首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low‐frequency passive integrated transponders (PIT tags), are commonly used for monitoring pebble mobility in gravel‐bed rivers. Although early studies reported high recovery rates for PIT tags used in small streams, recovery rates in larger systems remain low, substantially limiting the possibilities for their use in such rivers. These low recovery rates are potentially due to missed detections caused by tag signal collision, burial in the sediment layer deeper than the maximum detection range and insufficient (but still exhausting) field effort to cover the concerned areas. A potential solution for addressing these problems is to use active ultra‐high frequency (a‐UHF) transponders as these have a greater detection range and anti‐collision protocols. In order to assess the potential of such transponders for pebble tracking in rivers, we used 433.92 MHz COIN‐ID and COIN‐HC models (ELA Innovation Company, Montpellier, France). We completed several tests to (i) characterize transponder detection ranges in the water and in saturated sediment and (ii) develop field protocols for locating tags by combining global positioning systems (GPS) sites and transponder received signal strength indication (RSSI) levels. The results showed that (i) the maximum detection ranges are about 2.4 m in the water column and more than 2.6 m in a column of saturated gravelly‐sandy sediment, (ii) RSSI spatial interpolation can be used to determine transponder position with good accuracy (< 1 m), (iii) the desired minimal level of accuracy can be adjusted depending on in‐field effort and signal impulse interval, (iv) the RSSI maximal value observed cannot yet be used to determine transponder burial depth because of the multipath propagation of radio frequencies and the semi‐directional emission of the tag signal. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Radio frequency identification (RFID) technologies, which allow wireless detection of individual buried or immersed tracers, represent a step forward in sediment tracking, especially passive integrated transponders (PIT tags) that have been widely used. Despite their widespread adoption in the scientific community, they typically have low efficiency when deployed in river systems with active bedload transport or deep wet channels, attributed to their technical specifications. A recent evaluation of active ultra-high frequency transponders (a-UHF tags) assessed their larger detection range and provided a methodology for their geopositioning. In this study, we test five different survey methods (one including an unmanned aerial vehicle [UAV]) in a sediment tracking study, and compare them in terms of recovery rate, field effort, geopositioning error, and efficiency. We then tested the method on a larger reach following a Q5 flood and performed cross-comparisons between active and passive RFIDs. The results confirmed that the a-UHF RFID technology allowed rapid (1.5 h ha−1) survey of a large area (<34 ha) of emerged bars and shallow water channels with recovery of a high percentage of tracers (72%) that had travelled large distances (mean ≈ 1000 m; max ≈ 3400 m). Moreover, the tracers were identified with low geopositioning error (mean ≈ 7.1 m, ≤1% of their travel distance). We also showed that a UAV-based survey was fast (0.38 h ha−1), efficient (recovery rate = 84%), and low error (mean ≈ 4.2 m). Thus, a-UHF RFID technology permits the development of a variety of survey methods, depending on the study objectives and the human and financial resources available. This allows field efforts to be optimized by determining an appropriate balance between the high equipment cost of a-UHF tracers and the resulting reduced survey costs. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
Since the earliest use of this technology, a growing number of researchers have employed passive Radio Frequency Identification (RFID) transponders to track sediment transport in gravel rivers and coastal environments. RFID transponders are advantageous because they are inexpensive, durable and use unique codes that allow sediment particle mobility and displacement to be assessed on a clast‐by‐clast basis. Despite these advantages, this technology is in need of a rigorous error and detection analysis. Many studies work with a precision of ~1 m, which is insufficient for some applications, and signal shadowing can occur due to clustering of tagged particles. Information on in‐field performance is also incomplete with respect to burial and submergence, especially for different transponders and antennae combinations. The objectives of this study are to qualify and quantify the factors that influence the detection zone of RFID tracers including antenna type, transponder size, transponder orientation, burial depth, submergence and clustering. Results of this study show that the detection zone is complex in shape due to a set of lobes in the detection field and provide a better understanding of transponder detection shape for different RFID transponder/antenna combinations. This study highlights a strong influence of clustering and submergence, but no significant effect of burial. Finally we propose standard operating procedures for tagging and tracking in rivers and coastal environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we examine the use of radio frequency identification (RFID) tags for studying soil erosion. Surrogate soil particles were created by coating RFID tags with silicone clay and bronze powder to give them an overall density similar to that of quartz particles. The particles were between 2.5 mm and 4.0 mm in diameter and had specific weights of 2.5 to 3.0. These tagged particles were deployed on two plots: first, in a proof‐of‐concept laboratory study and secondly in a field study, the latter involving repeated surveys after rainfall events. Seven surveys under natural rainfall over four months yielded recovery rates averaged 56%. RFIDs are shown to provide useful insights into the movement of individual soil particles during erosion processes. As RFID technology advances, further miniaturization is likely to occur enabling the movement of a greater range of soil particles to be studied, and we may anticipate improvements to the signal detection so that recovery does not rely wholly on visual identification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The artificial gravel augmentation of river channels is increasingly being used to mitigate the adverse effects of river regulation and sediment starvation. A systematic framework for designing and assessing such gravel augmentations is still lacking, notably on large rivers. Monitoring is required to quantify the movement of augmented gravel, measure bedform changes, assess potential habitat enhancement, and reduce the uncertainty in sediment management. Here we present the results of an experiment conducted in the Rhine River (French and German border). In 2010, 23 000 m3 of sediments (approximately the mean annual bedload transport capacity) were supplied in a by‐passed reach downstream of the Kembs dam to test the feasibility of enhancing sediment transport and bedform changes. A 620‐m‐long and 12‐m‐wide gravel deposit was created 8 km downstream from the dam. Monitoring included topo‐bathymetric surveys, radio‐frequency particle tracking using passive integrated transponder (PIT) tags, bed grain size measurement, and airborne imagery. Six surveys performed since 2009 have been described (before and after gravel augmentation, and after Q2 and Q15 floods). The key findings are that (i) the augmented gravel was partially dispersed by the first flood event of December 2010 (Q1); (ii) PIT tags were found up to 3200 m downstream of the gravel augmentation site after four years, but the effects of gravel augmentation could not be clearly distinguished from the effects of floods and internal remobilization on more than 3500 m downstream; (iii) linear and log‐linear relationships linking bedload transport, particle mobility, and grain size were established; and (iv) combined bathymetry and PIT tag surveys were useful for evaluating potential environmental risks and the first morpho‐ecological responses. This confirmed the complementary nature of such techniques in the monitoring of gravel augmentation in large rivers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Wood plays an important role in stream ecology and geomorphology. Previous studies of wood in rivers have quantified spatial distributions but temporal dynamics remain poorly documented. The lack of such data is related to limitations of existing methods, especially when applied to large rivers. Five techniques are field‐tested to assess their utility for quantifying the temporal dynamics in rivers: repeated high‐resolution aerial surveys, the measurement of wood physical characteristics as proxies for 14C dating, passive and active radio frequency identification (RFID) tags, radio transmitters, and video. The spatial distribution of wood is surveyed using aerial imagery with a resolution finer than 0·10 m. The estimation of temporal trends by repeated aerial‐based surveys needs to consider vegetation growth and hiding. Wood residence times can be calculated using 14C analysis, but the assessment of wood physical characteristics including decay status and wood density offers a cheaper, if less accurate, alternative. Wood resistance to penetration is tested but results are not significant. Radio transmitters are reliable for multi‐year (~5 year) surveys and can be detected at 800 m. Passive RFID tags are limited by a read range of 0·30 m but are reliable for longer term (>5 year) studies. Active RFID tags combine a moderate read range (10–300 m) and low cost with in‐flood detection but require more testing. Video monitoring of wood passing on the surface of a river is successfully implemented. For a single flood on the Ain River (France), wood transport rates are an order of magnitude higher on the rising limb of the hydrograph than on the falling limb. Overall, the techniques improve the ability to gather the data needed to understand wood transfer processes and calibrate budgets of wood in rivers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper reports a radiofrequency identification (RFID) tracing experiment implemented in a high‐sediment‐load mountain stream typical of alpine gravel‐bed torrents. The study site is the Bouinenc Torrent, a tributary to the Bléone River in southeast France that drains a 38·9‐km² degraded catchment. In spring 2008, we deployed 451 tracers with b‐axis ranging from 23 to 520 mm. Tracers were seeded along eight cross‐sections located in the upstream part of the lowest 2·3 km of the stream. Three tracer inventories were implemented in July 2008, 