首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological soil crusts (BSCs) cover up to 60 to 70% of the soil surface in grasslands after the ‘Grain for Green’ project was implemented in 1999 to rehabilitate the Loess Plateau. However, few studies exist that quantify the effects of BSCs on the soil detachment process by overland flow in the Loess Plateau. This study investigated the potential effects of BSCs on the soil detachment capacity (Dc), and soil resistance to flowing water erosion reflected by rill erodibility and critical shear stress. Two dominant BSC types that developed in the Loess Plateau (the later successional moss and the early successional cyanobacteria mixed with moss) were tested against natural soil samples collected from two abandoned farmland areas. The samples were subjected to flow scouring under six different shear stresses ranging from 7.15 to 24.08 Pa. The results showed that Dc decreased significantly with crust coverage under both moss and mixed crusts. The mean Dc of bare soil (0.823 kg m?2 s?1) was 2.9 to 48.4 times greater than those of moss covered soil (0.017–0.284 kg m?2 s?1), while it (3.142 kg m?2 s?1) was 4.9 to 149.6 times greater than those of mixed covered soil (0.021–0.641 kg m?2 s?1). The relative detachment rate of BSCs compared with bare soils decreased exponentially with increasing BSC coverage for both types of BSCs. The Dc value can be simulated by flow shear stress, cohesion, and BSC coverage using a power function (NSE ≥ 0.59). Rill erodibility also decreased with coverage of both crust types. Rill erodibility of bare soil was 3 to 74 times greater than those of moss covered soil and was 2 to 165 times greater than those of mixed covered soil. Rill erodibility could also be estimated by BSC coverage in the Loess Plateau (NSE ≥ 0.91). The effect of crust coverage on critical shear stress was not significant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Biological soil crusts (BSCs) are ubiquitous living covers that have been allowed to grow on abandoned farmlands over the Loess Plateau because the “Grain for Green” project was implemented in 1999 to control serious soil erosion. However, few studies have been conducted to quantify the effects of BSC coverage on soil hydraulic properties. This study was performed to assess the effects of BSC coverage on soil hydraulic properties, which are reflected by the soil sorptivity under an applied pressure of 0 (S 0 ) and ?3 (S 3 ) cm, saturated hydraulic conductivity (K s ), wetting front depth (WFD ), and mean pore radius (λ m ), for the Loess Plateau of China. Five classes of BSC coverage (i.e., 1–20%, 20–40%, 40–60%, 60–80%, and 80–100%) and a bare control were selected at both cyanobacteria‐ and moss‐covered sites to measure soil hydraulic properties using a disc infiltrometer under 2 consecutive pressure heads of 0 and ?3 cm, allowing the direct calculation of S 0 , S 3 , K s , and λ m . The WFD was measured onsite using a ruler immediately after the experiments of infiltration. The results indicated that both cyanobacteria and moss crusts were effective in changing the soil properties and impeding soil infiltration. The effects of moss were greater than those of cyanobacteria. Compared to those of the control, the S 0 , S 3 , K s , WFD , and λ m values of cyanobacteria‐covered soils were reduced by 13.7%, 11.0%, 13.3%, 10.6%, and 12.6% on average, and those of moss‐covered soils were reduced by 27.6%, 22.1%, 29.5%, 22.2%, and 25.9%, respectively. The relative soil sorptivity under pressures of 0 (RS 0 ) and ?3 (RS 3 ) cm, the relative saturated hydraulic conductivity (RK s ), the relative wetting front depth (RWFD ), and the relative mean pore radius (m ) decreased exponentially with coverage for both cyanobacteria‐ and moss‐covered soils. The rates of decrease in RS 0 , RS 3 , RK s , RWFD , and m of cyanobacteria were significantly slower than those of moss, especially for the coverage of 0–40%, with smaller ranges. The variations of soil hydraulic properties with BSC coverage were closely related to the change in soil clay content driven by the BSC coverage on the Loess Plateau. The results are useful for simulating the hydraulic parameters of BSC‐covered soils in arid and semiarid areas.  相似文献   

3.
