首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid changes in the composition of hillslope vegetation due to a combination of changing climate and land use make estimating slope stability a significant challenge. The dynamics of root growth on any individual hillslope result in a wide range of root distributions and strengths that are reflected as up to an order of magnitude variability in root cohesion. Hence the challenge of predicting the magnitude of root reinforcement for hillslopes requires both an understanding of the magnitude and variability of root distributions and material properties (e.g. tensile strength, elasticity). Here I develop a model for estimating the reinforcement provided by plant roots based on the distribution of biomass measured at the biome level and a compilation of root tensile strength measurements measured across a range of vegetation types. The model modifies the Wu/Waldron method of calculating root cohesion to calculate the average lateral root cohesion and its variability with depth using the Monte Carlo method. The model was validated in two ways, the first against the predicted depth‐reinforcement characteristics of Appalachian soils and the second using a global dataset of landslides. Model results suggest that the order of magnitude difference in root cohesions measured on individual hillslopes can be captured by the Monte Carlo approach and provide a simple tool to estimate root reinforcement for data‐poor areas. The model also suggests that future hotspots of slope instability will occur in areas where land use and climate convert forest to grassland, rather than changes between different forest structures or forest and shrubland. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
A review of present modelling approaches for root reinforcement in vegetated steep hillslopes reveals critical gaps in consideration of plant–soil interactions at various scales of interest for shallow landslide prediction. A new framework is proposed for systematic quantification of root reinforcement at scales ranging from single root to tree root system, to a stand of trees. In addition to standard basal reinforcement considered in most approaches, the critical role of roots in stabilizing slopes through lateral reinforcement is highlighted. Primary geometrical and mechanical properties of root systems and their function in stabilizing the soil mass are reviewed. Stress–strain relationships are considered for a bundle of roots using the formalism of the fiber bundle model (FBM) that offers a natural means for upscaling mechanical behavior of root systems. An extension of the FBM is proposed, considering key root and soil parameters such as root diameter distribution, tortuosity, soil type, soil moisture and friction between soil and root surface. The spatial distribution of root mechanical reinforcement around a single tree is computed from root diameter and density distributions based on easy to measure properties. The distribution of root reinforcement for a stand of trees was obtained from spatial and mechanical superposition of individual tree values with regard to their positions on a hillslope. Potential applications of the proposed approach are illustrated in a numerical experiment of spatial strength distribution in a hypothetical slope with 1000 trees randomly distributed. The analyses result in spatial distribution of weak and strong zones within the soil where landslide triggering is expected in large and continuous zones with low reinforcement values. Mapping such zones would enhance the quality of landslide susceptibility maps and optimization of silvicultural measures in protection forests. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Modelling increased soil cohesion due to roots with EUROSEM   总被引:3,自引:0,他引:3  
As organic root exudates cause soil particles to adhere firmly to root surfaces, roots significantly increase soil strength and therefore also increase the resistance of the topsoil to erosion by concentrated flow. This paper aims at contributing to a better prediction of the root effects on soil erosion rates in the EUROSEM model, as the input values accounting for roots, presented in the user manual, do not account for differences in root density or root architecture. Recent research indicates that small changes in root density or differences in root architecture considerably influence soil erosion rates during concentrated flow. The approach for incorporating the root effects into this model is based on a comparison of measured soil detachment rates for bare and for root‐permeated topsoil samples with predicted erosion rates under the same flow conditions using the erosion equation of EUROSEM. Through backwards calculation, transport capacity efficiencies and corresponding soil cohesion values can be assessed for bare and root‐permeated topsoils respectively. The results are promising and present soil cohesion values that are in accordance with reported values in the literature for the same soil type (silt loam). The results show that grass roots provide a larger increase in soil cohesion as compared with tap‐rooted species and that the increase in soil cohesion is not significantly different under wet and dry soil conditions, either for fibrous root systems or for tap root systems. Power and exponential relationships are established between measured root density values and the corresponding calculated soil cohesion values, reflecting the effects of roots on the resistance of the topsoil to concentrated flow incision. These relationships enable one to incorporate the root effect into the soil erosion model EUROSEM, through adapting the soil cohesion input value. A scenario analysis shows that the contribution of