2009 and 2010. Recovery rates calculated for mobile tracers declined from 78% in 2008 to 45% in 2009 and 25% in 2010. Observations of tracer displacement revealed very high sediment dispersion, with frontrunners having travelled more than 2 km only three months after their deployment. The declining recovery rate over time was interpreted as resulting from rapid dispersion rather than deep burial. We evaluated that 64% of the tracers deployed in the active channel were exported from the 2·3‐km study reach three years after the onset of the tracing experiment. Travel distances were characterized by right‐skewed and heavy‐tailed distributions, correctly fitted by a power‐law function. This supports the idea that in gravel‐bed rivers with abundant sediment supply relative to transport capacity, bedload transport can be viewed as a superdiffusive sediment dispersion process. It is also shown that tracers initially deployed in the low‐flow channel were characterized by a 15‐ to 30‐fold increase of mobility compared to tracers deployed in gravel bars. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Boulder transport is an area of growing interest to coastal scientists as a means of improving our understanding of the complex interactions between extreme wave activity and the evolution of rocky coasts. However, our knowledge of the response of intertidal boulder deposits to contemporary storm events remains limited due to a lack of quantifiable field-based evidence. We address this by presenting a methodology incorporating Radio Frequency Identification (RFID) tagging and Differential Global Positioning Navigation Satellite System (DGNSS) technology to monitor and accurately quantify the displacement of RFID tagged boulders resulting from storm wave activity. Based on preliminary findings we highlight the suitability of the technology and methodology to better understand the spatial and temporal response of intertidal boulders to contemporary storm events. We inserted RFID tags in 104 limestone boulders (intermediate axes from 0.27 to 2.85 m) across a range of morphogenic settings at two sites on the intertidal shore platforms at Bembridge, Isle of Wight (UK). Fifteen topographic surveys were conducted between July 2015 and May 2017 to relocate and record tagged boulder locations (tag recovery rate: 91%). The relocated boulder coordinate data from both sites identified 164 individual transport events in 63% of the tagged boulder array amounting to 184.6 m of transport, including the displacement of a boulder weighing more than 10 tonnes. Incidents of boulder quarrying and overturning during transport were also recorded, demonstrating that despite the relatively sheltered location, intertidal boulders are created and regularly transported under moderate storm conditions. This suggests that contemporary storm events have a greater propensity to mobilise boulders in the intertidal range than has previously been realised. Consequently, by documenting our methodology we provide guidance to others and promote further use of RFID technology to enable new hypotheses on boulder transport to be tested in a range of field settings and wave regimes. © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
River reaches downstream of dams with constant residual discharge often lack sediment supply and periodic high flows due to dam sediment retention and flow regulation, respectively. To test a novel multi-deposit methodology for defining environmental flows for activating the dynamics of the river morphology downstream of dams, a flood was released from Rossens Dam in Switzerland. This event was combined for the first time with a multi-deposit configuration of sediment replenishment consisting of four artificial deposits allocated as alternate bars along the riverbanks as a restoration measure. To validate the sediment transport behaviour observed in laboratory tests, stones were equipped with radiofrequency identification (RFID) passive integrated transponder (PIT) tags, a fixed antenna was installed at the river bed and a mobile antenna was used to enable the investigation of the erosion, transport and deposition of replenished sediments. The duration of the erosion period was determined for the tracked stones, and average transport velocities were found to be on the order of 10–3 m/s. To estimate the erosion efficiency of the flood, defined as the eroded tagged stones compared with the released water volume, the hydrograph was divided into different periods: rising limb, constant peak discharge, decreasing limb. During the rising limb of the flood, which lasted for 20% of the total flood duration, more than 40% of the PIT tags were transported. The defined erosion efficiency is a measure to support the hydrographic design of artificial flood releases from dams. The deposition of tagged stones resulted in a repeating cluster formation, as expected from previous laboratory experiments, creating an increase in hydraulic habitat diversity. Comparison of the results obtained in the field and from laboratory experiments confirmed the robustness of the multi-deposit sediment replenishment method. Combined with the knowledge gained on the erosion efficiency, these results could motivate further applications and research into multi-deposit sediment replenishment techniques as a habitat-oriented river restoration measure. © 2020 John Wiley & Sons, Ltd.  相似文献   

10.