Several studies illustrate the wind and water erosion‐reducing potential of semi‐permanent microbiotic soil crusts in arid and semi‐arid desert environments. In contrast, little is hitherto known on these biological crusts on cropland soils in temperate environments where they are annually destroyed by tillage and quickly regenerate thereafter. This study attempts to fill the research gap through (a) a field survey assessing the occurrence of biological soil crusts on loess‐derived soils in central Belgium in space and time and (b) laboratory flume (2 m long) experiments simulating concentrated runoff on undisturbed topsoil samples (0.4 × 0.1 m2) quantifying the microbiotic crust effect on soil erosion rates. Three stages of microbiotic crust development on cropland soils are distinguished: (1) development of a non‐biological surface seal by raindrop impact, (2) colonization of the soil by algae and gradual development of a continuous algal mat and (3) establishment of a well‐developed microbiotic crust with moss plants as the dominant life‐form. As the silt loam soils in the study area seal quickly after tillage, microbiotic soil crusts are more or less present during a large part of the year under maize, sugar beet and wheat, representing the main cropland area. On average, the early‐successional algae‐dominated crusts of stage 2 reduce soil detachment rates by 37%, whereas the well‐developed moss mat of stage 3 causes an average reduction of 79%. Relative soil detachment rates of soil surfaces with microbiotic crusts compared with bare sealed soil surfaces are shown to decrease exponentially with increasing microbiotic cover (b = 0·024 for moss‐dominated and b = 0·006 for algae‐dominated crusts). In addition to ground surface cover by vegetation and crop residues, microbiotic crust occurrence can therefore not be neglected when modelling small‐scale spatial and temporal variations in soil loss by concentrated flow erosion on cropland soils in temperate environments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Biological soil crust (BSC), as a groundcover, is widely intergrown with grass. The effects of grass combined with BSCs on slope hydrology and soil erosion during rainfall are still unclear. In this study, simulated rainfall experiments were applied to a soil flume with four different slope cover treatments, namely, bare soil (CK), grass cover (GC), BSC, and GC + BSC, to observe the processes of runoff and sediment yield. Additionally, the soil moisture at different depths during infiltration was observed. The results showed that the runoff generated by rainfall for all treatments was in the following order: BSC > GC + BSC > CK > GC. Compared with CK, GC promoted infiltration, and BSC inhibited infiltration. The BSCs obviously inhibited infiltration at a depth of 8 cm. When the rainfall continued to infiltrate down to 16 and 24 cm, the effects of grass on promoting infiltration were stronger than those of BSCs on inhibiting infiltration. Compared with CK, the flow velocity of the BSC, GC and GC + BSC treatments was reduced by 62.8%, 32.3% and 68.3%, respectively. The BSCs and grass increased the critical shear stress by increasing the resistance. Additionally, the average sediment yield of GC and both treatments with BSCs was reduced by 80.8% and >99%, respectively, compared with CK. The soil erosion process was dominated by the soil detachment capacity in the CK, BSC and GC + BSC treatments, while the GC treatment showed a transport-limited process. This study provides a scientific basis for the reasonable spatial allocation of vegetation in arid and semiarid areas and the correction of vegetation cover factors in soil erosion prediction models.  相似文献   

5.
