首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Among the different controls of erosion budget at basin level, the relative impact of dams and land management is yet to be investigated. In this paper, the impact of dams on sediment yield has been assessed by using a conceptual modelling framework which considers the gross erosion and the cascade of dams constructed on a river network. The sediment budget has been estimated based on the gross erosion, deposition of sediment in reservoirs, and sediment yields of 23 mainland river basins of India. The gross erosion of the country is estimated as 5.11 ± 0.4 Gt yr?1 or 1559 t km?2 yr?1, out of which 34.1 ± 12% of the total eroded soil is deposited in the reservoirs, 22.9 ± 29% is discharged outside the country (mainly to oceans), and the remaining 43.0 ± 41% is displaced within the river basins. The river basins of northern India contribute about 81% of the total sediment yield from landmass while the share of southern river basins is 19%. The components of revised sediment budget for India are prominently influenced by the sediment trapped in reservoirs and the treatment of catchment areas by soil and water conservation measures. Analysis of sediment deposition in 4937 reservoirs indicated the average annual percentage capacity loss as 1.04% though it varies from 0.8% to >2% per year in smaller dams (1–50 Mm3 capacity) and from <0.5% to 0.8% per year in larger dams (51 to >1000 Mm3 capacity). Siltation of smaller dams poses a serious threat to their ecosystem services as they cater to a wider population for domestic, agricultural, and industrial purposes. Amongst the environment controls, land use significantly impacts the gross erosion rate and specific sediment yield as compared to climatic and topographic parameters. However, to analyse their integrated effect on the complex processes of sediment fluxes in a basin, further research efforts are needed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Pikes Peak Highway is a partially paved road between Cascade, Colorado and the summit of Pikes Peak. Significant gully erosion is occurring on the hillslopes due to the concentration of surface runoff, the rearrangement of drainage pathways along the road surface and adjacent drainage ditches, and the high erodibility of weathered Pikes Peak granite that underlies the area. As a result, large quantities of sediment are transported to surrounding valley networks causing significant damage to water quality and aquatic, wetland, and riparian ecosystems. This study establishes the slope/drainage area threshold for gullying along Pikes Peak Highway and a cesium‐137 based sediment budget highlighting rates of gully erosion and subsequent valley deposition for a small headwater basin. The threshold for gullying along the road is Scr = 0 · 21A–0·45 and the road surface reduces the critical slope requirement for gullying compared to natural drainages in the area. Total gully volume for the 20 gullies along the road is estimated at 5974 m3, with an erosion rate of 64 m3 yr–1 to 101 m3 yr–1. Net valley deposition is estimated at 162 m3 yr–1 with 120 m3 yr–1 unaccounted for by gullying. The hillslope–channel interface is decoupled with minimal downstream sediment transport which results in significant local gully‐derived sedimentation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Erosion rates and processes define how mountainous landscapes evolve. This study determines the range of erosion rates in a semi‐arid landscape over decadal time spans and defines the dominant processes controlling variability in erosion rates. The varying topography and climatic regimes of the Xiying Basin (Qilian Shan Mountains, China) enables us to examine the relative roles of sheet wash versus rainsplash and the influence of vegetation on soil erosion and deposition. Soil erosion rates since 1954 were determined using 137Cs along 21 transects at four sites with varying gradient, rainfall, and vegetation cover. The mean 137Cs derived soil erosion rate ~0.42 mm/a was consistent with the catchment level erosion rate derived from total sediment yield for a 44 year record. However, there is considerable variability in 137Cs erosion rates both between transects and along transects, perhaps reflecting variation not only in the effectiveness of individual processes but also in their relative roles. We compare the 137Cs‐derived erosion rates with 1‐D models for sediment flux that incorporate sheet wash and rainsplash processes, testing them over a previously untested 60 year timescale. The variability in 137Cs erosion rates along transects is best replicated by sheet wash dominated simulations, suggesting that this is the dominant erosion process in this semi‐arid landscape. The functional form of the sheetwash model can also explain our observations that 137Cs erosion rates decrease with upslope length (i.e. distance down slope) while its variability increases. However, sparsely vegetated sites, located in slightly drier locations, have higher erosion rates, and are not as accurately modeled as densely vegetated sites, suggesting that patchiness of vegetation introduces fine scale variability in erosion rates on these slopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