Understanding coarse sediment transport is crucial for the prediction of sediment migration and the consequent development of fluvial morphologies. In this study, cobble displacements in a pre-Alpine creek have been recorded by means of radio frequency identification (RFID). Pebble monitoring has been systematically performed after each rainfall event with moderate precipitation, in order to exclude the superimposition of sediment displacements induced by triggering factors acting at different times. The analysis of the collected data was carried out through the application of both a principal component analysis and the Buckingham Π theorem. The experimental trends were interpreted considering the ratio of mobile pebbles, the pebbles' displacement and virtual velocity as the dependent variables. These quantities mostly depend on the event peak discharge, with a nonlinear increase of the travelled distance and a growth of up to two orders of magnitude of the virtual velocity (for an approximately 10× increase in peak discharge). An inverse dependency of the virtual velocity on the event duration was also observed. A comparison of the results obtained with those from laboratory investigations of bedload transport mechanics evidenced the differences in parametric trends associated with sediment mobility in the two environments. This contrast brings forward the combination of multiple drivers of sediment mobility, such as local morphology, sediment dimensions and flow unsteadiness, warranting a further in-depth investigation. Representation of results in a dimensionless form is suggested as a good practice to analyse data from case studies characterized by different scales. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
Several methods were employed in the Ardennian rivers (Belgium) to determine the depth of the active layer mobilized during floods and to evaluate the bedload discharge associated with these events. The use of scour chains has shown that the depth of the active layer is systematically less than the b‐axis of the average particle size (D50) of the elements which compose the surface layer of the riffles. This indicates that only a partial transport exists during low magnitude floods. The bedload discharge has been evaluated by combining data obtained using the scour chains technique and the distance covered by tracers. Quantities of sediment transported during frequent floods are relatively low (0·02 t km–2) due to the armour layer which protects the subsurface material. These low values are also related to the fact that the distance calculated for mobilized bedload only applies to tracers fitted with PIT (passive integrated transponder)‐tags (diameter > 20 mm), whereas part of the bedload discharge is composed of sand and fine gravel transported over greater distances than the pebbles. The break‐up of the armour layer was observed only once, for a decennial discharge. During this event, the bedload discharge increased considerably (2 t km–2). The use of sediment traps, data from dredging and a Helley–Smith sampler confirm the low bedload transport in Ardennian rivers in comparison to the bedload transport in other geomorphological contexts. This difference is explained by the presence of an armoured layer but also by the imbricated structures of flat bed elements which increase the resistance to the flow. Finally, the use of the old iron industry wastes allowed to quantify the thickness of the bed reworked over the past centuries. In the Lembrée River, the river‐bed contains slag elements up to a depth of about 50 cm, indicating that exceptional floods may rework the bed to a considerable depth. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Despite the abundance of large wood (LW) river studies there is still a lack of understanding of LW transport dynamics on large low gradient rivers. This study used 290 radio frequency identification tagged (RFID) LW and 54 metal (aluminum) tagged LW, to quantify the percent of in‐channel LW that moves per year and what variables play a role in LW transport dynamics. Aluminum tags were installed and monitored on LW in‐transit during the rising limb of a flood, the mean distance traveled by those pieces during the week was 13.3 river kilometers (km) with a maximum distance of 72 km. RFID tagged LW moved a mean of 11.9 km/yr with a maximum observed at 101.1 km/yr. Approximately 41% of LW low on the bank moves per year. The high rate of transport and distance traveled is likely due to the lack of interaction between LW floating in the channel and the channel boundaries, caused primarily by the width of the channel relative to length of the LW. Approximately 80% of the RFID tags moved past a fixed reader during the highest 20% of river stage per year. LW transport and logjam dynamics are complicated at high flows as pieces form temporary jams that continually expand and contract. Unlike most other studies, key members that create a logjam were defined more by stability than jam size or channel/hydrologic conditions. Finally, using an existing geomorphic database for the river, and data from this study, we were able to develop a comprehensive LW budget showing that 5% of the in‐channel LW population turns over each year (input from mass wasting and fluvial erosion equals burial, decomposition, and export out of system) and another 16% of the population moving within the system. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

13.
This briefing describes the first deployment of a new electronic tracer (E‐tracer) for obtaining along‐flowpath measurements in subsurface hydrological systems. These low‐cost, wireless sensor platforms were deployed into moulins on the Greenland Ice Sheet. After descending into the moulin, the tracers travelled through the subglacial drainage system before emerging at the glacier portal. They are capable of collecting along‐flowpath data from the point of injection until detection. The E‐tracers emit a radio frequency signal, which enables sensor identification, location and recovery from the proglacial plain. The second generation of prototype E‐tracers recorded water pressure, but the robust sensor design provides a versatile platform for measuring a range of parameters, including temperature and electrical conductivity, in hydrological environments that are challenging to monitor using tethered sensors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Fish survival, tag retention and tag loss were evaluated in pond experiments and described by linear regression equations. Tagging of fish had no significant influence on their survival. However, loss of tags caused strong differences between actual fish survival and the survival rate e–z estimated on recovered tags. Mathematical functions were derived to correct tag loss. Values of those functions depend upon the type of tag and time after tagging. The B-type of tagging, which approximated the Swedish Carlin method, appeared to be most effective. The rate of tag loss was independent of the fish species (common carp, tench) used in the experiments.  相似文献   

15.
Random walk models of fluvial sediment transport recognize that grains move intermittently, with short duration steps separated by rests that are comparatively long. These models are built upon the probability distributions of the step length and the resting time. Motivated by these models, tracer experiments have attempted to measure directly the steps and rests of sediment grains in natural streams. This paper describes results from a large tracer experiment designed to test stochastic transport models. We used passive integrated transponder (PIT) tags to label 893 coarse gravel clasts and placed them in Halfmoon Creek, a small alpine stream near Leadville, Colorado, USA. The PIT tags allow us to locate and identify tracers without picking them up or digging them out of the streambed. They also enable us to find a very high percentage of our rocks, 98% after three years and 96% after the fourth year. We use the annual tracer displacement to test two stochastic transport models, the Einstein–Hubbell–Sayre (EHS) model and the Yang–Sayre gamma‐exponential model (GEM). We find that the GEM is a better fit to the observations, particularly for slower moving tracers and suggest that the strength of the GEM is that the gamma distribution of step lengths approximates a compound Poisson distribution. Published in 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

16.