The detachment capacity (Dc) and transport capacity (Tc) of overland flow are important variables in the assessment of soil erosion. They determine respectively the lower and upper limit of sediment transport by runoff and therefore control detachment and deposition pro‐cesses. In this study, the detachment and transport capacity of runoff was investigated by rainfall simulations and overland flow experiments on small field plots. On the bare field plots, it was found that Tc was strongly related to total runoff discharge. This was also observed for the plots covered by maize residues, but Tc was less due to the lower runoff velocity. A simple regression equation was derived to estimate Tc for both bare and covered soil. Comparing our observations with Tc equations mentioned in the literature revealed that Tc equations based on laboratory experiments overestimated, on average, our measurements. Although Tc can be assessed more easily in laboratory experiments, the applicability of the results to field conditions remains questionable. Detachment by runoff was also related to total runoff discharge. The Dc values were, however, 4–50 times smaller than the Tc at corresponding high and low runoff discharge. This indicates that detachment by runoff constitutes only part of the transported sediment. Interrill erosion supplies an important additional amount of sediment. In this study, however, only sealed soils were considered. In the case of freshly tilled, loose soils, the Dc of runoff may be larger, resulting in a larger contribution to the total soil loss. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
To study the effects of biological soil crusts (BSCs) on hydrological processes and their implications for disturbance in the Mu Us Sandland, the water infiltration, evaporation and soil moisture of high coverage (100% BSCs), middle coverage (40% BSCs) and low coverage (0% BSCs, bare sand) of moss‐dominated crusts were conducted in this study, respectively. The conclusions are as follows: (1) the main effects of moss‐dominated crusts in the Mu Us Sandland on the infiltration of rainwater were to reduce the infiltration depths and to retain the limited rainwater in shallow soil; (2) moss‐dominated crusts have no significant effects on daily evaporation when the volumetric water content at 4 cm depth in 100% BSCs (VWC4) was over 24.7%, on enhanced daily evaporation when the VWC4 ranged from 6.5% to 24.7% and on reduced daily evaporation when the VWC4 was less than 6.5%; and (3) decreasing the coverage of moss‐dominated crusts (from 100% to 40%) did not significantly change its effects on infiltration, evaporation and soil moisture. Our results demonstrated that for the growth and regeneration of shrubs, which were dominated by Artemisia ordosica in the Mu Us Sandland, high coverage of moss‐dominated crusts has negative effects on hydrological processes, and these negative effects could not be significantly reduced by decreasing the coverage of moss‐dominated crusts from 100% to 40%. Therefore, for the sustained and healthy development of shrub communities in the Mu Us Sandland, it is necessary to take appropriate measures for the well‐developed BSCs in the sites with high vegetation coverage in the rainy season. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Periodic submersion and exposure due to the operation of the Three Gorges Reservoir (TGR) alter the soil properties and plant characteristics at different elevations within the water level fluctuation zone (WLFZ), possibly influencing the soil detachment capacity (Dc), but the vertical heterogeneity of this effect is uncertain. Soil samples were taken from 6 elevation segments (5 m per segment) along a slope profile in the WLFZ of the TGR to clarify the vertical heterogeneity of Dc. Scouring experiments were conducted at 5 slope gradients (17.6%, 26.8%, 36.4%, 46.6%, and 57.7%) and 5 flow rates (10, 15, 20, 25, and 30 L min−1) to determine Dc. The results indicate that the soil properties and biomass parameters of the WLFZ exhibit strongly vertical heterogeneity. Dc fluctuates with increasing elevation, with maximum and minimum average values at elevations of 145–150 m and 165–170 m, respectively. Linear equations accurately describe the relationships between Dc and hydrodynamic parameters, for which the shear stress (τ), stream power (ω), and unit energy of water-carrying section (E) perform much better than the unit stream power (U). Furthermore, a clear improvement is achieved when using a general index of flow intensity to estimate Dc. Furthermore, Dc is significantly and negatively correlated with the mean weight diameter (MWD, p < 0.05) and organic matter content (p < 0.01) but not significantly correlated with other soil properties (p > 0.05). The rill erodibility at elevations of 145–150 m and 170–175 m is greater than that at other elevations. The critical hydraulic parameters were highest in the 165–170 m segments. Both the rill erodibility and the critical parameters fluctuate vertically along the sloping surface. This research highlights the vertical heterogeneity of Dc and is helpful for better understanding the mechanisms responsible for soil detachment in the WLFZ of the TGR.  相似文献   

8.
