首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Models of habitat connectivity, and how network structure and connectivity affects resident populations, are increasingly being developed for terrestrial habitat networks. Rivers, unlike many terrestrial habitat networks, follow a rigid hierarchical branching structure to form dendritic networks. It has been hypothesised that this unique structure must have implications for population processes. We developed a theoretical model to relate local-scale habitat quality and connectivity to landscape-scale population dynamics of mobile organisms (e.g. fish, aquatic invertebrates). River networks were modelled as directed graphs, with nodes being habitat patches, and edges the connections between them. Using population simulation analyses, we investigated the effects of network structure on population abundance and persistence. Network structural complexity affected landscape-scale population abundance, but the apparent effect depended upon how structure was quantified. There were no noticeable effects of dendritic network structure on population persistence. Previous research on the effects of habitat network structure on population persistence has used metapopulation patch occupancy models, which do not directly consider population dynamics. Our results show that spatially-explicit population modelling is possible, and that it provides information beyond that possible with patch occupancy models (e.g. population abundance). More importantly, it calls into question whether metapopulation models provide an adequate representation of population dynamics in dendritic habitat networks.  相似文献   

2.
Clays and clay‐bearing rocks like shale are extremely water sensitive. This is partly due to the interaction between water and mineral surfaces, strengthened by the presence of nanometer‐size pores and related large specific surface areas. Molecular‐scale numerical simulations, using a discrete‐element model, show that shear rigidity can be associated with structurally ordered (bound or adsorbed) water near charged surfaces. Building on these and other molecular dynamics simulations plus nanoscale experiments from the literature, the water monolayer adjacent to hydrophilic solid surfaces appears to be characterised by shear stiffness and/or enhanced viscosity. In both cases, elastic wave propagation will be affected by the bound or adsorbed water. Using a simple rock physics model, bound water properties were adjusted to match laboratory measured P‐ and S‐wave velocities on pure water‐saturated kaolinite and smectite. To fit the measured stress sensitivity, particularly for kaolinite, the contribution from solid‐grain contact stiffness needs to be added. The model predicts, particularly for S‐waves, that viscoelastic bound water could be a source of dispersion in clay and clay‐rich rocks. The bound‐water‐based rock physics model is found to represent a lower bound to laboratory‐measured velocities obtained with shales of different mineralogy and porosity levels.  相似文献   

3.
The philosophy of ‘working with nature’ and ‘working with the river’ is increasingly embedded in global management practice. However, what does this mean? Has real progress been made in operationalizing what is known, how scientists and practitioners work and how rivers are conceptualized as integral parts of landscapes, culture and society? The first sections of this commentary outline what this philosophy means to us (the authors) and briefly summarize the evolution of associated concepts and principles in recent decades. In the final section, we comment on what we believe needs to be done to ‘work with the river’ in practice. We are communicating to both river scientists and practitioners as a collective when we ask: Will we be brave enough to hold the course in the face of many global challenges, be ready to respond when called upon, and commit to creation of diverse, inclusive and open access communities of practice in geoethical programmes that ‘work with the river’?  相似文献   