Denudation mechanisms differ fundamentally between limestone and silicate rock types, which are subject to very different rate thresholds and enhancers/inhibitors. Silicates are removed largely by erosion, the mechanical entrainment and transport of particles. This is a relatively high energy, and highly episodic, process which occurs only when a minimum threshold ?ow velocity is exceeded; it is inhibited by vegetation cover and favoured by strongly seasonal runoff. Limestone is removed largely by chemical dissolution at a rate directly proportional to runoff. Dissolution is a relatively low energy process that can occur at any ?ow velocity or in static water; in general it is enhanced by vegetation cover and non‐seasonality of runoff. These contrasting factors in the denudation of silicates versus limestone can produce strikingly uneven rates of surface lowering across a landscape, sometimes akin to the well known ‘tortoise and hare race’, where the slow and steady denudation of limestones may in the long term exceed the sometimes rapid, but often localized and episodic, erosion of silicates. Prolonged exposure of limestone to a humid temperate climate in a tectonically stable environment produces low‐relief corrosion plains in which limestone uplands are anomalous and, in most instances, due to recent unroo?ng from beneath a siliciclastic cover. In a highly seasonal or semi‐arid climate almost the exact inverse may develop, with ‘?ashy’ runoff and sparse vegetation favouring erosion rather than dissolution. Even under a constant humid climate progressive unroo?ng of a thick limestone unit within folded siliciclastics may lead to a topographic inversion over time, with the limestone outcrop always forming a topographic low ?anked by siliciclastic uplands. Valleys will be initiated on anticlinal crests, where the limestone is ?rst unroofed, but progressive lowering of the limestone causes these valleys to migrate to their ?nal position in the synclinal troughs. In humid climates isostatic compensation in response to slow, but continuous, denudation of extensive limestone outcrops may be a signi?cant factor in the development of relief on adjacent, more slowly eroding, silicate outcrops. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
This study attempts to investigate the distribution of ventifacts in Qatar. It is believed that ventifacts are confined to the areas within about 5 km of the Miocene or Mio-Pliocene Hofuf formations and the spreads of continental gravels derived from them. Three hypotheses were formulated: (1) Ventifacts in Qatar are confined to areas within about 5 km of the Hofuf formations and the spreads of continental gravels derived from them. The distribution of ventifacts within these areas varies according to the nature of the ground surface; (2) The most active ventifaction areas are where the continental gravels merge with the Eocene limestone because of the increase in saltation particle speed in these areas where bedrock or bare limestone is exposed; (3) The unit area ratio of ventifact to non-ventifact pebbles varies inversely with the total amount of pebbles. To test these hypotheses, nine land class categories were identified in the three major Hofuf formations. Line transects were carried out from randomly selected stations near the middle of the Hofuf formations. Along each transect systematic sampling was carried out at 200 m intervals. The data were processed using a WANG MVP 2200 computer with software developed for the project. It was found that ventifacts tend to concentrate on the outer edges of the continental gravels in areas of limestone outcrop and limestone pavement. Higher areas have big gravel counts and a low ratio of ventifacts while the low-lying plains have small gravel counts and a higher ratio of ventifacts. In certain areas ‘ventifact fields’ were found where the density of ventifacts was as high as 30 per m2. Many of the ventifacts in these fields were buried beneath the surface suggesting that the ventifaction predates the present site conditions. Other high ventifact density areas were discovered where the ventifacts have collected in shallow depressions or hollows on the limestone plateaux. Water action has washed these ventifacts, a high proportion of which are dreikanters, into the hollows, where they have been partially buried in fine alluvial silts. These ‘ventifact graveyards’ are generally only a few metres wide but contain large numbers of fine specimens.  相似文献   

18.