Accurate prediction of soil detachment capacity is fundamental to establish process-based erosion models and improve soil loss assessment. Few studies were conducted to reveal the mechanism of detachment process for yellow soil on steep cropland in the subtropical region of China using field experiments. This study was performed to determine soil detachment characteristics and explore the relationships between soil detachment capacity (D c) and flow rate, slope gradient, mean velocity, shear stress, stream power and unit stream power. Field experiments were conducted on intact soil with flow rates ranging from 0.2 × 10−3 to 0.5 × 10−3 m−3 s−1 and slope gradients varying from 8.8 to 42.4%. The results showed the following. (a) D c of yellow soil was smaller than other soils because of its high clay content. (b) D c was more susceptible to flow than to slope gradient. Power functions were derived to depict the relationship between D c and the flow rate and slope gradient (R2 = 0.91). (c) D c was better simulated by power functions of the stream power (R2 = 0.83) than functions of the shear stress or the unit stream power. (d) Considering its accuracy, simplicity and accessibility, the power function based on flow rate and slope gradient is recommended to predict D c of yellow soil in the field. The results of this study provide useful support for revealing soil detachment mechanism and developing process-based soil erosion models for the subtropical region of China.  相似文献   

9.
The factors influencing soil erosion may vary with scale. It remains unclear whether the spatial variation in soil erosion resistance is controlled by regional variables (e.g. precipitation, temperature, and vegetation zone) or by local specific variables (e.g. soil properties, root traits, land use, and farming operations) when the study area enlarges from a hillslope or catchment to the regional scale. This study was performed to quantify the spatial variations in soil erosion resistance to flowing water under three typical land uses along a regional transect on the Loess Plateau and to identify whether regional or local specific variables are responsible for these changes. The results indicated that the measured soil detachment capacities (Dc) of cropland exhibited an irregular trend along the regional transect. The Dc of grassland increased with mean annual precipitation, except for two sites (Yijun and Erdos). The measured Dc of woodland displayed an inverted ‘U’ shape. The changes in rill erodibility (Kr) of three land uses were similar to Dc, whereas no distinguishable trend was found for critical shear stress (τc). No significant correlation was detected between Dc, Kr and τc, and the regional variables. The spatial variation in soil erosion resistance could be explained reasonably by changes in soil properties, root traits, land use, and farming operations, rather than regional variables. The adjustment coefficient of Kr for grassland and woodland could be well simulated by soil cohesion and root mass density (R2 = 0.70, P < 0.01), and the adjustment coefficient of critical shear stress could be estimated with aggregate stability (R2 = 0.57, P < 0.01). The results are helpful for quantifying the spatial variation in soil detachment processes by overland flow and to develop process‐based erosion model at a regional scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Surface hydrological behaviour is important in drylands because it affects the distribution of soil moisture and vegetation and the hydrological functioning of slopes and catchments. Microplot scale run‐off can be relatively easily measured, i.e. by rainfall simulations. However, slope or catchment run‐off cannot be deduced from microplots, requiring long‐time monitoring, because run‐off coefficients decrease with increasing drainage area. Therefore, to determine the slope length covered by run‐off (run‐off length) is crucial to connect scales. Biological soil crusts (BSCs) are good model systems, and their hydrology at slope scale is insufficiently known. This study provides run‐off lengths from BSCs, by field factorial experiments using rainfall simulation, including two BSC types, three rain types, three antecedent soil moistures and four plot lengths. Data were analysed by generalized linear modelling, including vascular plant cover as covariates. Results were the following: (i) the real contributing area is almost always much smaller than the topographical contributing area; (ii) the BSC type is key to controlling run‐off; run‐off length reached 3 m on cyanobacterial crust, but hardly over 1 m on lichen crust; this pattern remained through rain type or soil moisture; (iii) run‐off decreased with BSC development because soil sealing disappears; porosity, biomass and roughness increase and some changes occur in the uppermost soil layer; and (iv) run‐off flow increased with both rain type and soil moisture but run‐off coefficient only with soil moisture (as larger rains increased both run‐off and infiltration); vascular plant cover had a slight effect on run‐off because it was low and random. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Biocrust effects on soil infiltration have attracted increasing attention in dryland ecosystems, but their seasonal variations in infiltrability have not yet been well understood. On the Chinese Loess Plateau, soil infiltrability indicated by saturated hydraulic conductivity (Ks) of biocrusts and bare soil, both on aeolian sand and loess soil, was determined by disc infiltrometer in late spring (SPR), midsummer (SUM), and early fall (FAL). Then their correlations with soil biological and physiochemical properties and water repellency index (RI) were analysed. The results showed that the biocrusts significantly decreased Ks both on sand during SPR, SUM, and FAL (by 43%, 66%, and 35%, respectively; P < .05) and on loess (by 42%, 92%, and 10%, respectively; P <.05). As compared with the bare soil, the decreased Ks in the biocrusted surfaces was mostly attributed to the microorganism biomass and also to the increasing content of fine particles and organic matter. Most importantly, both the biocrusts and bare soil exhibited significant (F ≥ 11.89, P ≤ .003) seasonal variations in Ks, but their patterns were quite different. Specifically, the Ks of bare soil gradually decreased from SPR to SUM (32% and 42% for sand and loess, respectively) and FAL (29% and 39%); the Ks of biocrusts also decreased from SPR to SUM (59% and 92%) but then increased in FAL (36% and 588%). Whereas the seasonal variations in Ks of the biocrusts were closely correlated with the seasonal variations in RI, the RI values were not high enough to point at hydrophobicity. Instead of that, the seasonal variations of Ks were principally explained by the changes in the crust biomass and possibly by the microbial exopolysaccharides. We conclude that the biocrusts significantly decreased soil infiltrability and exhibited a different seasonal variation pattern, which should be carefully considered in future analyses of hydropedological processes.  相似文献   

12.
Crop residues in conservation tillage systems are known to cause both a reduction in the erosive runoff power and an increase in the topsoil erosion resistance. In this study, the relative importance of both mechanisms in reducing soil loss by concentrated flow erosion is examined. Therefore, a method to calculate the effective flow shear stress responsible for soil detachment in the presence of a residue cover is applied. The determination of effective flow shear stress is based on the recalculation of the hydraulic radius for residue treatments. The method was tested in a laboratory flume by comparing soil detachment rates of identical pairs of soil samples that only differ in the presence or absence of crop residues. This shear stress partitioning approach and a soil detachment correction were then applied to a dataset of soil detachment measurements on undisturbed topsoil samples from a no‐till field plot on a loess‐derived soil, sampled during one growing season. Results indicate that only a small fraction (10% on average) of the difference in soil detachment rate between conventional and conservation tillage can be attributed to the dissipation of shear forces on the residues. The remaining decrease in soil detachment during concentrated runoff after a two‐year application of conservation tillage can be explained by the increased dry bulk density and root and crop residue content in the topsoil that reduces soil erodibility. After correcting for the presence of residues, the temporal variability in soil detachment rates (Dr) during concentrated flow for a given flow shear stress (τ) for both treatments can be predicted fairly well (R2 = 0·87) from dry soil bulk density (DBD, representing consolidation effects), soil moisture content (SMC, representing antecedent rainfall conditions), the dry mass of organic material (OM, representing root growth and residue decomposition) and saturated soil shear strength σs, sat using an equation of the form: This study is the first to show that the effect of conservation tillage on soil detachment rates is a result of soil property modifications affecting soil erodibility, rather than a result of the surface residue decreasing flow erosivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Physical soil crusts likely have significant effects on infiltration and soil erosion, however, little is known on whether the effects of the crusts change during a rainfall event. Further, there is a lack of discussions on the differences among the crusting effects of different soil types. The objectives of this study are as follows: (i) to study the effects of soil crusts on infiltration, runoff, and splash erosion using three typical soils in China, (ii) to distinguish the different effects on hydrology and erosion of the three soils and discuss the primary reasons for these differences, and (iii) to understand the variations in real soil shear strength of the three soils during rainfall events and mathematically model the effects of the crusts on soil erosion. This study showed that the soil crusts delayed the onset of infiltration by 5 to 15 min and reduced the total amount of infiltration by 42.9 to 53.4% during rainfall events. For a purple soil and a loess soil, the initial crust increased the runoff by 2.8% and 3.4%, respectively, and reduced the splash erosion by 3.1% and 8.9%, respectively. For a black soil, the soil crust increased the runoff by 42.9% and unexpectedly increased the splash erosion by 95.2%. In general, the effects of crusts on the purple and loess soils were similar and negligible, but the effects were significant for the black soil. The soil shear strength decreased dynamically and gradually during the rainfall events, and the values of crusted soils were higher than those of incrusted soils, especially during the early stage of the rainfall. Mathematical models were developed to describe the effects of soil crusts on the splash erosion for the three soils as follows: purple soil, Fc= 0.002t- 0.384 ; black soil, Fc. =-0.022t + 3.060 ; and loess soil, Fc = 0.233 In t- 1.239 . Combined with the equation Rc= Fc (Ruc - 1), the splash erosion of the crusted soil can be predicted over time.  相似文献   

14.
