首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study develops improved Soil Moisture Proxies (SMP) based suspended sediment yield (SMPSY) models corresponding to three antecedent moisture conditions (AMCs) (i.e., AMC-I-AMC-III) by coupling the improved initial abstraction (Ia-λ) model, the SMA procedure and the SMP concept for modelling the rainfall generated suspended sediment yield. The SMPSY models specifically incorporate a watershed storage index (S) model to accentuate the transformation from storm to storm and to avoid the sudden jumps in sediment yield computation. The workability of the SMPSY models is tested using a large dataset of rainfall and sediment yield (98 storm events) from twelve small watersheds and a comparison has been made with the existing MSY model. The goodness-of-fit (GOF) statistics is evaluated in terms of the Nash Sutcliffe efficiency (NSE), and error indices, i.e., root mean square error (RMSE), normalized root mean square error (nRMSE), standard error (SE), mean absolute error (MAE), and RMSE-observations standard deviation ratio (RSR). The NSE values vary from 74.31% to 96.57% and from 75.21% to 91.78%, respectively for the SPMSY and MSY model. The NSE statistics indicate that the SMPSY model has lower uncertainty in simulating sediment yield as compared to the MSY model. The error indices are lower for the SMPSY model than the MSY model for most of the watersheds. These results show that the SMPSY model has less uncertainty and performs better than the MSY model. A sensitivity analysis of the SMPSY model shows that the parameter β is most sensitive followed by parameter S, α and A. Overall, the results show that the characterization of soil moisture variability in terms of SMPs and incorporation of improved delivery ratio and runoff coefficient relationship improves the simulation of the erosion and sediment yield generation process.  相似文献   

2.
The intensity of soil loss and sediment delivery, representing hydrologic and geomorphic processes within a catchment, accelerates with rapid changes in land cover and rainfall events. An underlying component of sustainable management of water resources is an understanding of spatial and temporal variability and the adverse influences of regional parameters involved in generating sediment following widespread changes in land cover. A calibrated algorithm of soil loss coupled with a sediment delivery ratio (SDR) was applied in raster data layers to improve the capability of a combined model to estimate annual variability in sediment yields related to changes in vegetation cover identified by analyses of SPOT imagery. Four catchments in Kangaroo River State forest were assessed for annual changes in sediment yields. Two catchments were selectively logged in 2007, while the two other sites remained undisturbed. Results of SDR estimates indicated that only a small proportion of total eroded sediment from hillslopes is transported to catchment outlets. Larger SDR values were estimated in regions close to catchment outlets, and the SDR reduced sharply on hillslopes further than 200–300 m from these areas. Estimated sediment yield increased by up to 30% two years after land cover change (logging) in 2009 when more storm events were recorded, despite the moderate density of vegetation cover in 2009 having almost recovered to its initial pre‐logging (2005) condition. Rainfall had the most significant influence on streamflow and sediment delivery in all catchments, with steeply sloping areas contributing large amounts of sediment during moderate and high rainfall years in 2007 and 2009. It is concluded that the current scenario of single‐tree selection logging utilized in the study area is an acceptable and environmentally sound land management strategy for preservation of soil and water resources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
三峡水库是控制和开发长江的重要工程,具有巨大的防洪、发电、航运等综合效益.水库排沙比是反映水库拦截泥沙程度的重要指标.针对目前三峡水库排沙比计算没有考虑三峡水库区间来沙,结果偏大的问题,依据三峡水库区间水文站2003-2016年实测水文资料,采用水文学法估算了三峡水库区间月、年入库输沙量,分析了三峡水库排沙效果及主要影响因素.结果表明:1)三峡水库区间年均来沙量约1775×104 t,占总入库沙量的10.3%,近年来沙占比有所增大,其中2013-2016年来沙量占总入库沙量的26.9%;2)三峡水库年均排沙比为21.6%,其中围堰蓄水期为34.1%,初期蓄水期为17.0%,试验性蓄水期为15.4%;3)三峡水库采用"蓄清排浑"方式运行,主汛期7-9月的排沙比一般大于枯季,但2013年以后,出现了主汛期排沙比小于枯季的现象;4)入库细颗粒泥沙的排沙比大于粗颗粒泥沙,其中粒径d ≤ 0.062 mm的细颗粒泥沙排沙比为23.4%,0.062 mm0.125 mm的中粗沙排沙比分别为5.5%和11.1%;5)三峡水库排沙比汛期主要受V/Q影响,枯季主要受入库含沙量的影响;当V/Q约为170×104 s时,水库排沙效果最差;分别建立了汛期和枯季排沙比经验计算式.本文的研究成果可为三峡水库水沙优化调度等提供参考.  相似文献   

