首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
冻融循环对黄土渗透系数各向异性影响的试验研究   总被引:1,自引:1,他引:0  
赵茜  苏立君  刘华  杨金熹 《冰川冻土》2020,42(3):843-853
为了反映冻融循环作用对原状黄土渗透各向异性及原状、 重塑黄土渗透差异的影响, 以西安Q3黄土为研究对象, 通过三轴固结渗透试验对比分析了冻融前后水平、 竖直向原状黄土及重塑黄土的渗透系数随初始含水率、 围压、 冻融循环次数变化的规律。结果表明: 未冻融时各级围压下竖直向原状黄土的渗透系数为2×10-6 ~ 18×10-6 cm?s-1, 水平向原状黄土和重塑黄土的渗透系数为0 ~ 4×10-6 cm?s-1; 经历冻融循环后, 水平、 竖直向原状黄土及重塑黄土的渗透系数与初始含水率的关系曲线分别呈现逐渐上升、 抛物线形式与变化平缓的不同特征, 而三者的渗透系数均随冻融循环次数的增加呈现数量级增大的趋势; 原状黄土的竖直 - 水平渗透系数比(kv /kh )由冻融前的4.38逐渐减小到0.90, 可见冻融循环作用在显著提高黄土渗透性能的同时, 可以强烈弱化其各向异性特征。通过建立围压、 渗透系数与土体孔隙率的相关关系可知, 原状、 重塑黄土的孔隙率与围压存在极强的负线性相关性, 渗透系数随围压的增大呈典型指数衰减特征, 渗透系数与孔隙率具有相似的变化趋势, 因此冻融循环过程中土体孔隙率的改变是导致其渗透性质变化的主要原因。  相似文献   

2.
黏土大剪切变形中的渗透特性试验研究   总被引:3,自引:2,他引:1  
雷红军  卞锋  于玉贞  孙逊 《岩土力学》2010,31(4):1130-1133
利用改进的三轴渗透试验装置对某高堆石坝心墙黏土进行了一系列剪切过程中的渗透试验,揭示了黏性土发生大剪切变形过程中其渗透系数随轴向应变的变化规律,并分别对围压、渗透压力、渗透方向等因素对土体渗透性的影响进行了探讨。研究结果表明,黏性土大剪切变形过程中其渗透性变化规律一般表现为:在剪切变形起始阶段,渗透系数迅速减小,随着轴向应变的增加,其变化越来越缓慢,最后基本上趋于稳定。轴向应变、围压、渗透压力等是影响渗透系数的主要因素。  相似文献   

3.
温度是影响石油污染土性能的重要因素。依托滨海地区特有气候环境特点,借助抗压强度指标及应力-应变分布,从抗温敏性角度,优化石油污染滨海盐渍土对二灰的固化需求。研究结果表明:(1)在-20~40℃温度变化范围内,石油污染土抗压强度波动幅度高达1倍,采用二灰进行固化处理后,抗压强度波动缩小至10%~20%。二灰固化作用可将热敏性物质(石油、水、盐)吸附、包裹于胶体内外,增强对环境温度变化的抵抗性。(2)石油污染土及固化石油污染土的无侧限抗压强度均随温度变化呈先减小后增大趋势,10℃为强度转折点,也即最低点,实际工程中应加以重视。(3)温度作用下,固化石油污染土呈应变软化型破坏,且随温度及污染水平的增大,塑性变形阶段延长,轴向应变增大,出现四周型层状破坏。(4)土体自身的污染程度影响固化效果,高污染条件下抗压强度波动幅度约为40%,实际工程中应依据土体自身的污染程度调整固化配比。低污染土的固化配比选取只需略高于未污染土,过高固化配比并不利于增强稳定性,同比率石灰掺量的改变较粉煤灰的更有助于增强稳定性。污染水平≤6%的石油污染盐渍土,可选固化配比为石灰10%+粉煤灰20%。  相似文献   