roots to soil cohesion is very important for preventing soil loss and reducing runoff volume. The increase in soil shear strength due to the binding effect of roots on soil particles is two orders of magnitude lower as compared with soil reinforcement achieved when roots mobilize their tensile strength during soil shearing and root breakage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Tree roots provide surface erosion protection and improve slope stability through highly complex interactions with the soil due to the nature of root systems. Root reinforcement estimation is usually performed by in situ pullout tests, in which roots are pulled out of the soil to reliably estimate the root strength of compact soils. However, this test is not suitable for the scenario where a soil progressively fails in a series of slump blocks – for example, in unsupported soils near streambanks and road cuts where the soil has no compressive resistance at the base of the hillslope. The scenario where a soil is unsupported on its downslope extent and progressively deforms at a slow strain rate has received little attention, and we are unaware of any study on root reinforcement that estimates the additional strength provided by roots in this situation. We therefore designed two complementary laboratory experiments to compare the force required to pull the root out. The results indicate that the force required to pull out roots is reduced by up to 50% when the soil fails as slump blocks compared to pullout tests. We also found that, for slump block failure, roots had a higher tendency to slip than to break, showing the importance of active earth pressure on root reinforcement behaviour, which contributes to reduced friction between soil and roots. These results were then scaled up to a full tree and tree stand using the root bundle and field-measured spatial distributions of root density. Although effects on the force mobilized in small roots can be relevant, small roots have virtually no effect on root reinforcement at the tree or stand scale on hillslopes. When root distribution has a wide range of diameters, the root reinforcement results are controlled by large roots, which hold much more force than small roots. © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
Tree roots contribute to the resistance of riparian sediments to physical deformation and disintegration. Understanding reinforcement by roots requires information on root distributions within riparian soils and sediments. Continuous‐depth models or curves have been proposed to describe vertical root density variations, providing useful indicators of the types of function that may be appropriate to riparian trees, but have generally been estimated for terrestrial species or broad vegetation types rather than riparian species or environments. We investigated vertical distributions of roots >0.1 mm diameter of a single riparian tree species (Populus nigra L.) along the middle reaches of a single river (Tagliamento River, Italy), where Populus nigra dominates the riparian woodland. Root density (hundreds m?2) and root area ratio (RAR in cm2 m?2) were measured within 10 cm depth increments of 24 excavated bank profiles across nine sites. Sediment samples, extracted from distinct strata within the profiles, were analysed for moisture content, organic matter content and particle size. Statistical analyses identified two groups of wetter and drier profiles and five sediment types. Following loge‐transformation of root density and RAR, linear regression analysis explored their variation with depth and, using dummy variables, any additional influence of moisture and sediment type. Significant linear regression relationships were estimated between both root density and RAR and depth which explained only 15% and 8% of the variance in the data. Incorporating moisture and then sediment characteristics into the analysis increased the variance explained in root density to 29% and 36% and in RAR to 14% and 26%. We conclude that riparian tree root density and RAR are highly spatially variable and are poorly explained by depth alone. Complex riparian sedimentary structures and moisture conditions are important influences on root distributions and so need to be incorporated into assessments of the contribution of roots to river bank reinforcement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The success of seedlings and rejuvenated woody debris growing on river bedforms depends on the resistance to uprooting by flow provided by their simple root architecture. Avena sativa and Medicago sativa seedlings were used in flume experiments as prototypes for juvenile riparian plants. Very little is known about the magnitude of root anchoring forces and the role of secondary roots of such simple root systems. We performed 1550 vertical uprooting experiments on Avena sativa and Medicago sativa seedlings grown in quartz sand. Seedlings were pulled up by direct traction using a wheel driven by a computer‐controlled motor and the force was recorded. Roots were scanned and architectural parameters (root length and number of roots) determined. Uprooting force and work (the integral of the applied force times the distance over which it is applied) were then related to root architecture and soil variables. Resistance to uprooting increased with decreasing sediment size and sediment moisture content. The initial response of the root–soil system to uprooting showed linear elastic behaviour with modulus increasing with plant age. While the maximum uprooting force was found to increase linearly with total root length and be mainly dependent on the length of the main root, uprooting work followed a power law and has to be related to the whole root system. Thus, for