4.
In this paper a spatially distributed model of the hillslope sediment delivery processes, named the sediment delivery distributed (SEDD) model, is initially reviewed; the model takes into account the sediment delivery processes due to both the hillslope sediment transport and the effects of slope curvature. Then the rainfall and sediment yield events measured at the experimental SPA2 basin, in Sicily, are used both to calibrate the SEDD model and to verify the predictive capability of the distributed sediment delivery approach at event scale. For the SPA2 basin discretized into morphological units and stream tubes, the SEDD model is calibrated at event scale using the measurements carried out at the outlet of the experimental basin in the period December 2000–January 2001. The model calibration is used to determine a relationship useful for estimating the unique coefficient βe of the model by rainfall erosivity factor Re at event scale. To test the predictive capability of the βe = f(Re) relationship, 20 events measured in the period September 2002–December 2005 are used; the comparison between measured sediment yield values and calculated ones for all monitored events shows that the sediment delivery distributed approach has a good predictive ability at event scale. The analysis also shows that estimating βe by the relationship βe = f(Re) gives a better agreement between measured and calculated sediment yields than obtained with the median value βe,m of all 27 calculated βe values. Finally the analysis at annual scale, for the period 2000–2005, allows the estimation of the median value βa,m representative of the annual behaviour. This analysis shows that the sediment delivery distributed approach also has a good predictive ability at annual scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
In arid zones, many active aeolian dunes terminate at ephemeral and perennial desert rivers. The desert rivers show very high rates of sediment transport that cause deleterious downstream effects on the river system and ecology. High sediment loading has been attributed to severe water erosion of sparsely covered watersheds during infrequent but heavy rainfall. Although aeolian erosion is known to lead to high rates of wind‐blown sand transport, direct confirmation of whether the aeolian processes accelerate or inhibit fluvial sediment loss is lacking. Here, we show that an aeolian‐fluvial cycling process is responsible for the high rate of suspended sediment transport in a Sudalaer ephemeral desert channel in the Ordos Plateau of China. Frequent aeolian processes, but low frequency (once every 3 years on average) flooding, occur in this region. Wind‐blown saltating grains appeared to be unable to cross the desert channel because of interruption of channel‐induced recirculating air flow, and therefore tended to settle in the channel during the windy seasons, leading to channel narrowing. During flooding, this narrowed channel was found to yield a threefold increase in suspended sediment loading and a 3.4‐fold increase in the weight percentage of the 0.08–0.2 mm sediment fraction on 18 July 2012. Loss of stored aeolian sand due to channel erosion accounted for about half of the total sediment yield in this watershed. These findings show that aeolian processes play an essential role in accelerating the sediment yield from a watershed characterized by aeolian‐fluvial interplay and also suggest that the drier the region and the greater the aeolian process, the more the aeolian process contributes to fluvial sediment yield. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
《水文科学杂志》2013,58(6):899-915
Abstract

The results are described of 16 years operation of a measuring station for the automatic recording of water discharge, bed load and suspended sediment transport in the Rio Cordon catchment, a small alpine basin (5 km2) located in northeastern Italy. Hillslope erosion processes were investigated by surveying individual sediment sources repeatedly. Annual and seasonal variations of suspended sediment load during the period 1986–2001 are analysed along with their contribution to the total sediment yield. The results show that suspended load accounted for 76% of total load and that most of the suspended sediment transport occurred during two flood events: an extreme summer flash flood in September 1994 (27% of the 16-years total suspended load) and a snowmelt-induced event in May 2001 accompanied by a mud flow which fed the stream with sediments. The role of active sediment source areas is discussed in relation to the changes in flood peak—suspended load trends which became apparent after both the 1994 and the 2001 events.  相似文献   