4.
Forests can decrease the risk of shallow landslides by mechanically reinforcing the soil and positively influencing its water balance. However, little is known about the effect of different forest structures on slope stability. In the study area in St Antönien, Switzerland, we applied statistical prediction models and a physically‐based model for spatial distribution of root reinforcement in order to quantify the influence of forest structure on slope stability. We designed a generalized linear regression model and a random forest model including variables describing forest structure along with terrain parameters for a set of landslide and control points facing similar slope angle and tree coverage. The root distribution measured at regular distances from seven trees in the same study area was used to calibrate a root distribution model. The root reinforcement was calculated as a function of tree dimension and distance from tree with the root bundle model (RBMw). Based on the modelled values of root reinforcement, we introduced a proxy‐variable for root reinforcement of the nearest tree using a gamma distribution. The results of the statistical analysis show that variables related to forest structure significantly influence landslide susceptibility along with terrain parameters. Significant effects were found for gap length, the distance to the nearest trees and the proxy‐variable for root reinforcement of the nearest tree. Gaps longer than 20 m critically increased the susceptibility to landslides. Root reinforcement decreased with increasing distance from trees and is smaller in landslide plots compared to control plots. Furthermore, the influence of forest structure strongly depends on geomorphological and hydrological conditions. Our results enhance the quantitative knowledge about the influence of forest structure on root reinforcement and landslide susceptibility and support existing management recommendations for protection against gravitational natural hazards. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The selection of calibration and validation time periods in hydrologic modelling is often done arbitrarily. Nonstationarity can lead to an optimal parameter set for one period which may not accurately simulate another. However, there is still much to be learned about the responses of hydrologic models to nonstationary conditions. We investigated how the selection of calibration and validation periods can influence water balance simulations. We calibrated Soil and Water Assessment Tool hydrologic models with observed streamflow for three United States watersheds (St. Joseph River of Indiana/Michigan, Escambia River of Florida/Alabama, and Cottonwood Creek of California), using time period splits for calibration/validation. We found that the choice of calibration period (with different patterns of observed streamflow, precipitation, and air temperature) influenced the parameter sets, leading to dissimilar simulations of water balance components. In the Cottonwood Creek watershed, simulations of 50-year mean January streamflow varied by 32%, because of lower winter precipitation and air temperature in earlier calibration periods on calibrated parameters, which impaired the ability for models calibrated to earlier periods to simulate later periods. Peaks of actual evapotranspiration for this watershed also shifted from April to May due to different parameter values depending on the calibration period's winter air temperatures. In the St. Joseph and Escambia River watersheds, adjustments of the runoff curve number parameter could vary by 10.7% and 20.8%, respectively, while 50-year mean monthly surface runoff simulations could vary by 23%–37% and 169%–209%, depending on the observed streamflow and precipitation of the chosen calibration period. It is imperative that calibration and validation time periods are chosen selectively instead of arbitrarily, for instance using change point detection methods, and that the calibration periods are appropriate for the goals of the study, considering possible broad effects of nonstationary time series on water balance simulations. It is also crucial that the hydrologic modelling community improves existing calibration and validation practices to better include nonstationary processes.  相似文献   

6.
We present a sensitivity analysis of the isochron approach of Goehring et al. (2013) for paired measurements of in situ 14C/10Be from glacially sculpted bedrock surfaces. This analysis tests how sensitive the resulting exposure durations from this technique are to both the number of samples analyzed and their locations along a glacial trough transect, using a dataset from Goehring et al. (2011) as a test case. A simple equally weighted combinatorial approach was employed to (1) generate non-repetitive combinations of n subsets of samples arranged from the ten possible samples (where n < 10), and (2) estimate the exposure duration and uncertainty for each set of simulations. Results from the Goehring et al. (2011) data indicate that five samples evenly distributed along a transect parallel to the ice margin are the minimum number of samples required for this method, while eight or more samples provide an optimal combination of accuracy and precision at the 1σ level. These findings should be applicable to paired in situ 14C/10Be measurements from other polished bedrock troughs at glacial margins, but need further experimental confirmation.  相似文献   

7.
Morphological change in river channels is frequently evaluated in the context of mass balance sediment budgets. In a closed sediment budget, measurements of sediment influx and efflux are coupled with measured changes in channel topography to provide both spatial and temporal resolution, and independent estimates of the mass balance. For sediment budgets constructed over long river segments (~102 channel widths or greater) and long periods (~2 years or longer), spatial and temporal accumulation of measurement uncertainty, compounded by inadequate sampling frequency or spatial coverage, may produce indeterminate results. The degree of indeterminacy may be evaluated in the context of a signal-to-noise ratio (SNR), which is a function of the magnitude of the mass balance and the magnitudes of potential systematic uncertainties associated with measurements and incomplete sampling. We report on a closed sand budget consisting of measurements of flux and two morphological surveys for a 50-km segment of a large river over a 3-year period. Accurate reporting of the magnitude and sign of the change in sand storage was only possible by using state-of-the-art techniques with high temporal frequency and large spatial extent. Together, a sand flux and morphological mass balance revealed that sand evacuation was temporally concentrated (~100% of mass change occurred during 19% of the study period) and highly localized (70% of mass change occurred in 12% of the study segment). A SNR analysis revealed that uncertainty resulting from undersampling may approach or exceed that caused by measurement uncertainty and that daily sampling of suspended-sand concentration or repeat mapping of at least 50% of the river segment was required to determine the sand budget with SNR > 1. The approach used here to analyze sand budget uncertainty is especially applicable to other river systems with large temporal variability in sediment transport and large spatial variability in erosion and deposition. © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
Using monthly precipitation and temperature data from national meteorological stations, 90 m resolution DEM and a digital vector map of modern glaciers from the Chinese Glacier Inventory, the glacier mass balance and glacier runoff in the Tarim River Basin (TRB), China, were estimated based on a monthly degree-day model for 1961–2006. The results suggest that the modified monthly degree-day model can simulate the long-term changes in glacier mass balance and glacier runoff, which have been confirmed by shor...  相似文献   