The process basis of existing soil‐erosion models is shown to be ill‐founded. The existing literature builds directly or indirectly on Bennett's (1974) paper, which provided a blueprint for integrated catchment‐scale erosion modelling. Whereas Bennett recognized the inherent assumptions of the approach suggested, subsequent readings of the paper have led to a less critical approach. Most notably, the assumption that sediment movement could be approximated by a continuity equation that related to transport in suspension has produced a series of submodels that assume that all movement occurs in suspension. For commonly occurring conditions on hillslopes, this case is demonstrably untrue both on theoretical grounds and from empirical observations. Elsewhere in the catchment system, it is only partially true, and the extent to which the assumption is reasonable varies both spatially and temporally. A second ground‐breaking paper – that of Foster and Meyer (1972) – was responsible for subsequent uncritical application of a first‐order approximation to deposition based on steady‐state analysis and again a weak empirical basis. We describe in this paper an alternative model (Mahleran – Model for Assessing Hillslope‐Landscape Erosion, Runoff And Nutrients) based upon particle‐travel distance that overcomes existing limitations by incorporating parameterizations of the different detachment and transport mechanisms that occur in water erosion in hillslopes and small catchments. In the second paper in the series, we consider the sensitivity and general behaviour of Mahleran , and test it in relation to data from a large rainfall‐simulation experiment. The third paper of the sequence evaluates the model using data from plots of different sizes in monitored rainfall events. From this evaluation, we consider the scaling characteristics of the current form of Mahleran and suggest that integrated modelling, laboratory and field approaches are required in order to advance the state of the art in soil‐erosion modelling. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
There is increasing recognition that 137Cs data remain one of the few sources of spatially distributed information concerning soil erosion. However, many of the conversion models that have been used to convert 137Cs data into soil redistribution rates failed to account for some of the key factors affecting the redistribution of 137Cs in agricultural landscapes. The conversion model presented in this paper aims to overcome some of the limitations associated with existing models and therefore to provide more realistic estimates of soil erosion rates on agricultural land. The conversion model aims at coupling soil redistribution processes directly with 137Cs redistribution. Emphasis is placed on the spatial representation of soil redistribution processes and the adequate simulation of tillage processes. The benefits of the presented model arise from the two‐dimensional spatial integration of mass balance models with soil erosion models. No a priori assumptions about the intensity of any soil redistribution process are necessary and the level of agreement between observed and simulated 137Cs inventories enables us to evaluate the performance of the model. The spatial implementation and the use of fuzzy parameter sets also allow us to assess the uncertainties associated with soil erosion estimates. It was shown that an adequate simulation of tillage processes is necessary and that simplified tillage models may lead to erroneous estimates of soil redistribution. The model was successfully applied to a study site in the Belgian Loam Belt and the results indicated that tillage is the dominant process. Furthermore, the uncertainties associated with the estimation of water erosion rates were much higher than those associated with tillage, especially for depositional areas. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Our ability to understand erosion processes in semi‐arid ecosystems depends on establishing relationships between rainfall and runoff. This requires collection of extensive and accurate hydrologic and sediment data sets. A supercritical flume with a total load traversing slot sediment sampler used on several sites at the Walnut Gulch Experimental Watershed (WGEW) near Tombstone, AZ has proven to be a reliable way to measure flow and sediment discharge from small watersheds. However, it requires installation of a costly structure that is only suitable for relatively small flows. A more commonly used method based on ease of installation and expense is the pump sampler. One example of this is a set of instrumentation developed by the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO), in which the pump sediment sampler is part of an in‐channel, fully automated system for measuring water velocity, depth, turbidity and collecting runoff samples. A 3.7 ha arid watershed at WGEW was instrumented with both systems and hydrologic and sediment data were collected and compared during a 2 year period. Total sediment yield for the entire period measured by the CSIRO pump sampler (11.6 t ha‐1) was similar to that by traversing slot sampler (11.5 t ha‐1). The pump sampler accurately estimated the amount of fine (< 0.5 mm) sediment fractions exported, but consistently underestimated the coarse (>0.5 mm) sediment fractions. Median sediment diameter of samples collected by traversing slot and pump sampler were 0.32 and 0.22 mm, respectively. This study outlines the benefits and limitations of the pump sampler based system for monitoring sediment concentration and yield in high‐energy headwater catchments, and makes recommendations for improvement of its performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