4.
温度和模拟渗滤液作用下黏土的渗透性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用改造的GDS全自动环境岩土渗透仪,分别以自来水和模拟渗滤液为试验用水,开展不同温度和围压下黏土渗透性能试验。研究表明,当温度从20℃升高至50℃时,渗透系数增大,最大增幅为3.5倍;当围压从50kPa增大至200kPa时,渗透系数从10-6cm/s数量级减小至10-8cm/s数量级。在温度和围压一定时,模拟渗滤液作用下黏土的渗透系数略大于自来水试验结果,二者最大比值为2.8。随着温度的升高,土中吸附结合水膜变薄,且土样体积减小,在两种效应的共同作用下,固有渗透率不是定值,相应条件下50℃与20℃固有渗透率的比值在0.72~2.99之间变化。在本试验条件下,渗透系数随温度的变化主要是由水动力黏滞系数的变化引起,但是在低围压、自来水试验时理论推算渗透系数小于实测值,高围压下理论推算值大于实测值。  相似文献   

5.
针对防渗浆材结石体或灌浆固结体渗透性的测试及其对污染物阻滞性能测试的需要,研制了一种围压密封的柔壁渗透仪,并获得国家专利。采用S、N和Z型三类浆材结石体试样,通过在不同渗透压力、不同围压条件下的渗透系数测定,与南-55型变水头渗透仪的对比试验研究,以及垃圾渗沥液的渗滤试验,证明柔壁渗透仪对制样要求不高、密封好、测试误差<119×10-7 cm/s,精度满足规范要求。该研究的创新点在于采用柔性乳胶膜作测试试样的侧壁,通过气压或水压施加围压实现试样的侧壁密封,渗透压力可在10~1000 kPa范围调节,围压可在10~1500 kPa范围调节,试样直径有618和101 mm两种规格可选,且精度要求不高,试样高度在20~150 mm范围内任意选用,可方便地用于测试浆材结石体或灌浆固结体的渗透系数,以及浆材结石体对污水中污染物的阻滞性能,有助于防渗浆材的研制。  相似文献   

6.
为探究海泡石的添加对土-膨润土泥浆阻截墙材料的施工和易性、渗透性,以及对地下水重金属阳离子污染阻截性的影响,采用天然海泡石对土-膨润土泥浆阻截墙改性,并以铅污染为代表,进行了坍落度实验、渗透实验和吸附实验。结果表明:添加海泡石不会对土-膨润土-海泡石阻截材料施工和易性造成太大影响,海泡石掺量从0增加至30%,满足目标坍落度要求的含水率仅增加1%;在实验掺量范围内海泡石对泥浆阻截材料渗透性能的影响较小,材料渗透系数均小于10-7 cm/s,能够满足工程要求;材料对Pb2+的吸附是以化学吸附为主的吸附过程,海泡石掺量分别为0、5%、10%和20%时,泥浆阻截材料对Pb2+的吸附量依次为89.73、112.52、140.85、183.40 mg/g,温度降低,阻截材料吸附量也随之减少。在铅污染液的作用下,土-膨润土-海泡石阻截材料渗透系数逐渐上升,海泡石的存在能够延缓Pb2+对该阻截材料的侵蚀;渗出液pH和Pb2+质量浓度变化表明,在实验时间内阻截材料仍然起着阻截作用。  相似文献   

7.
利用纳米SiO2(nano-SiO2,简称NS)和石灰固化滨海石油污染土,通过一系列界限含水率试验、无侧限抗压强度试验和pH试验研究了NS和石灰对滨海石油污染土固化效果的影响;通过扫描电镜试验和X射线衍射试验进行了典型改良石油污染土的微观结构和矿物学分析。结果表明:对于5%含油率的滨海石油污染土,NS-石灰联合能够显著提高石油污染土的强度,在3%石灰改良石油污染土中分别掺入1%和2%NS,石灰改良石油污染土的7d饱和无侧限抗压强度分别达到421、727 kPa,为不掺NS的3倍和5倍多。同时,NS的加入降低了单独采用石灰改良石油污染土的p H值,减小了石灰对环境的危害。扫描电镜试验和X射线衍射试验也证明,与单独掺入石灰相比,NS-石灰联合时,NS加速了石灰的水化反应,促进了水化硅酸钙的生成,使得滨海石油污染土的强度大幅提高。  相似文献   

