共查询到2条相似文献,搜索用时 0 毫秒
1.
Hong Cheng Chenchen Liu Jifeng Li Bo Liu Zhongquan Zheng Xueyong Zou Liqiang Kang Yi Fang 《地球表面变化过程与地形》2018,43(1):312-321
The topographic parameters and propagation velocity of aeolian sand ripples reflect complex erosion, transport, and deposition processes of sand on the land surface. In this study, three Nikon cameras located in the windward (0–1 m), middle (4.5–5.5 m), and downwind (9–10 m) zones of a 10 m long sand bed are used to continuously record changes in sand ripples. Based on the data extracted from these images, this study reaches the following conclusions. (1) The initial formation and full development times of sand ripples over a flatbed decrease with wind velocity. (2) The wavelengths of full development sand ripples are approximately twice the wavelengths of initially formed sand ripples. Both wavelengths increase linearly with friction velocity. During the developing stage of sand ripples, the wavelength increases linearly with time. (3) The propagation velocity of full development sand ripples is approximately 0.6 times that of the initially formed sand ripples. The propagation velocity of both initial and full development of sand ripples increase as power functions with respect to friction velocity. During the developing stage of sand ripples, the propagation velocity decreases with time following a power law. These results provide new information for understanding the formation and evolution of aeolian sand ripples and help improve numerical simulations. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
2.
Topographic interactions generate multidirectional and unsteady air?ow that limits the application of velocity pro?le approaches for estimating sediment transport over dunes. Results are presented from a series of wind tunnel simulations using Irwin‐type surface‐mounted pressure sensors to measure shear stress variability directly at the surface over both isolated and closely spaced sharp‐crested model dunes. Findings complement existing theories on secondary air?ow effects on stoss transport dynamics and provide new information on the in?uence of lee‐side air?ow patterns on dune morphodynamics. For all speeds investigated, turbulent unsteadiness at the dune toe indicates a greater, more variable surface shear, despite a signi?cant drop in time‐averaged measurements of streamwise shear stress at this location. This effect is believed suf?cient to inhibit sediment deposition at the toe and may be responsible for documented intermittency in sand transport in the toe region. On the stoss slope, streamline compression and ?ow acceleration cause an increase in ?ow steadiness and shear stress to a maximum at the crest that is double that at the toe of the isolated dune and 60–70 per cent greater than at ?ow reattachment on the lower stoss of closely spaced dunes. Streamwise ?ow accelerations, rather than turbulence, have greater in?uence on stress generation on the stoss and this effect increases with stoss slope distance and with incident wind speed. Reversed ?ow within the separation cell generates signi?cant surface shear (30–40 per cent of maximum values) for both spacings. This supports ?eld studies that suggest reversed ?ow is competent enough to return sediment to the dune directly or in a de?ected direction. High variability in shear at reattachment indicates impact of a turbulent shear layer that, despite low values of time‐averaged streamwise stress in this region, would inhibit sediment accumulation. Downwind of reattachment, shear stress and ?ow steadiness increase within 6 h (h = dune height) of reattachment and approach upwind values by 25 h. A distance of at least 30 h is suggested for full boundary layer recovery, which is comparable to ?uvial estimates. The Irwin sensor used in this study provides a reliable means to measure skin friction force responsible for sand transport and its robust, simple, and cost‐effective design shows promise for validating these ?ndings in natural dune settings. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献