We quantify erosion rates in the higher sectors of the Huasco Valley, in the Main Cordillera of the semi‐arid Andes of Chile, using elevation differences between three successive geomorphic markers (pediments and paleo‐valleys) and the present day valley. Available Ar‐Ar ages of Neogene pediments are used to estimate mean erosion rates for the three periods (16 to 13 My, 13 to 8 My, and following 8 My). The landscape of the Huasco Valley is in a transient state, as indicated by well‐preserved pediment surfaces in interfluves, valleys deeply incised by fluvial and glacial erosion and scarped head‐valleys that represent the current knickzones. Higher erosion rates (45–75 m/My) are calculated for the more recent period (< 8 My) during which deep incision developed compared to previous periods (6–31 m/My). Quantitative data indicate that glaciers had a much higher erosional capability than fluvial activity in the higher sectors of the Main Cordillera. Comparison with erosion rates calculated in other drainage basins of the Chilean Andes suggests that the variability of erosion rates depends on the landscape's transient erosive state. The landscape's geomorphologic response to the uplift of the Main Cordillera results in the retreat of a knickzone, for which retreat velocity depends on precipitation rate pattern and glacial erosion intensity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The present study demonstrates a spatially distributed application of a field‐scale annual soil loss model, the modified‐MMF (MMMF), to a large watershed using hydrological routing techniques, remote sensing data and geospatial technologies. In this study, the MMMF model is implemented after incorporating the corrections suggested in recent literature along with appropriate modifications of the model to suit the agro‐climatological conditions prevailing in most parts of India. Sensitivity analysis carried out through an Average Linear Sensitivity approach indicates that the model outputs are highly sensitive to soil moisture (MS), bulk density (BD), effective hydraulic depth (EHD), ground cover (GC) and settling velocity for clay (VSc). During calibration and validation, the performance evaluation statistics are mostly in the range of very good to satisfactory for both runoff and soil loss at the watershed outlet. Even spatial validation of the results of intermediate processes in the water phase and the sediment phase, although qualitative, seems to be reasonable and rational. Furthermore, the soil erosion severity analysis for different land‐uses existing in the watershed indicates that about 90% of the watershed area, especially that occupied by agricultural lands, is vulnerable to the long‐term effects of soil erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
The Coastal Cordillera of central Chile is naturally sensitive to soil erosion due to moderate to steep slopes, intense winter rains when the vegetation cover is scarce, and deeply weathered granitic rocks. In 1965, 60 per cent of its surface was moderately to very severely eroded. Today this process is still largely active, but no data are currently available to evaluate the real extent, distribution and severity of soil degradation on a regional scale. This information is vital to support efficient soil conservation plans. A multi‐scale approach was implemented to produce regional land degradation maps based on remote sensing technologies. Fieldwork has shown that the surface colour or ‘redness’ and the density of coarse fragments are pertinent erosion indicators to describe a typical sequence of soil degradation in the context of mediterranean soil developed on granitic materials and micaschists. Field radiometric experiments concluded that both factors influence the reflectance of natural surfaces and can be modelled using radiometric indices accessible from most satellites operating in the optical domain, i.e. redness index and brightness index. Finally the radiometric indices were successfully applied to SPOT images to produce land degradation maps. Only broad classes of erosion status were discriminated and the detection of the degradation processes was only possible when most of the fertile layer had already been removed. This technology provides decision‐making information required to develop regional soil conservation plans and to prioritize actions between catchment areas, especially in vast inter‐tropical regions where spatialized data are not always readily available. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