9.
The U-Th-~(40)K concentrations of granite are on 1―2 orders of magnitude greater than those of basal- tic-ultrabasic rocks. Radiogenic heat of a granitic melt has significant influence on the cool- ing-crystallization period of the melt. In this paper we derived a formula to calculate prolongation period (tA) of cooling-crystallization of a granitic melt caused by radiogenic heat. Calculation using this for- mula and radioactive element concentrations (U=5.31×10-6; Th=23.1×10-6; K=4.55%) for the biotite adamellite of the Jinjiling batholith shows that the tA of the adamellite is 1.4 times of the cooling period of the granitic melt without considering radiogenic heat from the initial temperature (Tm=960℃) to crystallization temperature (Tc=600℃) of the melt. It has been demonstrated that the radiogenic heat produced in a granitic melt is a key factor influencing the cooling-crystallization process of the granitic melt, and is likely one of the reasons for inconsistence between emplacement ages and crystallization ages of many Meso-Cenozoic granitoids.  相似文献   

10.
The resolution of a digital elevation model (DEM) is a crucial factor in watershed hydrologic and environmental modelling. DEM resolution can cause significant variability in the representation of surface topography, which further affects quantification of hydrologic connectivity and simulation of hydrologic processes. The objective of this study is to examine the effects of DEM resolution on (1) surface microtopographic characteristics, (2) hydrologic connectivity, and (3) the spatial and temporal variations of hydrologic processes. A puddle‐to‐puddle modelling system was utilized for surface delineation and modelling of the puddle‐to‐puddle overland flow dynamics, surface runoff, infiltration, and unsaturated flow for nine DEM resolution scenarios of a field plot surface. Comparisons of the nine modelling scenarios demonstrated that coarser DEM resolutions tended to eliminate topographic features, reduce surface depression storage, and strengthen hydrologic connectivity and surface runoff. We found that reduction in maximum depression storage and maximum ponding area was as high as 97.56% and 76.36%, respectively, as the DEM grid size increased from 2 to 80 cm. The paired t‐test and fractal analysis demonstrated the existence of a threshold DEM resolution (10 cm for the field plot), within which the DEM‐based hydrologic modelling was effective and acceptable. The effects of DEM resolution were further evaluated for a larger surface in the Prairie Pothole Region subjected to observed rainfall events. It was found that simulations based on coarser resolution DEMs (>10 m) tended to overestimate ponded areas and underestimate runoff discharge peaks. The simulated peak discharge from the Prairie Pothole Region surface reduced by approximately 50% as the DEM resolution changed from 2 to 90 m. Fractal analysis results elucidated scale dependency of hydrologic and topographic processes. In particular, scale analysis highlighted a unique constant–threshold–power relationship between DEM scale and topographic and hydrologic parameters/variables. Not only does this finding allow one to identify threshold DEM but also further develop functional relationships for scaling to achieve valid topographic characterization as well as effective and efficient hydrologic modelling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
We sampled different substrates (sand, gravel, leaf litter and stones) in the rainy and dry season to study the distribution and composition of benthic macroinvertebrates in tropical streams (northeastern Brazil). Benthic macroinvertebrates were distributed according to the substrates, with stones showing a higher richness and abundance of species and abundance of collector-gatherers and filter-collectors. The results of the PCoA showed a separation of stones from the other substrates and similarities between sand and gravel.  相似文献   

12.
The water balance is an essential tool for hydrologic studies and quantifying water-balance components is the focus of many research catchments. A fundamental question remains regarding the appropriateness of water-balance closure assumptions when not all components are available. In this study, we leverage in-situ measurements of water fluxes and storage from the Southern Sierra Critical Zone Observatory (SSCZO) and the Kings River Experimental Watersheds (KREW) to investigate annual water-balance closure errors across large (1016–5389 km2) river basins and small (0.5–5 km2) headwater-catchment scales in the southern Sierra Nevada. The results showed that while long-term water balance in river basins can be closed within 10% of precipitation, in the smaller headwater catchments as much as a quarter of precipitation remained unaccounted for. A detailed diagnosis of this water-balance closure error using distributed soil moisture measurements in the top 1 m suggests an unaccounted deeper storage and a net groundwater export from the headwater catchments. This imbalance was also found to be very sensitive to the timescales over which water-balance closures were attempted. While some of the closure errors in the simple water balance can be attributed to measurement uncertainties, we argue for a broader consideration of groundwater exchange when evaluating hydrological processes at headwater scales, as the assumption of negligible net groundwater exchange may lead to an overestimation of fluxes derived from the water balance method.  相似文献   