Biological soil crusts (BSCs) are ubiquitous communities of diminutive organisms such as cyanobacteria, green algae, lichens, mosses and others associated closely with particles of surface soil, forming a cohesive thin horizontal layer. The ecological roles of BSCs affecting soil nutrient cycling, stability and hydrological processes, influencing the germination and establishment of vascular plants, and serving as habitats for numerous arthropods and microorganism have been well documented. We tested the hypothesis that micro‐geomorphological features determine the spatial distribution of BSCs by reallocating related abiotic resources at small‐ and medium‐scales in the Tengger Desert. Our results showed that higher soil pH and higher total potassium content in topsoil positively correlated with the colonization of cyanobacteria and algae in the earliest successional stages of BSCs, while increasing dust deposition onto the topsoil enhanced the development of lichen and mosses in the later stages of BSCs. Increasing soil moisture raised the proportion of mosses and lichen in BSCs, this will possibly change the ecological functions of BSCs, such as nitrogen‐fixation by cyanobacteria, due to the conversion from a complex to relative simple type of BSC. Micro‐geomorphology has created various habitats at a small‐scale affecting colonization and development of cryptogams. This paper considers the contribution of micro‐geomorphology to biodiversity in the extreme arid desert systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Soil detachment in concentrated flow is due to the dislodging of soil particles from the soil matrix by surface runoff. Both aggregate stability and shear strength of the topsoil reflect the erosion resistance of soil to concentrated runoff, and are important input parameters in predicting soil detachment models. This study was conducted to develop a formula to predict soil detachment rate in concentrated flow by using the aggregate stability index (As), root density (Rd) and saturated soil strength (σs) in the subtropical Ultisols region of China. The detachment rates of undisturbed topsoil samples collected from eight cultivated soil plots were measured in a 3.8 m long, 0.2 m wide hydraulic flume under five different flow shear stresses (τ = 4.54, 9.38, 15.01, 17.49 and 22.54 Pa). The results indicated that the stability index (As) was well related with soil detachment rate, particularly for results obtained with high flow shear stress (22.54 Pa), and the stability index (As) has a good linear relationship with concentrated flow erodibility factors (Kc). There was a positive linear relationship between saturated soil strength (σs) and critical flow shear stress (τc) for different soils. A significant negative exponential relationship between erodibility factors (Kc) and root density (Rd) was detected. This study yielded two prediction equations that allowed comparison of their efficiency in assessing soil detachment rate in concentrated flow. The equation including the root density (Rd) may have a better correlation coefficient (R2 = 0.95). It was concluded that the formula based on the stability index (As), saturated soil strength (σs) and root density (Rd) has the potential to improve methodology for assessing soil detachment rate in concentrated flow for the subtropical Chinese Ultisols. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Vegetation restoration is identified as an effective approach to control soil erosion and affects soil detachment and resistance to concentrated flow on the Loess Plateau. However, the effects of vegetation restoration at gully heads in loess-tableland remains unclear. This study was performed to investigate the effects of nine vegetation restoration types at gully heads on soil detachment rate (Dr) and soil resistance to concentrated flow (i.e. soil erodibility, Kr and critical shear stress, τc). Undisturbed soil samples were collected from nine vegetation-restored lands and one slope cropland (as the control) and were subjected to a hydraulic flume to obtain Dr values of gully heads under six inflow discharges (0.5–3.5 L s-1). The results showed that the Dr values of nine revegetated gully heads were 77.11% to 95.81% less than that of slope cropland, and the grassland dominated by Cleistogenes caespitosa and the shrubland dominated by Hippophae rhamnoides had a relatively greater decrease in Dr than those of other seven restoration types. The Dr value of nine revegetated gully heads could be better simulated by stream power than by flow velocity and shear stress and was also significantly affected by soil disintegration rate (positively), soil bulk density, saturated hydraulic conductivity, organic matter content, and water-stable aggregate stability (negatively). Additionally, roots with diameters of 0 to 0.5 mm showed a greater effect on Dr than those with larger diameters. Compared to cropland, the nine restored types reduced Kr by 76.26% to 94.26% and improved τc by 1.51 to 4.68 times. The decrease in Kr and the increase in τc were significantly affected by organic matter content, water-stable aggregate, mean weight diameter of aggregate and root mass density. The combination of grass species (Cleistogenes caespitosa) and shrub (Hippophae rhamnoides) could be considered the best vegetation restoration types for improving soil resistance of gully heads to concentrated flow. © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
The effects of root systems on soil detachment by overland flow are closely related to vegetation types. The objective of this study was to quantify the effects of two gramineous roots (Paspalum mandiocanum with shallow roots and Pennisetum giganteum with deep roots) on soil detachment capacity, rill erodibility, and critical shear stress on alluvial fans of benggang in south-east China. A 4-m-long and 0.12-m-wide flume was used. Slope steepness ranged from 9% to 27%, and unit flow discharge ranged from 1.39 × 10−3 to 4.19 × 10−3 m2 s−1. The mean detachment capacities of P. mandiocanum and P. giganteum lands were 18% and 38% lower than that of bare land, respectively, and the effects of root on reducing soil detachment were mainly reflected in the 0- to 5-cm soil layer. The most important factors in characterizing soil detachment capacity were root length density and soil cohesion, and soil detachment capacity of the two grass lands could be estimated using flow shear stress, soil cohesion, and root length density (NSE = 0.90). With the increase in soil depth, rill erodibility increased, whereas shear stress decreased. The mean rill erodibilities of P. mandiocanum and P. giganteum lands were 81% and 61% as much as that of bare land, respectively. Additionally, rill erodibilities of the two grass lands could be estimated as an exponential function by root length density and soil cohesion (NSE = 0.88). The mean critical shear stress of P. mandiocanum and P. giganteum lands was 1.29 and 1.39 times that of bare land, respectively, and it could be estimated with a linear function by root length density (NSE = 0.76). This study demonstrated that planting of the two grasses P. mandiocanum and P. giganteum could effectively reduce soil detachment and enhance soil resistance to erosion on alluvial fans, with the deep roots of P. giganteum being more effective than the shallow roots of P. mandiocanum. The results are helpful for understanding the influencing mechanism of root systems on soil detachment process.  相似文献   

18.