A better knowledge of soil erosion by water is essential for planning effective soil and water conservation practices in semi‐arid Mediterranean environments. The special climatic and hydrological characteristics of these areas, however, make accurate soil loss predictions difficult, particularly in the absence of minimal data. Two zero‐order experimental microcatchments (328–759 m2), representative of an extensive semi‐arid watershed with a high potential erosion risk in the south‐east of Spain, were selected and monitored for 3 years (1991–93) in order to provide information on the hydrological and erosional response. A pluviogram and hydrograph recorded data at 1‐min intervals during each storm, after which the soil loss was collected and the particle size of the sediment was analysed. Runoff coefficients of about 9% and soil losses of between 84·83 and 298·9 g m?2 year?1 were observed in the area. Rapid response times (geometric mean values lower than 2 h) and low runoff thresholds (mean values between 3·5 to 5·9 mm) were the norm in the experimental areas. A rain intensity of over 15 mm h?1 was considered as ‘erosive rainfall’ in these areas because of the total soil loss and the transport capacity of the overland flow. Differences in pore‐size distribution explained the different hydrological responses observed between areas. The erosional response was more complex and basically seemed to be determined by soil aggregate stability and topographical properties. A greater proportion of finer particles in the eroded material than in the soil matrix indicated selective erosion and the transport of finer material. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Several sediment cores were collected from two proglacial lakes in the vicinity of Mittivakkat Glacier, south‐east Greenland, in order to determine sedimentation rates, estimate sediment yields and identify the dominant sources of the lacustrine sediment. The presence of varves in the ice‐dammed Icefall Lake enabled sedimentation rates to be estimated using a combination of X‐ray photography and down‐core variations in 137Cs activity. Sedimentation rates for individual cores ranged between 0·52 and 1·06 g cm−2 year−1, and the average sedimentation rate was estimated to be 0·79 g cm−2 year−1. Despite considerable down‐core variability in annual sedimentation rates, there is no significant trend over the period 1970 to 1994. After correcting for autochthonous organic matter content and trap efficiency, the mean fine‐grained minerogenic sediment yield from the 3·8 km2 basin contributing to the lake was estimated to be 327 t km−2 year−1. Cores were also collected from the topset beds of two small deltas in Icefall Lake. The deposition of coarse‐grained sediment on the delta surface was estimated to total in excess of 15 cm over the last c. 40 years. In the larger Lake Kuutuaq, which is located about 5 km from the glacier front and for which the glacier represents a smaller proportion of the contributing catchment, sedimentation rates determined for six cores collected from the centre of the lake, based on their 137Cs depth profiles, were estimated to range between 0·05 and 0·11 g cm−2 year−1, and the average was 0·08 g cm−2 year−1. The longer‐term (c. 100–150 years) average sedimentation rate for one of the cores, estimated from its unsupported 210Pb profile, was 0·10–0·13 g cm−2 year−1, suggesting that sedimentation rates in this lake have been essentially constant over the last c. 100–150 years. The average fine‐grained sediment yield from the 32·4 km2 catchment contributing to the lake was estimated to be 13 t km−2 year−1. The 137Cs depth profiles for cores collected from the topset beds of the delta of Lake Kuutuaq indicate that in excess of 27 cm of coarse‐grained sediment had accumulated on the delta surface over the last approximately 40 years. Caesium‐137 concentrations associated with the most recently deposited (uppermost) fine‐grained sediment in both Icefall Lake and Lake Kuutuaq were similar to those measured in fine‐grained sediment collected from steep slopes in the immediate proglacial zone, suggesting that this material, rather than contemporary glacial debris, is the most likely source of the sediment deposited in the lakes. This finding is confirmed by the 137Cs concentrations associated with suspended sediment collected from the Mittivakkat stream, which are very similar to those for proglacial material. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
L. M. Ormerod 《水文研究》1998,12(7):1009-1020
While there has been increased interest in determining sedimentation rates and sources in agricultural and forested catchments in recent years, there have been few studies dealing with urbanized catchments. A study of sedimentation rates and sources within channel and floodplain deposits of a partially urbanized catchment has been undertaken using the 137Cs technique. Results for sedimentation rates showed no particular downstream pattern. This may be partially explained by underestimation of sedimentation rates at some sites by failure to sample the full 137Cs profile, floodplain erosion and deliberate removal of sediment. Evidence of lateral increases in net sedimentation rates with distance from the channel may be explained by increased floodplain erosion at sites closer to the channel and floodplain formation by lateral deposition. Potential sediment sources for the catchment were considered to be forest topsoil, subsurface material and sediments derived from urban areas, which were found to be predominantly subsurface material. Tracing techniques showed an increase in subsurface material for downstream sites, confirming expectations that subsurface material would increase in the downstream direction in response to the direct and indirect effects of urbanization. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
15.
