首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Drainage channels are an integral part of agricultural landscapes, and their impact on catchment hydrology is strongly recognized. In cultivated and urbanized floodplains, channels have always played a key role in flood protection, land reclamation, and irrigation. Bank erosion is a critical issue in channels. Neglecting this process, especially during flood events, can result in underestimation of the risk in flood‐prone areas. The main aim of this work is to consider a low‐cost methodology for the analysis of bank erosion in agricultural drainage networks, and in particular for the estimation of the volumes of eroded and deposited material. A case study located in the Veneto floodplain was selected. The research is based on high‐resolution topographic data obtained by an emerging low‐cost photogrammetric method (structure‐from‐motion or SfM), and results are compared to terrestrial laser scanning (TLS) data. For the SfM analysis, extensive photosets were obtained using two standalone reflex digital cameras and an iPhone5® built‐in camera. Three digital elevation models (DEMs) were extracted at the resolution of 0.1 m using SfM and were compared with the ones derived by TLS. Using the different DEMs, the eroded areas were then identified using a feature extraction technique based on the topographic parameter Roughness Index (RI). DEMs derived from SfM were effective for both detecting erosion areas and estimating quantitatively the deposition and erosion volumes. Our results underlined how smartphones with high‐resolution built‐in cameras can be competitive instruments for obtaining suitable data for topography analysis and Earth surface monitoring. This methodology could be potentially very useful for farmers and/or technicians for post‐event field surveys to support flood risk management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We test the acquisition of high‐resolution topographic and terrain data using hand‐held smartphone technology, where the acquired images can be processed using technology freely available to the research community. This is achieved by evaluating the quality of digital terrain models (DTM) of a river bank and an Alpine alluvial fan generated with a fully automated, free‐to‐use, structure‐from‐motion package and a smartphone integrated camera (5 megapixels) with terrestrial laser scanning (TLS) data used to provide a benchmark. To evaluate this approach a 16.2‐megapixel digital camera and an established, commercial, close‐range and semi‐automated software are also employed, and the product of the four combinations of the two types of cameras and software are compared. Results for the river bank survey demonstrate that centimetre‐precision DTMs can be achieved at close range (10 m or less), using a smartphone camera and a fully automated package. Results improve to sub‐centimetre precision with either higher‐resolution images or by applying specific post‐processing techniques to the smartphone DTMs. Application to an entire Alpine alluvial fan system shows the degradation of precision scales linearly with image scale, but that (i) the expected level of precision remains and (ii) difficulties in separating vegetation and sediment cover within the results are similar to those typically found when using other photo‐based techniques and laser scanning systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Soil microtopography is a property of critical importance in many earth surface processes but is often difficult to quantify. Advances in computer vision technologies have made image‐based three‐dimensional (3D) reconstruction or Structure‐from‐Motion (SfM) available to many scientists as a low cost alternative to laser‐based systems such as terrestrial laser scanning (TLS). While the performance of SfM at acquiring soil surface microtopography has been extensively compared to that of TLS on bare surfaces, little is known about the impact of vegetation on reconstruction performance. This article evaluates the performance of SfM and TLS technologies at reconstructing soil microtopography on 6 m × 2 m erosion plots with vegetation cover ranging from 0% to 77%. Results show that soil surface occlusion by vegetation was more pronounced with TLS compared to SfM, a consequence of the single viewpoint laser scanning strategy adopted in this study. On the bare soil surface, elevation values estimated with SfM were within 5 mm of those from TLS although long distance deformations were observed with the former technology. As vegetation cover increased, agreement between SfM and TLS slightly degraded but was significantly affected beyond 53% of ground cover. Detailed semivariogram analysis on meter‐square‐scale surface patches showed that TLS and SfM surfaces were very similar even on highly vegetated plots but with fine scale details and the dynamic elevation range smoothed out with SfM. Errors in the TLS data were mainly caused by the distance measurement function of the instrument especially at the fringe of occlusion regions where the laser beam intersected foreground and background features simultaneously. From this study, we conclude that a realistic approach to digitizing soil surface microtopography in field conditions can be implemented by combining strengths of the image‐based method (simplicity and effectiveness at reconstructing soil surface under sparse vegetation) with the high accuracy of TLS‐like technologies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Structure‐from‐Motion (SfM) photogrammetry is now used widely to