the young plants we considered, secondary roots are responsible for the ability to withstand environmental disturbances in terms of duration rather than magnitude. This distinction between primary and secondary roots can be of crucial importance for seedlings of riparian species germinating on river bars and islands where inundation is a main cause of mortality. Beyond clarifying the biomechanical role of soil and root variables, the uprooting statistics obtained are useful in interpreting and designing ecomorphodynamic flume experiments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Riparian vegetation is known to exert a number of mechanical and hydrologic controls on bank stability. In particular, plant roots provide mechanical reinforcement to a soil matrix due to the different responses of soils and roots to stress. Root reinforcement is largely a function of the strength of the roots crossing potential shear planes, and the number and diameter of such roots. However, previous bank stability models have been constrained by limited field data pertaining to the spatial and temporal variability of root networks within stream banks. In this paper, a method is developed to use root‐architecture data to derive parameters required for modeling temporal and spatial changes in root reinforcement. Changes in root numbers over time were assumed to follow a sigmoidal curve, which commonly represents the growth rates of organisms. Regressions for numbers of roots crossing potential shear planes over time showed small variations between species during the juvenile growth phase, but extrapolation led to large variations in root numbers by the time the senescent phase of the sigmoidal growth curve had been reached. In light of potential variability in the field data, the mean number of roots crossing a potential shear plane at each year of tree growth was also calculated using data from all species and an additional sigmoidal regression was run. After 30 years the mean number of roots predicted to cross a 1 m shear plane was 484, compared with species‐specific curves whose values ranged from 240 roots for black willow trees to 890 roots for western cottonwood trees. In addition, the effect of spatial variations in rooting density with depth on stream‐bank stability was modeled using the bank stability and toe erosion model (BSTEM). Three root distributions, all approximating the same average root reinforcement (5 kPa) over the top 1 m of the bank profile, were modeled, but with differing vertical distributions (concentrated near surface, non‐linear decline with depth, uniform over top meter). It was found that stream‐bank FS varied the most when the proportion of the failure plane length to the depth of the rooting zone was greatest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The effects of vegetation root distribution on near‐surface water partitioning can be two‐fold. On the one hand, the roots facilitate deep percolation by root‐induced macropore flow; on the other hand, they reduce the potential for deep percolation by root‐water‐uptake processes. Whether the roots impede or facilitate deep percolation depends on various conditions, including climate, soil, and vegetation characteristics. This paper examines the effects of root distribution on deep percolation into the underlying permeable bedrock for a given soil profile and climate condition using HYDRUS modelling. The simulations were based on previously field experiments on a semiarid ponderosa pine (Pinus ponderosa) hillslope. An equivalent single continuum model for simulating root macropore flow on hillslopes is presented, with root macropore hydraulic parameterization estimated based on observed root distribution. The sensitivity analysis results indicate that the root macropore effect dominates saturated soil water flow in low conductivity soils (Kmatrix below 10?7 m/s), while it is insignificant in soils with a Kmatrix larger than 10?5 m/s, consistent with observations in this and other studies. At the ponderosa pine site, the model with simple root‐macropore parameterization reasonably well reproduces soil moisture distribution and some major runoff events. The results indicate that the clay‐rich soil layer without root‐induced macropores acts as an impeding layer for potential groundwater recharge. This impeding layer results in a bedrock percolation of less than 1% of the annual precipitation. Without this impeding layer, percolation into the underlying permeable bedrock could be as much as 20% of the annual precipitation. This suggests that at a surface with low‐permeability soil overlying permeable bedrock, the root penetration depth in the soil is critical condition for whether or not significant percolation occurs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Soil moisture is highly variable both spatially and temporally. It is widely recognized that improving the knowledge and understanding of soil moisture and the processes underpinning its spatial and temporal distribution is critical. This paper addresses the relationship between near‐surface and root zone soil moisture, the way in which they vary spatially and temporally, and the effect of sampling design for determining catchment scale soil moisture dynamics. In this study, catchment scale near‐surface (0–50 mm) and root zone (0–300 mm) soil moisture were monitored over a four‐week period. Measurements of near‐surface soil moisture were recorded at various resolutions, and near‐surface and root zone soil moisture data were also monitored continuously within a network of recording sensors. Catchment average near‐surface soil moisture derived from detailed spatial measurements and continuous observations at fixed points were found to be