7.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
High‐resolution digital elevation models (DEMs) from repeat LiDAR (light detection and ranging) or SfM (structure from motion) surveys have become an important tool in process geomorphology. The spatial pattern of negative and positive changes of surface elevation on raster DEMs of difference (DoD) can be interpreted in terms of geomorphic processes, and has been used for morphological budgeting. We show how the application of flow routing algorithms and flow accumulation opens new opportunities for the analysis of DoD. By accumulating the values of the DoD along downslope flowpaths delineated on a DEM, these algorithms lend themselves to computing the net balance, i.e. sediment yield (SY), for the contributing area of each cell. Doing the same for the negative subset of the DoD yields a minimum estimate of erosion (E) within the contributing area. The division of SY by E yields (a maximum estimate of) the sediment delivery ratio (SDR), that is the proportion of material eroded within the contributing area of each cell that has been exported from that area. The resulting SDR is a spatially distributed measure of functional sediment connectivity. In this letter, we develop the computationally simple approach by means of an example DoD from a lateral moraine section in the Upper Kaunertal Valley, Austrian Central Alps. We also discuss advantages, assumptions and limitations, and outline potential applications to connectivity research using field‐, laboratory‐, and model‐based DoD. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Tile drainage influences infiltration and surface runoff and is thus an important factor in the erosion process. Tile drainage reduces surface runoff, but questions abound on its influence on sediment transport through its dense network and into the stream network. The impact of subsurface tiling on upland erosion rates in the Le Sueur River watershed, USA, was assessed using the Water Erosion Prediction Project (WEPP) model. Six different scenarios of tile drainage with varying drainage coefficient and management type (no till and autumn mulch-till) were evaluated. The mean annual surface runoff depth, soil loss rate and sediment delivery ratio (SDR) for croplands, based on a 30-year simulation for the watershed with untiled autumn mulch-till (Scenario 1), were estimated to be 83.5 mm, 0.27 kg/m2 and 86.7%, respectively; on no-till management systems (Scenario 4), the respective results were 72.3 mm, 0.06 kg/m2 and 88.2%. Tile drains reduced surface runoff, soil loss and SDR estimates for Scenario 1 by, on average, 14.5, 8.1 and 7.9%, respectively; and for Scenario 4 by an estimated 31.5, 22.1 and 20.2%, respectively. The impact of tile drains on surface runoff, soil loss and SDR was greater under the no-till management system than under the autumn mulch-till management system. Comparison of WEPP outputs with those of the Soil Water Assessment Tool (SWAT) showed differences between the two methods.

Editor Z.W. Kundzewicz

Citation Maalim, F.K. and Melesse. A.M., 2013. Modelling impacts of subsurface drainage on surface runoff and sediment yield in the Le Sueur Watershed in Minnesota, USA. Hydrological Sciences Journal, 58 (3), 570–586.  相似文献   

10.
Modelling mean annual sediment yield using a distributed approach   总被引:3,自引:0,他引:3  
In this paper a spatially distributed model for the calculation of sediment delivery to river channels is presented (SEDEM: SEdiment DElivery Model). The model consists of two components: (1) the calculation of a spatial pattern of mean annual soil erosion rates in the catchment using a RUSLE (Revised Soil Erosion Equation) approach; and (2) the routing of the eroded sediment to the river channel network taking into account the transport capacity of each spatial unit. If the amount of routed sediment exceeds the local transport capacity, sediment deposition occurs. An existing dataset on sediment yield for 24 catchments in central Belgium was used to calibrate the transport capacity parameters of the model. A validation of the model results shows that the sediment yield for small and medium sized catchments (10–5000 ha) can be predicted with an average accuracy of 41 per cent. The predicted sediment yield values with SEDEM are significantly more accurate than the predictions using a lumped regression model. Moreover a spatially distributed approach allows simulation of the effect of different land use scenarios and soil conservation techniques. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Suspended sediment delivery and deposition in proglacial lakes is generally sensitive to a wide range of hydrometeorologic and geomorphic controls. High discharge conditions are of particular importance in many glaciolacustrine records, with individual floods potentially recorded as distinctive turbidites. We used an extensive network of surface sediment cores and hydroclimatic monitoring data to analyse recent flood turbidites and associated sediment transfer controls over instrumental periods at Eklutna Lake, western Chugach Mountains, Alaska. Close to a decade of fluvial data from primary catchment tributaries show a dominating influence of discharge on sediment delivery, with various interconnections with other related hydroclimatic controls. Multivariate fluvial models highlight and help quantify some complexities in sediment transfer, including intra-annual variations, meteorological controls, and the influence of subcatchment glacierization. Sediments deposited in Eklutna Lake during the last half century are discontinuously varved and contain multiple distinctive turbidites. Over a 30-year period of stratigraphic calibration, we correlate the four thickest flood turbidites (1989, 1995, 2006, and 2012) to specific regional storms. The studied turbidites correlate with late-summer and early-autumn rainstorms with a magnitude of relatively instantaneous sedimentation 3–15 times greater than annual background accumulation. Our network of sediment core data captured the broad extent and sediment variability among the study turbidites and background sediment yield. Within-lake spatial modelling of deposition quantifies variable rates of downlake thinning and sediment focusing effects, and highlights especially large differences between the thickest flood turbidites and background sedimentation. This we primarily relate to strongly contrasting dispersion processes controlled by inflow current strength and turbidity. Sediment delivery is of interest for this catchment because of reservoir and water supply operations. Furthermore, although smaller floods may not be consistently represented, the lake likely contains a valuable proxy record of regional flooding proximal to major population centers of south-central Alaska including Anchorage.  相似文献   