8.
渗透条件对膨润土改性黄土渗透系数的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
室内采用柔性壁渗透仪实测了膨润土改性黄土的渗透性能,分别在控制渗透时间、围压和渗透压等条件下探究了各自对改性黄土渗透系数的影响。研究表明,试验初期试样的渗透系数在同一数量级上有较大波动,随着持续时间增加渗透系数趋于稳定,稳定后几乎不随时间发生变化,增大围压和渗透压都可以引起改性黄土渗透系数在同一数量级上降低。因此,在填埋场设计时可以通过预测防渗衬里的围压和渗透压来预留渗透系数的安全储备。  相似文献   

9.
采用改造的GDS全自动环境岩土渗透仪,分别以自来水和模拟渗滤液为试验用水,开展不同温度和围压下黏土渗透性能试验。研究表明,当温度从20℃升高至50℃时,渗透系数增大,最大增幅为3.5倍;当围压从50k Pa增大至200k Pa时,渗透系数从10-6cm/s数量级减小至10-8cm/s数量级。在温度和围压一定时,模拟渗滤液作用下黏土的渗透系数略大于自来水试验结果,二者最大比值为2.8。随着温度的升高,土中吸附结合水膜变薄,且土样体积减小,在两种效应的共同作用下,固有渗透率不是定值,相应条件下50℃与20℃固有渗透率的比值在0.72~2.99之间变化。在本试验条件下,渗透系数随温度的变化主要是由水动力黏滞系数的变化引起,但是在低围压、自来水试验时理论推算渗透系数小于实测值,高围压下理论推算值大于实测值。  相似文献   

10.
梁维云  韦昌富  颜荣涛  杨德欢 《岩土力学》2019,40(12):4759-4766
孔隙溶液浓度及组份改变会影响膨胀土颗粒间作用力,改变微观孔隙结构,从而影响土体的物理力学特性。为此,以宁明膨胀土为研究对象,采用不同浓度NaCl溶液制备泥浆预固结重塑样开展一维压缩试验和压汞试验,研究化学作用对重塑天然膨胀土的压缩性和微观孔隙结构的影响规律。结果表明:随着渗透吸力增加,颗粒间水化能力降低,物理化学力使土颗粒由分散状态转变为集聚体状态,形成了集聚体内孔和集聚体间孔,土体表现出双峰孔隙分布特征。预固结样(压力为20 kPa)的初始孔隙比随渗透吸力增加而减小,进而导致固结屈服应力增加;但是渗透吸力对压缩性影响不大,压缩指数和回弹指数基本不变。此外,利用固结系数计算了土体的渗透系数,随着竖向压力增加渗透系数降低;当竖向压力小于200 kPa时,随着渗透吸力增加,渗透系数先增加后减小,但是竖向压力超过200 kPa后,渗透系数变化不大。分析发现,渗透吸力增加导致大孔隙增加,渗透系数增加,但同时密实度增加会导致渗透系数降低,低竖向压力下渗透性受密实度和微观孔隙结构变化耦合作用控制。  相似文献   

11.
冻融循环对兰州黄土渗透性变化的影响   总被引:6,自引:1,他引:5  
肖东辉  冯文杰  张泽  明姣  王强 《冰川冻土》2014,36(5):1192-1198
在季节冻土区, 周期性的冻结与融化持续改变着土体内部结构, 土的孔隙率与渗透性也随之产生相应的变化. 针对这一现象进行了原状黄土和重塑黄土的冻融循环试验和冻融循环后的渗透试验. 结果显示: 随着冻融循环作用的进行, 原状黄土与重塑黄土干密度的变化趋势都是先增大后减小, 然后趋于稳定. 由于渗透系数与干密度呈负线性关系, 所以随着冻融循环次数的增加, 原状黄土与重塑黄土的渗透系数都是先减小后增大, 最后在4×10-4~6×10-4 cm·s-1之间趋于一个稳定值. 因为重塑黄土是扰动土, 土结构中的颗粒大小较为均匀, 而原状黄土的土结构中颗粒大小不均匀, 导致重塑黄土的渗透系数始终大于原状黄土.  相似文献   