significantly correlated (r2 = 0·96; P = 0·0063; n = 4). Root zone soil moisture was also found to be highly correlated with catchment average near‐surface, continuously monitored (r2 = 0·81; P < 0·0001; n = 26) and with detailed spatial measurements of near‐surface soil moisture (r2 = 0·84). The weaker relationship observed between near‐surface and root zone soil moisture is considered to be caused by the different responses to rainfall and the different factors controlling soil moisture for the soil depths of 0–50 mm and 0–300 mm. Aspect is considered to be the main factor influencing the spatial and temporal distribution of near‐surface soil moisture, while topography and soil type are considered important for root zone soil moisture. The ability of a limited number of monitoring stations to provide accurate estimates of catchment scale average soil moisture for both near‐surface and root zone is thus demonstrated, as opposed to high resolution spatial measurements. Similarly, the use of near‐surface soil moisture measurements to obtain a reliable estimate of deeper soil moisture levels at the small catchment scale was demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Forests can decrease the risk of shallow landslides by mechanically reinforcing the soil and positively influencing its water balance. However, little is known about the effect of different forest structures on slope stability. In the study area in St Antönien, Switzerland, we applied statistical prediction models and a physically‐based model for spatial distribution of root reinforcement in order to quantify the influence of forest structure on slope stability. We designed a generalized linear regression model and a random forest model including variables describing forest structure along with terrain parameters for a set of landslide and control points facing similar slope angle and tree coverage. The root distribution measured at regular distances from seven trees in the same study area was used to calibrate a root distribution model. The root reinforcement was calculated as a function of tree dimension and distance from tree with the root bundle model (RBMw). Based on the modelled values of root reinforcement, we introduced a proxy‐variable for root reinforcement of the nearest tree using a gamma distribution. The results of the statistical analysis show that variables related to forest structure significantly influence landslide susceptibility along with terrain parameters. Significant effects were found for gap length, the distance to the nearest trees and the proxy‐variable for root reinforcement of the nearest tree. Gaps longer than 20 m critically increased the susceptibility to landslides. Root reinforcement decreased with increasing distance from trees and is smaller in landslide plots compared to control plots. Furthermore, the influence of forest structure strongly depends on geomorphological and hydrological conditions. Our results enhance the quantitative knowledge about the influence of forest structure on root reinforcement and landslide susceptibility and support existing management recommendations for protection against gravitational natural hazards. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of plant species on erosion processes may be decisive for long‐term soil protection in degraded ecosystems. The identification of functional effect traits that predict species ability for erosion control would be of great interest for ecological restoration purposes. Flume experiments were carried out to investigate the effect of the root systems of three species having contrasted ecological requirements from eroded marly lands of the French Southern Alps [i.e. Robinia pseudo acacia (tree), Pinus nigra austriaca (tree) and Achnatherum calamagrostis (grass)], on concentrated flow erosion rates. Ten functional traits, describing plant morphological and biomechanical features, were measured on each tested sample. Analyses were performed to identify traits that determine plant root effects on erosion control. Erosion rates were lowest for samples of Robinia pseudo acacia, intermediate in Achnatherum calamagrostis and highest in Pinus nigra austriaca. The three species also differed strongly in their traits. Principal components analysis showed that the erosion‐reducing potential of plant species was negatively correlated to root diameter and positively correlated to the percentage of fine roots. The results highlighted the role of small flexible roots in root reinforcement processes, and suggested the importance of high root surface and higher tensile strength for soil stabilization. By combining flume experiment to plant functional traits measurements, we identified root system features influencing plant species performance for soil protection against concentrated flow erosion. Plant functional traits related to species efficiency for erosion control represent useful tools to improve the diagnosis of land vulnerability to erosion, plant community resistance and the prediction of ecosystem functioning after ecological restoration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
EXPERIMENTAL STUDY ON WHOLE TREE VERTICAL TENSILE STRENGTH   总被引:5,自引:0,他引:5  
This paper studies the vertical tensile strength of whole tree roots under the same soil and landform conditions. The experiments show that the shape of a root system‘s distribution affects the vertical tensile strength of roots. Rhododendron trees have horizontal root systems, so the whole roots were pulled out in the experiment process. Populous purdornii has vertical roots, so the experiment continued quite a long time. Abies fabric has both vertical and horizontal main roots, so the P-S curve shows a multi-peak shape.  相似文献   

14.