12.
Delivery of fine sediment to fluvial systems is of considerable concern given the physical and ecological impacts of elevated levels in drainage networks. Although it is possible to measure the transfer of fine sediment at high frequency by using a range of surrogate and automated technologies, the demands for assessing sediment flux and sediment properties at multiple spatially distributed locations across catchments can often not be met using established sampling techniques. The time‐integrated mass‐flux sampler (TIMS) has the potential to bridge this gap and further our understanding of fine sediment delivery in fluvial systems. However, these devices have undergone limited testing in the field. The aim of this paper was to provide a critical validation of TIMS as a technique for assessing fluvial fine sediment transfer. Fine sediment flux and sediment properties were assessed over 2 years with individual sampling periods of approximately 30 days. Underestimation of sediment flux ranged between 66% and 99% demonstrating that TIMS is unsuitable for assessing absolute sediment loads. However, assessment of relative efficiency showed that six of seven samplers produced statistically strong relationships with the reference sediment load (P < 0.05). Aggregated data from all sites produced a highly significant relationship between reference and TIMS loads (R2 = 0.80; P < 0.001) demonstrating TIMS may be suitable for characterizing patterns of suspended sediment transfer. Testing also illustrated a consistency in sediment properties between multiple samplers in the same channel cross section. TIMS offers a useful means of assessing spatial and temporal patterns of fine sediment transfer across catchments where expensive monitoring frameworks cannot be commissioned. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Although much is known about overall sediment delivery ratios for catchments as components of sediment production and sediment yield, little is known about the component of temporary sediment storage. Sediment delivery ratios focused on the influence of storm-related sediment storage are measured at Matakonekone and Oil Springs tributaries of the Waipaoa River basin, east coast of New Zealand. The terrace deposits of both tributaries show abundant evidence of storm-related sedimentation, especially sediment delivered from Cyclone Bola, a 50 year return rainfall event which occurred in 1988. The sediment delivery ratio is calculated by dividing the volume of sediment transported from a tributary to the main stream by the volume of sediment generated at erosion sites in the tributary catchment. Because the sediment delivery volume is unknown, it can be calculated as the difference between sediment generation volume and sediment storage volume in the channel reach of the tributary. The volume of sediment generated from erosion sites in each tributary catchment was calculated from measurements made on aerial photographs dating from 1960 (1:44 000) and 1988 (1:27 000). The volume of sediment stored in the tributary can be calculated from measurements of cross-sections located along the tributary channel, which are accompanied by terrace deposits dated by counting annual growth rings of trees on terrace surfaces. Sediment delivery ratios are 0·93 for both Matakonekone catchment and Oil Springs catchment. Results indicate that Oil Springs catchment has contributed more than twice the volume of sediment to the Waipaoa River than the Matakonekone catchment (2·75 × 106 m3 vs 1·22 × 106 m3). Although large volumes of sediment are initially deposited during floods, subsequent smaller flows scour away much of these deposits. The sediment scouring rate from storage is 1·25 × 104 m3 a−1 for Matakonekone stream and 0·83 × 104 m3 a−1 for Oil Springs stream. Matakonekone and Oil Springs channels respond to extreme storms by instantaneously aggrading, then gradually excavating the temporarily stored sediment. Results from Matakonekone and Oil Springs streams suggest a mechanism by which event recurrence interval can strongly influence the magnitude of a geomorphic change. Matakonekone stream with its higher stream power is expected to excavate sediment deposits more rapidly and allow more rapid re-establishment of storage capacity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Threshold of environmental elements in drainage basin sediment yield refers to, under effect of climate, underlying surface and human activity, a turning point of abrupt changes in drainage sediment yield related to environmental element characteristics. Previous studies on threshold of sediment yield of relevant drainage basins were mainly concentrated on impact of natural zones with a few researches on impact of other environmental elements. Particularly studies on compound environmental element threshold in drainage basin sediment yield remain blank today. Studies indicate that sediment yield in drainage basins is affected by compound interactions and complex actions. Based on single element analysis, the present paper gives quantitatively compound threshold of environmental elements affecting sediment yield of the drainage basin between Hekouzhen and Tongguan in the middle Yellow River by the method of multi-variant, polynomial formula regression analysis.  相似文献   