study a range of earth surface processes and landforms, and is fast becoming a core tool in fluvial geomorphology. SfM photogrammetry allows extraction of topographic information and orthophotos from aerial imagery. However, one field where it is not yet widely used is that of river restoration. The characterisation of physical habitat conditions pre‐ and post‐restoration is critical for assessing project success, and SfM can be used easily and effectively for this purpose. In this paper we outline a workflow model for the application of SfM photogrammetry to collect topographic data, develop surface models and assess geomorphic change resulting from river restoration actions. We illustrate the application of the model to a river restoration project in the NW of England, to show how SfM techniques have been used to assess whether the project is achieving its geomorphic objectives. We outline the details of each stage of the workflow, which extend from preliminary decision‐making related to the establishment of a ground control network, through fish‐eye lens camera testing and calibration, to final image analysis for the creation of facies maps, the extraction of point clouds, and the development of digital elevation models (DEMs) and channel roughness maps. The workflow enabled us to confidently identify geomorphic changes occurring in the river channel over time, as well as assess spatial variation in erosion and aggradation. Critical to the assessment of change was the high number of ground control points and the application of a minimum level of detection threshold used to assess uncertainties in the topographic models. We suggest that these two things are especially important for river restoration applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Different high‐resolution techniques can be employed to obtain information about the three‐dimensional (3D) surface of glaciers. This is typically carried out using efficient, but also expensive and logistically demanding, light detection and ranging (LiDAR) technologies, such as airborne scanners and terrestrial laser scanners. Recent technological improvements in the field of image analysis and computer vision have prompted the development of a low‐cost photogrammetric approach, which is referred to as ‘structure‐from‐motion’ (SfM). Combined with dense image‐matching algorithms, this method has become competitive for the production of high‐quality 3D models. However, several issues typical of this approach should be considered for application in glacial environments. In particular, the surface morphology, the different substrata, the occurrence of sharp contrast from solar shadows and the variable distance from the camera positions can negatively affect the image texture, and reduce the possibility of obtaining a reliable point cloud from the images. The objective of this study is to test the structure‐from‐motion multi view stereo (SfM‐MVS) approach in a small debris‐covered glacier located in the eastern Italian Alps, using a consumer‐grade reflex camera and the computer vision‐based software PhotoScan. The quality of the 3D models produced by the SfM‐MVS process was assessed via the comparison with digital terrain models obtained from terrestrial laser scanning (TLS) surveys that were performed at the same epochs. The effect of different terrain gradients and different substrata (debris, snow and firn) was also evaluated in terms of the accuracy of the reconstruction by SfM‐MVS versus TLS. Our results show that the quality of this new photogrammetric approach is similar to the quality of TLS and that point cloud densities are comparable or even higher compared with TLS. However, special care should be taken while planning the SfM survey geometry, to optimize the 3D model quality and spatial coverage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
High resolution digital elevation models (DEMs) are increasingly produced from photographs acquired with consumer cameras, both from the ground and from unmanned aerial vehicles (UAVs). However, although such DEMs may achieve centimetric detail, they can also display systematic broad‐scale error that restricts their wider use. Such errors which, in typical UAV data are expressed as a vertical ‘doming’ of the surface, result from a combination of near‐parallel imaging directions and inaccurate correction of radial lens distortion. Using simulations of multi‐image networks with near‐parallel viewing directions, we show that enabling camera self‐calibration as part of the bundle adjustment process inherently leads to erroneous radial distortion estimates and associated DEM error. This effect is relevant whether a traditional photogrammetric or newer structure‐from‐motion (SfM) approach is used, but errors are expected to be more pronounced in SfM‐based DEMs, for which use of control and check point measurements are typically more limited. Systematic DEM error can be significantly reduced by the additional capture and inclusion of oblique images in the image network; we provide practical flight plan solutions for fixed wing or rotor‐based UAVs that, in the absence of control points, can reduce DEM error by up to two orders of magnitude. The magnitude of doming error shows a linear relationship with radial distortion and we show how characterization of this relationship allows an improved distortion estimate and, hence, existing datasets to be optimally reprocessed. Although focussed on UAV surveying, our results are also relevant to ground‐based image capture. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

7.