Planting of sand‐binding vegetation in the Shapotou region on the southeastern edge of the Tengger Desert began in 1956. The revegetation programme successfully stabilized formerly mobile dunes in northern China, permitting the operation of the Baotou‐Lanzhou railway. Long‐term monitoring has shown that the revegetation programme produced various ecological changes, including the formation of biological soil crusts (BSCs). To gain insight into the role of BSCs in both past ecological change and current ecological evolution at the revegetation sites, we used field measurements and HYDRUS‐1D model simulations to investigate the effects of BSCs on soil hydrological processes at revegetated sites planted in 1956 and 1964 and at an unplanted mobile dune site. The results demonstrate that the formation of BSCs has altered patterns of soil water storage, increasing the moisture content near the surface (0–5 cm) while decreasing the moisture content in deeper layers (5–120 cm). Soil evaporation at BSC sites is elevated relative to unplanted sites during periods when canopy coverage is low. Rainfall infiltration was not affected by BSCs during the very dry period that was studied (30 April to 30 September 2005); during periods with higher rainfall intensity, differences in infiltration may be expected due to runoff at BSC sites. The simulated changes in soil moisture storage and hydrological processes are consistent with ongoing plant community succession at the revegetated sites, from deep‐rooted shrubs to more shallow‐rooted herbaceous species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Concentrated flow erosion rates reduced through biological geotextiles   总被引:1,自引:0,他引:1  
Soil erosion by concentrated flow can cause serious environmental damage. Erosion‐control geotextiles have considerable potential for reducing concentrated flow erosion. However, limited data are available on the erosion‐reducing potential of geotextiles. In this study, the effectiveness of three biological geotextiles in reducing soil losses during concentrated flow is investigated. Hereto, runoff was simulated in a concentrated flow flume, filled with an erodible sandy loam on three slope gradients (13·5, 27·0 and 41·5%). Treatments included three biological geotextiles (borassus, buriti and bamboo) and one bare soil surface. Darcy–Weisbach friction coefficients ranged from 0·01 to 2·84. The highest values are observed for borassus covered soil surfaces, followed by buriti, bamboo and bare soil, respectively. The friction coefficients are linearly correlated with geotextile thickness. For the specific experimental conditions of this study, borassus geotextiles reduced soil detachment rate on average to 56%, buriti geotextiles to 59% and bamboo geotextiles to 66% of the soil detachment rate for bare soil surfaces. Total flow shear stress was the hydraulic parameter best predicting soil detachment rate for bare and geotextile covered surfaces (R2 = 0·75–0·84, <0·001, n = 12–15). The highest resistance against soil detachment was observed for the borassus covered soil surfaces, followed by buriti, bamboo and bare soil surfaces, respectively. Overall, biological geotextiles are less effective in controlling concentrated flow erosion compared with interrill erosion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Plant litter can be incorporated into topsoil by a natural process, affecting the soil erosion process. This is a widespread phenomenon in erosion-prone areas. This study was conducted to investigate the effect of litter incorporation on the process of soil detachment on the Loess Plateau, China. Four common plant litters (Bothriochloa ischaemum L. Keng., Artemisia sacrorum Ledeb., Setaria viridis L. Beauv., and Artemisia capillaris Thunb.) were collected, then incorporated into the silt loam soil at five rates (0.1, 0.4, 0.7, 1.0, and 1.3 kg m−2) on the basis of our field investigation. Twenty litter–soil treatments and one bare soil control were prepared. After 50 days of natural stabilization, 30 soil samples of each treatment were collected. We used a flume test to scour the soil samples under six flow shear stress conditions (5.66, 8.31, 12.21, 15.55, 19.15, and 22.11 Pa). The results showed that the different incorporated litter masses and morphological characteristics, such as litter tissue density (ranging from 0.52 to 0.68 g cm−3), length density (2.34 to 91.00 km m−3), surface area density (LSAD; 27.9 to 674.2 m2 m−3), and volume ratio (0.003 to 0.050 m3 m−3), caused varied soil detachment capacities (0.043 to 4.580 kg·m−2·s−1), rill erodibilities (0.051 to 0.237 s m−1), and critical shear stresses (2.02 to 6.83 Pa). The plant litter incorporated within the soil reduced the soil detachment capacities by 38%–59%, lowered the rill erodibilities by 32%–46%, and increased the critical shear stresses by 98%–193% compared with the bare soil control. The soil containing B. ischaemum (L.) Keng. litter was more resistant to erosion. By comparing different parameters, we found that the contact area between the litter and soil was the main factor affecting the soil detachment process. The soil erosion resistance increased with the increasing contact area between the soil and litter. Furthermore, the litter incorporation effect on rill erodibility can be comprehensively reflected by LSAD (R2 = .93; Nash–Sutcliffe efficiency = 0.79), which could be used to adjust the rill erodibility parameter in physical process-based soil erosion models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号