15.
Y. H. Lee  V. P. Singh 《水文研究》1999,13(17):2861-2875
An instantaneous unit sediment graph (IUSG) model in conjunction with Kalman filter was investigated for prediction of sediment yield from an upland watershed in Northwestern Mississippi. The state vector of the watershed sediment yield system was constituted by the IUSG and then the sediment yield was estimated by the IUSG model using Kalman filter. The initial values of the state vector were assumed as the average of the IUSG values and the initial sediment yield estimated from the average IUSG. The IUSG model using Kalman filter with a recursive algorithm accurately predicted sediment yield from watershed W‐5, Mississippi. The filter allowed the IUSG to vary in time, increased the accuracy of the IUSG model, and reduced physical uncertainty of the sediment yield process in the watershed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Glacier recessions caused by climate change may uncover pro‐glacial lakes that form important sedimentation basins regulating the downstream sediment delivery. The impact of modern pro‐glacial lakes on fluvial sediment transport from three different Norwegian glaciers: Nigardsbreen, Engabreen and Tunsbergdalsbreen, and their long‐term development has been studied. All of these lakes developed in modern times in overdeepened bedrock basins. The recession of Nigardsbreen uncovered a 1.8 km long and on average 15 m deep pro‐glacial lake basin during 1937 to 1968. Since then the glacier front has been situated entirely on land, and the sediment input and output of the lake has been measured. The suspended sediment transport into and out of the lake averaged 11 730 t yr?1 and 2340 t yr?1 respectively. Thus, 20% remained in suspension at the outlet. The measured mean annual bedload supplied to the lake was 11 800 t yr?1, giving a total transport of 23 530 t yr?1 which corresponds to a specific sediment yield of 561 t km?2 yr?1. A 1.9 km long and up to 90 m deep pro‐glacial lake basin downstream from Engabreen glacier was uncovered during 1890 to 1944. The average suspended sediment load delivered from the glacier during the years 1970–1981 amounted to 12 375 t yr?1and the transport out of the lake was 2021 t yr?1, giving an average of 16% remaining in suspension. The mean annual bedload was 8000 t yr?1, thus the total transport was 20 375 t yr?1, giving a specific sediment yield of 566 t km?2 yr?1. For Tunsbergdalsbreen glacier, measurements in the early 1970s indicated that the suspended sediment transport was on average 44 000 t yr?1. From 1987 to 1993 the recession of the glacier uncovered a small pro‐glacial lake, 0.3 km long and around 9 m deep. Downstream from this, the suspended sediment load measured in 2009 was 28 000 t yr?1, indicating that as much as 64% remained in suspension. Flow velocity, grain size of sediment, and morphology of the lake are important factors controlling the sedimentation rate in the pro‐glacial lakes. A survey of the sub‐glacial morphology of Tunsbergdalsbreen revealed that there are several overdeepened basins beneath the glacier. The largest is 4 km long and 100 m deep. When the glacier melts back they will become lakes and act as sedimentation basins. Despite an expected increase in sediment yield from the glacier, little sediment will pass these lakes and downstream sediment delivery will be reduced markedly. Beneath Nigardsbreen there was only a small depression that may form a lake and the sediment delivery will not be significantly affected. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