13.
The influence of the El Niño Southern Oscillation (ENSO) phenomenon on monthly mean river flows of 12 rivers in the extreme south of South America in the 20th century is analysed. The original dataset of each river is divided into two subsets, i.e. warm ENSO events or El Niño, and cold ENSO events or La Niña. The elements of the subsets are composites of 24 consecutive months, from January of the year when the ENSO event begins to December of the following year. The ENSO signal is analysed by comparing the monthly mean value of each subset to the long-term monthly mean. The results reveal that, in general, monthly mean El Niño (La Niña) river flows are predominantly larger (smaller) than the long-term monthly mean in the rivers studied. The anomalies are more evident during the second half of the year in which the event starts and the first months of the following year.  相似文献   

14.
We have evaluated all parameters for the calculation of cosmogenic 36Cl production rates and thus surface exposure ages in dolomite and limestone. We found that we can use either of both published negative muon stopping rates until more information is available. The largest uncertainty of the age estimation in the upper meter of rock comes from the 36Cl production rate from Ca spallation and, in the case of 50–100 ppm Cl content, from the production rate of epithermal neutrons, which we estimate at 760 ± 150 neutrons/g_air/yr (1σ). For a sample with representative amounts of Ca and Cl (20 wt% Ca and 50 ppm Cl, or 40 wt% Ca and 100 ppm Cl), the age can be calculated with a precision of 7–10% in the top 1.5 m of the depth profile. Further improvement of 36Cl calculations depends on new calibration of 36Cl production from Ca spallation, re-evaluation of 36Cl production by low-energy neutron capture on 35Cl, as well as of the muon flux and muon capture based on the most recent measurement data.  相似文献   

15.
By using the polarization analysis of teleseismic SKS waveform data recorded at 116 seismic stations which respectively involved in China National Digital Seismograph Network, and Yunnan, Sichuan, Gansu and Qinghai regional digital networks, and portable broadband seismic networks deployed in Sichuan, Yunnan and Tibet, we obtained the SKS fast-wave direction and the delay time between fast and slow waves of each station by use of the stacking analysis method, and finally acquired the fine image of upper mantle anisotropy in the eastern Tibetan Plateau and its adjacent regions. We analyzed the crust-mantle coupling deformation on the basis of combining the GPS observation results and the upper mantle anisotropy distribution in the study area. The Yunnan region out of the plateau has dif-ferent features of crust-mantle deformation from the inside plateau. There exists a lateral transitional zone of crust-mantle coupling in the eastern edge of the Tibetan Plateau, which is located in the region between 26° and 27°N in the west of Sichuan and Yunnan. To the south of transitional zone, the fast-wave direction is gradually turned from S60°―70°E in southwestern Yunnan to near EW in south-eastern Yunnan. To the north of transitional zone in northwestern Yunnan and the south of western Sichuan, the fast-wave direction is nearly NS. From crust to upper mantle, the geophysical parameters (e.g. the crustal thickness, the Bouguer gravity anomaly, and tectonic stress direction) show the feature of lateral variation in the transitional zone, although the fault trend on the ground surface is inconsis-tent with the fast-wave direction. This transitional zone is close by the eastern Himalayan syntaxis, and it may play an important role in the plate boundary dynamics.  相似文献   

16.
This research aims to understand how insurance, rainfall, land cover and urban flooding are related and how these variables influenced the material damage in the Lisbon Metropolitan Area (LMA) during the 2000–2011 period. Correlation coefficients show strong relationships between built-up areas and claims (0.94) and payouts (0.88). Despite no significant relationships being found between rainfall and the amount of material damage per event, three likelihood levels of flooding were determined for hourly rainfall. Unlike the studied period, the number of claims and their spatial distribution during the 2008 extreme rainfall event were strongly dependent on rainfall. Flooding related to the old watercourses assumed greater importance during this extreme event, recovering a more natural/ancient hydrological behaviour. In the LMA, the greatest material damage was the result of high-magnitude/low-probability rainfall events. Lower magnitude events can trigger numerous claims in heavily built-up areas, but they are hardly capable of producing large material damage.  相似文献   

17.
Introduction Zhuanglang river active fault zone, which located in the western of Zhuanglang river valley, north of Hekou, the Xigu district of Lanzhou city, is composed of several echelon small faults, these faults display not very clear on surface. Predecessors thought that this fault from Yongdeng to Hekou was active in Late Pleistocene and even in Holocene through limited research works, they also believed that these earthquakes with magnitude 641 happened at Yongdeng and magnitude 521 …  相似文献   