This paper examines the changes from 1955 to 2002 in soil erosion and deposition due to changes in land‐use patterns in the semi‐arid territory of Craco, which is characterized by landsliding and badland erosion. The area underwent continuous degradation during the last century due not only to its lithological vulnerability but also to the anthropic pressure favoured by the introduction of Common Agricultural Policy (CAP) measures, which has led to the reclamation of scrub lands and badlands for durum wheat cultivation. Our analysis integrates the Unit Stream Power Erosion Deposition (USPED) model with a geographic information system (GIS) to quantify erosion risk and predict deposition patterns. Soil data, land use inventory, digital elevation data and climatic atlases were used as resource data sets to generate USPED factor values. The obtained results correlate well with field measured erosion data by other researchers. In the investigated 47 years, stable areas decreased by about 280 ha (3·8% of the total surface area), largely attributable to the increase of the low and moderate erosion intensity without significant change in sedimentation. Results from this study have implications related to understanding the geomorphic response of sites that were abandoned following remodelling due to the application of the F measure of Regulation CEE 2078/92. The average annual erosion rates estimated for abandoned and remodelled sites are respectively 15·99 and 10·64 t ha?1, meaning that the total amount of erosion in 20 years could be estimated at around 100 t ha?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
In response to the potential shortcomings of single-technique strategies in the investigation of erosion and sedimentation, a combined magnetic and radiometric (13Cs and 210Pb) approach has been undertaken in the upland, watershed-lake system of Howden Reservoir, Derbyshire. By combining these techniques, some assessment of sediment sources and the erosion status of the catchment has been achieved. Alone, each approach would have been unable to determine unequivocally sediment provenance. Furthermore, the parallel use of these measurements has highlighted limitations and/or uncertainties in both the magnetic and 137Cs techniques. These problems reflect the particular soil characteristics and drainage conditions of this upland catchment. Despite the documented severity of peat erosion in the region, Howden Reservoir has a mixture of sediment sources and a relatively moderate rate of sedimentation. Sediment yields (total 127·7 t km?2 yr?1 including organic fraction 31·3 t km?2 yr?1) are, however, higher than in other British upland areas.  相似文献   

17.
In the two previous papers of this series, we demonstrated how a novel approach to erosion modelling (Mahleran – Model for Assessing Hillslope‐Landscape Erosion, Runoff And Nutrients) provided distinct advantages in terms of process representation and explicit scaling characteristics when compared with existing models. A first evaluation furthermore demonstrated the ability of the model to reproduce spatial and temporal patterns of erosion and their particle‐size characteristics on a large rainfall‐simulation plot. In this paper, we carry out a more detailed evaluation of the model using monitored erosion events on plots of different size. The evaluation uses four plots of 21·01, 115·94, 56·84 and 302·19 m2, with lengths of 4·12, 14·48, 18·95 and 27·78 m, respectively, on similar soils to the rainfall‐simulation plot, for which runoff and erosion were monitored under natural rainfall. Although the model produces the correct ranking of the magnitude of erosion events, it performs less well in reproducing the absolute values and particle‐size distributions of the eroded sediment. The implications of these results are evaluated in terms of requirements for process understanding and data for parameterization of improved soil‐erosion models. We suggest that there are major weaknesses in the current understanding and data underpinning existing models. Consequently, a more holistic re‐evaluation is required that produces functional relationships for different processes that are mutually consistent, and that have appropriate parameterization data to support their use in a wide range of environmental conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Process dynamics in fluvial‐based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam‐building affect fluvial processes, the complexity in local response can be further increased by flood‐ and sediment‐limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi‐temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446‐km‐long semi‐arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam‐controlled fluvial sand bar deposition, aeolian sand transport, and rainfall‐induced erosion. Empirical rainfall‐erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration‐excess overland flow and gullying govern large‐scale (centimeter‐ to decimeter‐scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic‐driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four‐minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short‐term, storm‐driven rainfall intensity rather than cumulative rainfall, and that erosion can occur outside of wet seasons and even wet years. These results can apply to other similar semi‐arid landscapes where process complexity may not be fully understood. Published 2015. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

19.