Many stone‐covered surfaces on Earth are subject to aeolian deposition of atmospheric dust. This study investigates how the deposition of dust is affected when rock fragments become gradually more embedded in the ground or, inversely, become more concentrated on the surface. Experiments were executed in an aeolian dust wind tunnel with eight different types of pebbles. The following parameters were measured: dust deposition on the pebbles, dust deposition between and underneath pebbles, total dust deposition (pebbles + inter‐pebble space), and the fraction, of total deposition, of dust caught by the pebbles alone. The absolute amount of dust deposition and the dust deposition density (dust deposition per unit surface) were studied for each parameter. The effects exerted by pebble size, pebble flattening, pebble elongation and wind speed were also investigated. Dust patterns on and around pebbles were also studied via flow visualization. The absolute amount of dust settling on pebbles decreases the more that the pebbles become embedded. Dust deposition density on pebbles, on the other hand, increases with embedding. The more pebbles become embedded in the soil, the more efficient the process of dust deposition on pebbles becomes. Dust deposition between and underneath pebbles increases with pebble embedding. Dust deposition density between and underneath pebbles is maximum at 50 per cent embedding, showing that in this area dust deposition is most efficient when pebbles are halfway embedded. Total deposition slightly decreases the more pebbles become embedded, but total dust deposition density increases with embedding. Aerodynamic flow separation and diverging and converging airflow play an important role in the process of dust deposition on stone‐covered surfaces. The more pebbles protrude above the soil, the more they act as an obstacle and the more they disturb the air and dust flow creating scouring zones, flow separation bubbles and shelter areas for the dust. All these effects diminish as pebbles become more embedded in the soil. However, perturbations in dust patterns remain visible until pebbles have disappeared entirely. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
In many cases, the seismic response of bottom‐simulating reflectors is characterised by low frequencies called “low‐frequency shadow”. Generally, this phenomenon is interpreted as attenuation due to partial saturation with free gas. Actually, this frequency loss may have multiple causes, with a normal moveout stretch as a possible candidate. To analyse this phenomenon, we compute synthetic seismograms by assuming a lossy bottom‐simulating layer, with varying quality factor and thickness, bounded by the upper hydrate‐brine/gas‐brine and lower gas‐brine/brine interfaces. First, we estimate the shift of the centroid frequency of the power spectrum as a function of the travelled distance of the seismic pulse. Then, we perform one‐dimensional numerical experiments to quantify the loss of frequency of the seismic event below the bottom‐simulating reflector as a function of the quality factor of the bottom‐simulating layer and its thickness (due to wave interference). Then, we compute shot gathers to obtain the stacked section, with and without the normal moveout stretch correction and with and without the presence of wave attenuation in the bottom‐simulating layer. The results indicate that the low‐frequency shadow due to the normal moveout stretch is stronger than that due to attenuation and may constitute a false indicator of the presence of gas. In fact, often, the low‐frequency shadow overlies events with higher frequencies, in contradiction with the physics of wave propagation. This is particularly evident when the low‐frequency shadow is so extensive that the presence of high frequencies below cannot be justified by the acquisition geometry.  相似文献   

20.
The oil shale exploration program in Jordan is undertaking great activity in the domain of applied geophysical methods to evaluate bitumen‐bearing rock. In the study area, the bituminous marl or oil shale exhibits a rock type dominated by lithofacies layers composed of chalky limestone, marls, clayey marls, and phosphatic marls. The study aims to present enhancements for oil shale seam detection using progressive interpretation from a one‐dimensional inversion to a three‐dimensional modelling and inversion of ground‐based transient electromagnetic data at an area of stressed geological layers. The geophysical survey combined 58 transient electromagnetic sites to produce geoelectrical structures at different depth slices, and cross sections were used to characterise the horizon of the most likely sites for mining oil shale. The results show valuable information on the thickness of the oil shale seam at 3.7 Ωm, which is correlated to the geoelectrical layer between 2‐ and 4 ms transient time delays, and at depths ranging between 85 and 105 m. The 300 m penetrated depth of the transient electromagnetic soundings allows the resolution of the main geological units at narrow resistivity contrast and the distinction of the main geological structures that constrain the detection of the oil shale seam. This geoelectrical layer at different depth slices illustrates a localised oil shale setting and can be spatially correlated with an area bounded by fold and fault systems. Also, three‐dimensional modelling and inversion for synthetic and experimental data are introduced at the faulted area. The results show the limitations of oil shale imaging at a depth exceeding 130 m, which depends on the near‐surface resistivity layer, the low resistivity contrast of the main lithological units, and the degree of geological detail achieved at a suitable model's misfit value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号