Several mechanisms contribute to streambank failure including fluvial toe undercutting, reduced soil shear strength by increased soil pore‐water pressure, and seepage erosion. Recent research has suggested that seepage erosion of noncohesive soil layers undercutting the banks may play an equivalent role in streambank failure to increased soil pore‐water pressure. However, this past research has primarily been limited to laboratory studies of non‐vegetated banks. The objective of this research was to utilize the Bank Stability and Toe Erosion Model (BSTEM) in order to determine the importance of seepage undercutting relative to bank shear strength, bank angle, soil pore‐water pressure, and root reinforcement. The BSTEM simulated two streambanks: Little Topashaw Creek and Goodwin Creek in northern Mississippi. Simulations included three bank angles (70° to 90°), four pore‐water pressure distributions (unsaturated, two partially saturated cases, and fully saturated), six distances of undercutting (0 to 40 cm), and 13 different vegetation conditions (root cohesions from 0·0 to 15·0 kPa). A relative sensitivity analysis suggested that BSTEM was approximately three to four times more sensitive to water table position than root cohesion or depth of seepage undercutting. Seepage undercutting becomes a prominent bank failure mechanism on unsaturated to partially saturated streambanks with root reinforcement, even with undercutting distances as small as 20 cm. Consideration of seepage undercutting is less important under conditions of partially to fully saturated soil pore‐water conditions. The distance at which instability by undercutting became equivalent to instability by increased soil pore‐water pressure decreased as root reinforcement increased, with values typically ranging between 20 and 40 cm at Little Topashaw Creek and between 20 and 55 cm at Goodwin Creek. This research depicts the baseline conditions at which seepage undercutting of vegetated streambanks needs to be considered for bank stability analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Many studies focus on the effects of vegetation cover on water erosion rates, whereas little attention has been paid to the effects of the below ground biomass. Recent research indicates that roots can reduce concentrated flow erosion rates significantly. In order to predict this root effect more accurately, this experimental study aims at gaining more insight into the importance of root architecture, soil and flow characteristics to the erosion‐reducing potential of roots during concentrated flow. Treatments were (1) bare, (2) grass (representing a fine‐branched root system), (3) carrots (representing a tap root system) and (4) carrots and fine‐branched weeds (representing both tap and fine‐branched roots). The soil types tested were a sandy loam and a silt loam. For each treatment, root density, root length density and mean root diameter (D) were assessed. Relative soil detachment rates and mean bottom flow shear stress were calculated. The results indicate that tap roots reduce the erosion rates to a lesser extent compared with fine‐branched roots. Different relationships linking relative soil detachment rate with root density could be established for different root diameter classes. Carrots with very fine roots (D < 5 mm) show a similar negative exponential relationship between root density and relative soil detachment rate to grass roots. With increasing root diameter (5 < D < 15 mm) the erosion‐reducing effect of carrot type roots becomes less pronounced. Additionally, an equation estimating the erosion‐reducing potential of root systems containing both tap roots and fine‐branched roots could be established. Moreover, the erosion‐reducing potential of grass roots is less pronounced for a sandy loam soil compared with a silt loam soil and a larger erosion‐reducing potential for both grass and carrot roots was found for initially wet soils. For carrots grown on a sandy loam soil, the erosion‐reducing effect of roots decreases with increasing flow shear stress. For grasses, grown on both soil types, no significant differences could be found according to flow shear stress. The erosion‐reducing effect of roots during concentrated flow is much more pronounced than suggested in previous studies dealing with interrill and rill erosion. Root density and root diameter explain the observed erosion rates during concentrated flow well for the different soil types tested. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Soil rhizosphere aeration status is an important aspect of soil quality and soil ecology. The objective of the current study was to determine the appropriate moisture environment that facilitates rhizosphere soil aeration and ensures normal root respiration in tomato. In the potted experiment, five treatments of soil aeration were used (0.4, 0.8, 1.2, 1.6 ventilation volume of 50% porosity of soil, and no ventilation) under conditions of the different soil moisture upper limits. The effects of different rhizosphere soil aerations on the physiological indicators and water absorption of tomato were studied. Under the same soil moisture condition, plant growth and root vitality initially increased, and then decreased when the soil ventilation volume increased. The combination of soil moisture with 80% of field capacity and 0.8 ventilation volume with 50% soil porosity raised the chlorophyll content by 29.98% and the root vitality by 61.55%, as compared with the non‐ventilated treatment. Therefore, the appropriate volume of rhizosphere ventilation can effectively improve the capacity of water absorption in tomato. The result provides a new view about soil quality and soil ecology in terms of soil–root system.  相似文献   

17.