Increased resolution and availability of remote sensing products, and advancements in small‐scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as structure‐from‐motion (SfM), now allow users an easy and efficient method to generate three‐dimensional (3D) models and orthoimages from aerial or terrestrial datasets. While these advancements show promise for current and future glacier monitoring, many regions still suffer a lack of observations from earlier time periods. We report on the use of SfM to extract spatial information from various historic imagery sources. We focus on three geographic regions, the European Alps, high Arctic Norway and the Nepal Himalayas. We used terrestrial field photographs from 1896, high oblique aerial photographs from 1936 and aerial handheld photographs from 1978 to generate digital elevation models (DEMs) and orthophotos of the Rhone glacier, Brøggerhalvøya and the lower Khumbu glacier, respectively. Our analysis shows that applying SfM to historic imagery can generate high quality models using only ground control points. Limited camera/orientation information was largely reproduced using self‐calibrated model data. Using these data, we calculated mean ground sampling distances across each site which demonstrates the high potential resolution of resulting models. Vertical errors for our models are ±5.4 m, ±5.2 m and ±3.3 m. Differencing shows similar patterns of thinning at lower Rhone (European Alps) and Brøggerhalvøya (Norway) glaciers, which have mean thinning rates of 0.31 m a?1 (1896–2010) to 0.86 m a?1 (1936–2010) respectively. On these clean ice glaciers thinning is highest in the terminus region and decreasing up‐glacier. In contrast to these glaciers, uneven topography, exposed ice‐cliffs and debris cover on the Khumbu glacier create a highly variable spatial distribution of thinning. The mean thinning rate for the Khumbu study area was found to be 0.54 ± 0.9 m a?1 (1978–2015). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
The declining costs of small Unmanned Aerial Systems (sUAS), in combination with Structure‐from‐Motion (SfM) photogrammetry have triggered renewed interest in image‐based topography reconstruction. However, the potential uptake of sUAS‐based topography is limited by the need for ground control acquired with expensive survey equipment. Direct georeferencing (DG) is a workflow that obviates ground control and uses only the camera positions to georeference the SfM results. However, the absence of ground control poses significant challenges in terms of the data quality of the final geospatial outputs. Notably, it is generally accepted that ground control is required to georeference, refine the camera calibration parameters, and remove any artefacts of optical distortion from the topographic model. Here, we present an examination of DG carried out with low‐cost consumer‐grade sUAS. We begin with a study of surface deformations resulting from systematic perturbations of the radial lens distortion parameters. We then test a number of flight patterns and develop a novel error quantification method to assess the outcomes. Our perturbation analysis shows that there exists families of predictable equifinal solutions of K1K2 which minimize doming in the output model. The equifinal solutions can be expressed as K2 = f (K1) and they have been observed for both the DJI Inspire 1 and Phantom 3 sUAS platforms. This equifinality relationship can be used as an external reliability check of the self‐calibration and allow a DG workflow to produce topography exempt of non‐affine deformations and with random errors of 0.1% of the flying height, linear offsets below 10 m and off‐vertical tilts below 1°. Whilst not yet of survey‐grade quality, these results demonstrate that low‐cost sUAS are capable of producing reliable topography products without recourse to expensive survey equipment and we argue that direct georeferencing and low‐cost sUAS could transform survey practices in both academic and commercial disciplines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small‐scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor‐relief landforms as wind, weather, water and vegetation impact on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close‐range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss‐side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee‐side flute. This is consistent with the lee‐side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

10.
Unmanned aerial vehicles (UAVs) and structure-from-motion photogrammetry enable detailed quantification of geomorphic change. However, rigorous precision-based change detection can be compromised by survey accuracy problems producing systematic topographic error (e.g. ‘doming’), with error magnitudes greatly exceeding precision estimates. Here, we assess survey sensitivity to systematic error, directly correcting topographic data so that error magnitudes align more closely with precision estimates. By simulating conventional grid-style photogrammetric aerial surveys, we quantify the underlying relationships between survey accuracy, camera model parameters, camera inclination, tie point matching precision and topographic relief, and demonstrate a relative insensitivity to image overlap. We show that a current doming-mitigation strategy of using a gently inclined (<15°) camera can reduce accuracy by promoting a previously unconsidered correlation between decentring camera lens distortion parameters and the radial terms known to be responsible for systematic topographic error. This issue is particularly relevant for the wide-angle cameras often integrated into current-generation, accessible UAV systems, frequently used in geomorphic research. Such systems usually perform on-board image pre-processing, including applying generic lens distortion corrections, that subsequently alter parameter interrelationships in photogrammetric processing (e.g. partially correcting radial distortion, which increases the relative importance of decentring distortion in output images). Surveys from two proglacial forefields (Arolla region, Switzerland) showed that results from lower-relief topography with a 10°-inclined camera developed vertical systematic doming errors > 0·3 m, representing accuracy issues an order of magnitude greater than precision-based error estimates. For higher-relief topography, and for nadir-imaging surveys of the lower-relief topography, systematic error was < 0·09 m. Modelling and subtracting the systematic error directly from the topographic data successfully reduced error magnitudes to values consistent with twice the estimated precision. Thus, topographic correction can provide a more robust approach to uncertainty-based detection of event-scale geomorphic change than designing surveys with small off-nadir camera inclinations and, furthermore, can substantially reduce ground control requirements. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

11.