Floodplains comprise geomorphologically important sources and sinks for sediments and associated pollutants, yet the sedimentology of large dryland floodplains is not well understood. Processes occurring on such floodplains are often difficult to observe, and techniques used to investigate smaller perennial floodplains are often not practical in these environments. This study assesses the utility of 137Cs inventory and depth‐profile techniques for determining relative amounts of floodplain sedimentation in the Fitzroy River, northeastern Australia; a 143 000 km2 semi‐arid river system. Caesium‐137 inventories were calculated for floodplain and reference location bulk soil cores collected from four sites. Depth profiles of 137Cs concentration from each floodplain site and a reference location were recorded. The areal density of 137Cs at reference locations ranged from 13 to 978 Bq m–2 (0–1367 Bq m–2 at the 95% confidence interval), and the mean value ± 2 (standard error of the mean) was 436 ± 264 Bq m–2, similar to published data from other Southern Hemisphere locations. Floodplain inventories ranged from 68 to 1142 Bq m–2 (0–1692 Bq m–2 at the 95% confidence interval), essentially falling within the range of reference inventory values, thus preventing calculation of erosion or deposition. Depth‐profiles of 137Cs concentration indicate erosion at one site and over 66 cm of deposition at another since 1954. Analysis of 239+240Pu concentrations in a depositional core substantiated the interpretation made from 137Cs data, and depict a more tightly constrained peak in concentration. Average annual deposition rates range from 0 to 15 mm. The similarity between floodplain and reference bulk inventories does not necessarily indicate a lack of erosion or deposition, due to low 137Cs fallout in the region and associated high measurement uncertainties, and a likely influence of gully and bank eroded sediments with no or limited adsorbed 137Cs. In this low‐fallout environment, detailed depth‐profile data are necessary for investigating sedimentation using 137Cs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The estimation of erosion and sediment delivery rates in tropical mountain watersheds is difficult and most of the methods widely used for estimating soil erosion over large areas have serious limitations. The 137Cs approach has potential for quantifying soil erosion because it can provide retrospective estimates of long‐term (since 1963) net sediment redistribution relatively quickly. Despite its great potential, 137Cs has not yet been used in an extensive, reconnaissance level survey of erosion in complex tropical mountain environments. The objective of this study was to examine the applicability of the 137Cs method to estimate erosion on steep tropical agricultural lands (23 to 80% slopes) in the Nizao watershed, a humid, tropical mountain area of the Dominican Republic. In this study we (i) examine the variation of 137Cs in ten reference sites—eight coffee groves and two forested sites—and (ii) estimate erosion from 14 cultivated fields. The soil pool of 137Cs ranged from to 150 to 192 mBq cm−2 on reference sites with minimal erosion. Variability among reference sites was less than expected for such complex mountain terrain. The variability within coffee and forested reference (average CV=28%) sites was similar to the variability found on grassland and forested reference sites in the temperate zone. The estimated annual soil loss from 14 sampled fields ranged from 6 to 61 t ha−1 year−1 with an overall mean of 26 t ha−1 year−1. Overall, the soil erosion estimates found using the 137Cs method were much lower than those often assumed for such steep tropical hillsides. These erosion estimates account for soil loss since 1963 only and it seems likely that soil losses may have been much higher in earlier decades immediately after initial forest clearing earlier in the 20th century. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号