Landslides in forested landscapes have far-reaching implications, beyond that of just destroying the forest itself, sometimes initiating large-scale sediment disasters. Although vegetation increases slope stability through its root network, it is hard to evaluate its contribution to slope stability over a wide area. In this study, the relationship between tree height and landslide characteristics in the Ikawa catchment, central Japan, was investigated to develop a method for evaluating the effects of forest cover on slope stability over a regional extent. Catchment-wide tree height was obtained using airborne LiDAR point cloud data and used in conjunction with the root depth profile, measured for trees of various height by digging trenches. Root tensile strength per unit area of soil was calculated from individual root diameters and empirical power law equations on the relationship between root diameter and root tensile force in order to better understand the effect that tree height has on slope stability. Landslide density in the Ikawa catchment shows that landslides occur more frequently in forests with shorter trees, with occurrence decreasing as tree height increases. This is likely due to the stabilizing features of larger trees having a greater network of roots, which is supported by the general increase in total root area and the deeper penetration of root biomass into the soil as the height of trees surveyed increases. Landslide density was not solely affected by tree height, but also by slope gradient and plane curvature. Decreasing landslide occurrence and landslide area as tree height increases suggests that slope stability increases with tree height, while the random distribution of results when comparing landslide depth to tree height suggests that while tree height has an impact on relative slope stability, the landslide failure depth is independent of tree height, and thus controlled by other factors. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
Water flow in the soil–root–stem system was studied in a flooded riparian hardwood forest in the upper Rhine floodplain. The study was undertaken to identify the vertical distribution of water uptake by trees in a system where the groundwater is at a depth of less than 1 m. The three dominant ligneous species (Quercus robur, Fraxinus excelsior and Populus alba) were investigated for root structure (vertical extension of root systems), leaf and soil water potential (Ψm), isotopic signal (18O) of soil water and xylem sap. The root density of oak and poplar was maximal at a depth of 20 to 60 cm, whereas the roots of the ash explored the surface horizon between 0 and 30 cm, which suggests a complementary tree root distribution in the hardwood forest. The flow density of oak and poplar was much lower than that of the ash. However, in the three cases the depth of soil explored by the roots reached 1·2 m, i.e. just above a bed of gravel. The oak roots had a large lateral distribution up to a distance of 15 m from the trunk. The water potential of the soil measured at 1 m from the trunk showed a zone of strong water potential between 20 and 60 cm deep. The vertical profile of soil water content varied from 0·40 to 0·50 cm3 cm?3 close to the water table, and 0·20 to 0·30 cm3 cm?3 in the rooting zone. The isotopic signal of stem water was constant over the whole 24‐h cycle, which suggested that the uptake of water by trees occurred at a relatively constant depth. By comparing the isotopic composition of water between soil and plant, it was concluded that the water uptake occurred at a depth of 20 to 60 cm, which was in good agreement with the root and soil water potential distributions. The riparian forest therefore did not take water directly from the water table but from the unsaturated zone through the effect of capillarity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   

20.
Hydraulic redistribution defined as the translocation of soil moisture by plant root systems in response to water potential gradients is a phenomenon widely documented in different climate, vegetation, and soil conditions. Past research has largely focused on hydraulic redistribution in deep tree roots with access to groundwater and/or winter rainfall, while the case of relatively shallow (i.e., ≈1–2 m deep) tree roots has remained poorly investigated. In fact, it is not clear how hydraulic redistribution in shallow root zones is affected by climate, vegetation, and soil properties. In this study, we developed a model to investigate the climate, vegetation, and soil controls on the net direction and magnitude of hydraulic redistribution in shallow tree root systems at the growing season to yearly timescale. We used the model to evaluate the effect of hydraulic redistribution on the water stress of trees and grasses. We found that hydraulic lift increases with decreasing rainfall frequency, depth of the rooting zone, root density in the deep soil and tree leaf area index; at the same time for a given rainfall frequency, hydraulic lift increases with increasing average rainstorm depth and soil hydraulic conductivity. We propose that water drainage into deeper soil layers can lead to the emergence of vertical water potential gradients sufficient to explain the occurrence of hydraulic lift in shallow tree roots without invoking the presence of a shallow water table or winter precipitation. We also found that hydraulic descent reduces the water stress of trees and hydraulic lift reduces the water stress of grass with important implications on tree–grass interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号