17.
Landslides generate enormous volumes of sediment in mountainous watersheds; however, quantifying the downstream transport of landslide‐derived sediment remains a challenge. Landslide erosion and sediment delivery to the Shihmen Reservoir watershed in Taiwan was estimated using empirical landslide frequency–area and volume–area relationships, empirical landslide runout models, and the Hydrological Simulation Program‐ FORTRAN (HSPF). Landslide erosion rates ranged from 0.4 mm yr‐1 to 2.2 mm yr‐1 during the period 1986–2003, but increased to 7.9 mm yr‐1 following Typhoon Aere in 2004. The percentage of landslide sediment delivered to streams decreased from 78% during the period 1986–1997 to 55% in 2004. Although the delivery ratio was lower, the volume of landslide sediment delivered to streams was 2.81 × 106 Mg yr‐1 in 1986–1997 and 8.60 × 106 Mg yr‐1 in 2004. Model simulations indicate that only a small proportion of the landslide material was delivered downstream. An average of 13% of the landslide material delivered to rivers was moved downstream during the period 1986–1997. In 2004, the period including Typhoon Aere, the annual fluvial sediment yield accounted for approximately 23% of the landslide material delivered to streams. In general, the transfer of sediment in the fluvial system in the Shihmen Reservoir watershed is dominantly transport limited. The imbalance between sediment supply and transport capacity has resulted in a considerable quantity of landslide material remaining in the upper‐stream regions of the watershed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Factors controlling sediment yield in China's Loess Plateau   总被引:2,自引:0,他引:2  
The Loess Plateau in China, an area with some of the highest sediment yield in the world, contributes predominant proportion of the sediments found in the Yellow River. We examined sediment yield and its control variables in the plateau based on a multi‐year dataset from 180 gauging stations in areas varying in size from 102 to 104 km2. Various morphometric, hydrologic, climatic and land cover variables were estimated in order to understand and predict the variations in sediment yield. The results show a spatial pattern of sediment yield exhibiting an obvious zonal distribution and a coupling between precipitation and vegetation cover that fits the Langbein–Schumm law. A critical threshold of precipitation and vegetation cover was observed among the relationships of sediment yield and precipitation/vegetation cover. A multiple regression equation with three control variables, i.e. vegetation cover, percentage of cultivated loess and annual runoff, explains 65% of the total variation in sediment yield. For the loess dominated basins, where the cultivated loess accounts for more than 60% of the total area, annual runoff was the dominant variable, explaining 76% of the observed variation in sediment yield. The established equation could be a valuable tool for predicting total sediment yield in the Loess Plateau. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In the past few years, the amount of sediment entering the Yellow River decreased significantly in areas with high and coarse sediment yield of the Loess Plateau. Some researchers considered that it was owing to the soil and water conservation project, while others believed that it was caused by the low precipitation. The observation data showed -2 that the ultimate sod erosion modulus m 1960s could reach 150,000 t km . However some experts preferred to believe that the ultimate soil erosion modulus in 1960s was wrong due to some uncertain mistakes. This paper quantitatively analyzed the spatial-temporal evolution pattern of sediment yield in areas with high and coarse sediment yield of the Loess Plateau over the past 50 years, by simulating the precipitation-runoff and soil erosion in 12 sample years with the digital watershed model. Some preliminary conclusions have been drawn as following: since the 1960s and 1970s, the rainstorm center had moved southward and the intensity of rainfall center became weaker and spread into dispersed rainfall distribution in areas with high and coarse sediment yield; the decrease of the amount of sediment entering the Yellow River was caused by the changes of rainfall type in recent years; the rainstorm of 1967 was concentrated in the re~ion nearby "Shenmu-Fugu" in Shaanxi Province, and the annual maximum transport modulus (150,000 t km-2 ) measured in Bullpen Ditch of the left bank tributary between "Shenmu" and "Fugu" in 1967 is reasonable.  相似文献   

20.
Abstract

Soil erosion and eroded sediment are serious threats to sound land management. However, less attention has been given to quantifying the importance of different soil erosion features based on appropriate control measures that could be designated. Accordingly, this research was planned to quantify the contribution of potential sediment sources, i.e. sheet, rill and gully erosion, in Idelo watershed in Zanjan Province, Iran, using composite fingerprinting. Toward this aim, 16 geochemical and organic tracers were detected in sediment sources and sediment deposited at the outlet. The results of applying the composite fingerprinting technique, with a relative error of 16%, showed that sheet, rill and gully sources contributed 56%, 44% and 0%, respectively, to sediment yield. It was also apparent from the results that the composite fingerprinting approach could be successfully utilized to assess the provenance of sediment deposited at the main outlet of the study watershed by soil erosion type.

Editor Z.W. Kundzewicz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号