18.
Over the last century, afforestation in Ireland has increased from 1% of the land area to 10%, with most plantations on upland drained blanket peatlands. This land use change is considered to have altered the hydrological response and water balance of upland catchments with implications for water resources. Because of the difficulty of observing these long‐term changes in the field, the aim of this study was to utilize a hydrological model to simulate the rainfall runoff processes of an existing pristine blanket peatland and then to simulate the hydrology of the peatland if it were drained and afforested. The hydrological rainfall runoff model (GEOtop) was calibrated and validated for an existing small (76 ha) pristine blanket peatland in the southwest of Ireland for the 2‐year period, 2007–2008. The current hydrological response of the pristine blanket peatland catchment with regard to streamflow and water table (WT) levels was captured well in the simulations. Two land use change scenarios of afforestation were also examined, (A) a young 10‐year‐old and (B) a semi‐mature 15‐year‐old Sitka Spruce forest. Scenario A produced similar streamflow dynamics to the pristine peatland, whereas total annual streamflow from Scenario B was 20% lower. For Scenarios A and B, on an annual average basis, the WT was drawn down by 16 and 20 cm below that observed in the pristine peatland, respectively. The maximum WT draw down in Scenario B was 61 cm and occurred in the summer months, resulting in a significant decrease in summer streamflow. Occasionally in the winter (following rainfall), the WT for Scenario B was just 2 cm lower than the pristine peatland, which when coupled with the drainage networks associated with afforestation led to higher peak streamflows. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Accurate determination of the tufa growth rate (TGR) is required to answer the fundamental geomorphological question of tufa evolution. The TGR has been measured by various direct and indirect methods. One of the most popular direct methods uses modified micro-erosion meter (MEM), which has several drawbacks. Here, we present for the first time a coordinate measuring macro-photogrammetry device (CMD) for monitoring the TGR in a contactless manner. The CMD was applied on 28 limestone plates at 14 locations within the Skradinski buk area, Croatia, and measurements were performed in the laboratory. The TGR was derived from digital tufa high-resolution models (DTHRMs). The accuracy of the device was evaluated using state-of-the-art three-dimensional (3D) scanners and error calculation at checkpoints. Moreover, the precision was evaluated with the split test (n = 5). A total of 74 DTHRMs with a spatial resolution of 0.0236 mm were created. The TGR ranged from 0.327 to 19.302 mm a−1, with an average of 5.771 mm a−1. A higher TGR was observed on the limestone plates near mosses, located in fast and turbulent water rather than in stagnant water. We found that specific micro-environmental factors (e.g. proximity to moss) positively affected tufa growth. Erosion events were observed, as well as the presence of aquatic insect larvae (Simuliidae and Chironomidae), which positively affected tufa growth. The CMD is a precise and accurate device that does not suffer from the drawbacks of the MEM method and has many other advantages. It has a high capability of tufa erosion detection, enables the identification of macroinvertebrates, and multispectral or hyperspectral cameras can be mounted on the device for spectral reflectance analysis of the tufa surface. The CMD can be applied in any study requiring a sub-millimetre data quality and involving the comparison of consecutive 3D models and derivation of various parameters of smaller objects. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
The seasonally‐dry climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. Frequently during summer, the only water inputs occur as non‐rainfall water, in the form of fog and dew. However, due to spatially heterogeneous fog interaction within a watershed, estimating fog water fluxes to understand watershed‐scale hydrologic effects remains challenging. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems, in a San Francisco Peninsula watershed. To monitor fog occurrence, intensity, and spatial extent, we focused on the mechanisms through which fog can affect the water balance: throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables. A stratified sampling design was used to capture the watershed's spatial heterogeneities in relation to fog events. We developed a novel spatial averaging scheme to upscale local observations of throughfall inputs and evapotranspiration suppression and make watershed‐scale estimates of fog water fluxes. Inputs from fog water throughfall (10–30 mm/year) and fog suppression of evapotranspiration (125 mm/year) reduced dry‐season water deficits by 25% at watershed scales. Evapotranspiration suppression was much more important for this reduction in water deficit than were direct inputs of fog water. The new upscaling scheme was analyzed to explore the sensitivity of its results to the methodology (data type and interpolation method) employed. This evaluation suggests that our combination of sensors and remote sensing allows an improved incorporation of spatially‐averaged fog fluxes into the water balance than traditional interpolation approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号