composition, compositionally very different from in situ degraded bedrock. Maximum estimated CIA values suggest that source rock has been affected significantly by weathering, and it testifies to a climatic threshold on the destruction of the bedrock. The mid‐course has steeper slopes and a deeply incised valley; bedrock consists of mica‐schist and phyllite with a very thin regolith, which provides large cobble to very coarse sand sediments to the main channel. Slope instability, with an areal incidence of over 40 per cent, largely supplies detritus to the main channel. Sand‐sized detritus of soil and fluvial sand is lithic. Estimated CIA value testifies to a significant weathering of the bedrock too, even if in this part of the drainage basin steeper slopes allow erosion to exceed chemical weathering. The lower course has a braided pattern and sediment load is coarse to medium–fine grained. The river cuts across Palaeozoic crystalline rocks and Miocene siliciclastic deposits. Sand‐sized detritus, contributed from these rocks and homogenized by transport processes, has been found in the quartzolithic distal samples. Field and laboratory evidence indicates that landscape development was the result of extensive weathering during the last postglacial temperature maximum in the headwaters, and of mass‐failure and fluvial erosional processes in the mid‐ and low course. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Landscapes evolve in response to external forces, such as tectonics and climate, that influence surface processes of erosion and weathering. Internal feedbacks between erosion and weathering also play an integral role in regulating the landscapes response. Our understanding of these internal and external feedbacks is limited to a handful of field‐based studies, only a few of which have explicitly examined saprolite weathering. Here, we report rates of erosion and weathering in saprolite and soil to quantify how climate influences denudation, by focusing on an elevation transect in the western Sierra Nevada Mountains, California. We use an adapted mass balance approach and couple soil‐production rates from the cosmogenic radionuclide (CRN) 10Be with zirconium concentrations in rock, saprolite and soil. Our approach includes deep saprolite weathering and suggests that previous studies may have underestimated denudation rates across similar landscapes. Along the studied climate gradient, chemical weathering rates peak at middle elevations (1200–2000 m), averaging 112·3 ± 9·7 t km–2 y–1 compared to high and low elevation sites (46·8 ± 5·2 t km?2 y?1). Measured weathering rates follow similar patterns with climate as those of predicted silica fluxes, modeled using an Arrhenius temperature relationship and a linear relationship between flux and precipitation. Furthermore, chemical weathering and erosion are tightly correlated across our sites, and physical erosion rates increase with both saprolite weathering rates and intensity. Unexpectedly, saprolite and soil weathering intensities are inversely related, such that more weathered saprolites are overlain by weakly weathered soils. These data quantify exciting links between climate, weathering and erosion, and together suggest that climate controls chemical weathering via temperature and moisture control on chemical reaction rates. Our results also suggest that saprolite weathering reduces bedrock coherence, leading to faster rates of soil transport that, in turn, decrease material residence times in the soil column and limit soil weathering. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
An equivalent medium model for wave simulation in fractured porous rocks   总被引:3,自引:0,他引:3  
Seismic wave propagation in reservoir rocks is often strongly affected by fractures and micropores. Elastic properties of fractured reservoirs are studied using a fractured porous rock model, in which fractures are considered to be embedded in a homogeneous porous background. The paper presents an equivalent media model for fractured porous rocks. Fractures are described in a stress‐strain relationship in terms of fracture‐induced anisotropy. The equations of poroelasticity are used to describe the background porous matrix and the contents of the fractures are inserted into a matrix. Based on the fractured equivalent‐medium theory and Biot's equations of poroelasticity, two sets of porosity are considered in a constitutive equation. The porous matrix permeability and fracture permeability are analysed by using the continuum media seepage theory in equations of motion. We then design a fractured porous equivalent medium and derive the modified effective constants for low‐frequency elastic constants due to the presence of fractures. The expressions of elastic constants are concise and are directly related to the properties of the main porous matrix, the inserted fractures and the pore fluid. The phase velocity and attenuation of the fractured porous equivalent media are investigated based on this model. Numerical simulations are performed. We show that the fractures and pores strongly influence wave propagation, induce anisotropy and cause poroelastic behaviour in the wavefields. We observe that the presence of fractures gives rise to changes in phase velocity and attenuation, especially for the slow P‐wave in the direction parallel to the fracture plane.  相似文献   

18.
Weathering of bedrock creates and occludes permeability, affecting subsurface water flow. Often, weathering intensifies above the water table. On the contrary, weathering can also commence below the water table. To explore relationships between weathering and the water table, a simplified weathering model for an eroding hillslope was formulated that takes into account both saturated and unsaturated subsurface water flow (but does not fully account for changes in dissolved gas chemistry). The phreatic line was calculated using solutions to mathematical treatments for both zones. In the model, the infiltration rate at the hill surface sets both the original and the eventual steady-state position of the water table with respect to the weathering reaction front. Depending on parameters, the weathering front can locate either above or below the water table at steady state. Erosion also affects the water table position by changing porosity and permeability even when other hydrological conditions (e.g. hydraulic conductivity of parent material, infiltration rate at the surface) do not change. The total porosity in a hill (water storage capacity) was found to increase with infiltration rate (all else held constant). This effect was diminished by increasing the erosion rate. We also show examples of how the infiltration rate affects the position of the water table and how infiltration rate affects weathering advance. Published 2020. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

19.
Tafone‐like depressions have developed on the Aoshima sandstone blocks used for a masonry bridge pier in the coastal spray zone. A thin layer of partial granular disintegration was found on the surface in depressions. To evaluate quantitatively the strength of the thin weathered layer, the hardness was measured at the surface of the sandstone blocks using both an Equotip hardness tester and an L‐type Schmidt hammer. Comparison of the two testing results indicates that the Equotip hardness value is more sensitive in evaluating the strength of a thin layer of weathered surface rock than the Schmidt hardness value. By applying two methods, i.e. both the repeated impact method and the single impact method, the Equotip tester can evaluate the strengths of fresh internal and weathered surficial portions of rocks having a thin weathering layer. Comparison of the two strengths enables evaluation of strength reduction due to weathering. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Average elastic properties of a fluid‐saturated fractured rock are discussed in association with the extremely slow and dispersive Krauklis wave propagation within individual fractures. The presence of the Krauklis wave increases P‐wave velocity dispersion and attenuation with decreasing frequency. Different laws (exponential, power, fractal, and gamma laws) of distribution of the fracture length within the rock show more velocity dispersion and attenuation of the P‐wave for greater fracture density, particularly at low seismic frequencies. The results exhibit a remarkable difference in the P‐wave reflection coefficient for frequency and angular dependency from the fractured layer in comparison with the homogeneous layer. The biggest variation in behaviour of the reflection coefficient versus incident angle is observed at low seismic frequencies. The proposed approach and results of calculations allow an interpretation of abnormal velocity dispersion, high attenuation, and special behaviour of reflection coefficients versus frequency and angle of incidence as the indicators of fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号