The recent development of structure‐from‐motion (SfM) and multi‐view stereo (MVS) photogrammetry techniques has enabled semi‐automatic high‐resolution bathymetry using aerial images taken by consumer‐grade digital cameras mounted on unmanned aerial vehicles (UAVs). However, the applicability of these techniques is sometimes limited by sun and sky reflections at the water surface, which render the point‐cloud density and accuracy insufficient. In this research, we present a new imaging technique to suppress the effect of these water‐surface reflections. In this technique, we order a drone to take a short video instead of a still picture at each waypoint. We then apply a temporal minimum filter to the video. This filter extracts the smallest RGB values in all the video frames for each pixel, and composes an image with greatly reduced reflection effects. To assess the performance of this technique, we applied it at three small shallow‐water sites. Specifically, we evaluated the effect of the technique on the point cloud density and the accuracy and precision of the photogrammetry. The results showed that the proposed technique achieved a far denser point cloud than the case in which a randomly chosen frame was used for each waypoint, and also showed better overall accuracy and precision in estimating water‐bottom elevation. The effectiveness of this new technique should depend on the surface wave state and sky radiance distribution, and this dependence, as well as the applicability to large areas, should be investigated in future research. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
For an erosion event (October 2016) occurred at the Sparacia experimental area (Southern Italy), both terrestrial and low‐altitude aerial surveys were carried out by consumer grade camera and quadcopter (low‐cost unmanned aerial vehicle [UAV]) to measure rill erosion on two plots with steepness of 22% and 26%. Applying the structure from motion (SfM) technique, the three‐dimensional digital terrain models (3D‐DTMs) and the quasi three‐dimensional models (2.5D‐digital elevation model [DEM]) were obtained by the two surveys. Furthermore, 3D‐DTM and DEM were built using the available aerial photographs (166) and adding 40 terrestrial photographs. For the first time, the convergence index was applied to high‐resolution rill data for extracting the rill network, and a subsequent separation into contributing and non‐contributing rills was carried out. The comparison among the three surveys (terrestrial, UAV, and UAV + terrestrial) was developed using two morphometric parameters of the rill network (drainage density and drainage frequency). Moreover, using as reference the weight of sediment stored on the tanks located downstream of the plots, the reliability of soil loss measurement by 3D models was tested. For both contributing and non‐contributing rills, the morphometric parameters were higher for the terrestrial than for UAV and UAV + terrestrial surveys. For both plots, SfM always provided reliable soil loss measurements, which were affected by errors ranging from ?8% to 13%. Although the applied technique used a low‐cost UAV and a consumer grade camera, the obtained results demonstrated that a reliable estimate of rill erosion can be obtained in an area of interest.  相似文献   

13.
The concept of intensity‐based assessment for risk‐based decision‐making is introduced. It is realized by means of the so‐called 3R method (response analysis, record selection and risk‐based decision‐making), which can be used to check the adequacy of design of a new building or of the strengthening of an existing building by performing conventional pushover analysis and dynamic analysis for only a few ground motions, which are termed characteristic ground motions. Because the objective of the method is not a precise assessment of the seismic risk, a simple decision model for risk acceptability can be introduced. The engineer can decide that the reliability of a no‐collapse requirement is sufficient when collapse is observed in the case of less than half of, for example, seven characteristic ground motions. From the theoretical point of view, it is shown that the accuracy of the method is acceptable if the non‐linear response history analyses are performed at a low percentile of limit‐state intensity, which is also proven by means of several examples of multi‐storey reinforced concrete frame buildings. The 3R method represents a compromise between the exclusive use of either pushover analysis or dynamic analysis and can be easily introduced into building codes provided that its applicability is further investigated (e.g. asymmetric structures and other performance objectives) and that the procedure for the selection of characteristic ground motions is automated and readily available to engineers (www.smartengineering.si).  相似文献   

14.
In a companion paper, an overview and problem definition was presented for ground motion selection on the basis of the conditional spectrum (CS), to perform risk‐based assessments (which estimate the annual rate of exceeding a specified structural response amplitude) for a 20‐story reinforced concrete frame structure. Here, the methodology is repeated for intensity‐based assessments (which estimate structural response for ground motions with a specified intensity level) to determine the effect of conditioning period. Additionally, intensity‐based and risk‐based assessments are evaluated for two other possible target spectra, specifically the uniform hazard spectrum (UHS) and the conditional mean spectrum (CMS, without variability).It is demonstrated for the structure considered that the choice of conditioning period in the CS can substantially impact structural response estimates in an intensity‐based assessment. When used for intensity‐based assessments, the UHS typically results in equal or higher median estimates of structural response than the CS; the CMS results in similar median estimates of structural response compared with the CS but exhibits lower dispersion because of the omission of variability. The choice of target spectrum is then evaluated for risk‐based assessments, showing that the UHS results in overestimation of structural response hazard, whereas the CMS results in underestimation. Additional analyses are completed for other structures to confirm the generality of the conclusions here. These findings have potentially important implications both for the intensity‐based seismic assessments using the CS in future building codes and the risk‐based seismic assessments typically used in performance‐based earthquake engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an experimental study, while a companion paper addresses an analytical study, to explore the possibility of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion. A three‐storey building model and a hybrid platform model are designed and manufactured. The hybrid platform is mounted on the building floor through passive mounts composed of leaf springs and oil dampers and controlled actively by an electromagnetic actuator with velocity feedback control strategy. The passive mounts are designed in such a way that the stiffness and damping ratio of the platform can be changed. A series of shaking table tests are then performed on the building model without the platform, with the passive platform of different parameters, and with the hybrid platform. The experimental results demonstrate that the hybrid platform is very effective in reducing the velocity response of a batch of high‐tech equipment in the building subject to nearby traffic‐induced ground motion if dynamic properties of the platform and control feedback gain are selected appropriately. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The experimental results of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion have been presented and discussed in the companion paper. Based on the identified dynamic properties of both the building and the platform, this paper first establishes an analytical model for hybrid control of the building‐platform system subject to ground motion in terms of the absolute co‐ordinate to facilitate the absolute velocity feedback control strategy used in the experiment. The traffic‐induced ground motion used in the experiment is then employed as input to the analytical model to compute the dynamic response of the building‐platform system. The computed results are compared with the measured results, and the comparison is found to be satisfactory. Based on the verified analytical model, coupling effects between the building and platform are then investigated. A parametric study is finally conducted to further assess the performance of both passive and hybrid platforms at microvibration level. The analytical study shows that the dynamic interaction between the building and platform should be taken into consideration. The hybrid control is effective in reducing both velocity response and drift of the platform/high‐tech equipment at microvibration level with reasonable control force. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The intersection of the developing topic of rating curve and discharge series uncertainty with the topic of hydrological change detection (e.g., in response to land cover or climatic change) has not yet been well studied. The work herein explores this intersection, with consideration of a long‐term discharge response (1964–2007) for a ~650‐km2 headwater basin of the Mara River in west Kenya, starting with stream rating and daily gauge height data. A rating model was calibrated using Bayesian methods to quantify uncertainty intervals in model parameters and predictions. There was an unknown balance of random and systemic error in rating data scatter (a scenario not likely unique to this basin), which led to an unknown balance of noise and information in the calibrated statistical error model. This had implications on testing for hydrological change. Overall, indications were that shifts in basin's discharge response were rather subtle over the 44‐year period. A null hypothesis for change using flow duration curves (FDCs) from four different 8‐year data intervals could be either accepted or rejected over much of the net flow domain depending on different applications of the statistical error model (each with precedence in the literature). The only unambiguous indication of change in FDC comparisons appeared to be a reduction in lowest baseflow in recent years (flows with >98% exceedance probability). We defined a subjective uncertainty interval based on an intermediate balance of random and systematic error in the rating model that suggested a possibility of more prevalent impacts. These results have relevance to management in the Mara basin and to future studies that might establish linkages to historic land use and climatic factors. The concern about uncertain uncertainty intervals (uncertainty2) extends beyond the Mara and is relevant to testing change where non‐random rating errors may be important and subtle responses are investigated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号