12.
张亭亭  李江山  王平  黄茜  薛强 《岩土力学》2016,37(Z2):279-286
采用磷酸镁水泥(MPC)对铅污染土进行固化/稳定化处理。基于无侧限抗压强度试验和渗透试验,研究了MPC添加量、水土比对固化污染土强度及渗透特性的影响规律。结果表明,固化土的强度随MPC添加量增加而增大,渗透系数减小;水土比对固化土的强度及渗透特性的影响均存在临界值,为0.45。低于临界值时,固化土的强度随着水土比的增加而增加,渗透系数随着水土比的增加而减小。压汞试验(MTP)结果表明,随MPC添加量的增大,固化土孔隙体积减小,水土比不超过临界值时,固化土孔隙体积随着水土比的增大而减小。扫描电镜试验结果表明,随着MPC添加量的增加,土颗粒团聚化越明显,胶结程度加强;水土比不超过临界值时,土颗粒团聚体增多。镁钾磷酸盐晶体(MKP)主要通过减少孔径大于1 ?m的孔隙体积来影响固化土的强度和渗透特性。  相似文献   

13.
高围压条件下孔隙介质渗透特性试验研究   总被引:2,自引:0,他引:2  
为研究不同围压条件下孔隙介质的渗透性能,利用新研制的高压渗流仪,对大尺寸低渗透性软弱岩进行了系统的试验测试。试验渗透压差波动幅度仅为0.02MPa,渗出端溶液体积变化量测试精度可达0.03mL。通过溶液体积变化与时间的线性关系,稳定渗流量大小可以精确测定。以稳定压差、流量法(即稳压法),试验验证了岩石的渗透系数随着围压的增加而下降,当围压降低时,岩石渗透系数回升,但回升路径低于原始路径。根据轴向应变的变化情况,提出了室内试验应力-渗流耦合过程中渗透性的变化主要是侧向压力使孔隙、喉道产生压缩变形所致。  相似文献   

14.
渗透系数是评价重金属污染液在重塑黄土中迁移扩散作用的一个重要指标。已有研究表明污染液的p H值、可溶性盐浓度、离子含量和饱和渗透系数的变化存在一定的相关关系,但未明晰渗透过程中的地球化学反应机制。基于此,采集了西安白鹿原地区的更新统(Qp)黄土,选取Cu2+溶液作为渗透溶液,开展了重塑黄土的饱和渗透试验,建立了基于Netpath软件的地球化学反演模型。结果表明:试验过程中饱和渗透系数从第1天开始显著降低,且与去离子试验组相比降低幅度较大,极差为5.57×10-5 cm/s;离子来源分析证明了地球化学反应的发生,存在着矿物的溶解、沉淀以及阳离子交换作用;地球化学反演模拟结果显示由于Cu2+的存在,加剧了矿物溶解产生大量的Ca2+),促进碳酸盐矿物溶解平衡左移,从第1天开始方解石和白云石持续形成沉淀,沉淀量分别为1.912,0.958 mmol,从而堵塞渗流孔隙,降低土体的渗透系数。研究结果有助于了解重金属离子侵入过程中重塑黄土饱和渗透系数的变化,同时对于进一步明晰影响渗透系数变化的地球化学机制具有重要...  相似文献   

15.
高钙粉煤灰是燃煤电厂排出的固体废物,其堆放不仅需占用大量土地,而且对周围环境存在严重威胁。通过系统的室内试验,着重研究了高钙粉煤灰固化铅与锌污染土的工程性质,揭示了其作用机制,探讨了利用高钙粉煤灰固化重金属污染土的可行性。试验结果表明,土体受到重金属离子污染后其无侧限抗压强度降低,掺入高钙粉煤灰可提高土体强度,并能抑制重金属离子的滤出;污染物浓度较低时,固化污染土中的Pb2+和Zn2+均能得到有效固化,污染物浓度较高时,Zn2+的固化效果优于Pb2+。干湿循环试验结果表明,高钙粉煤灰固化污染土的强度随干湿循环次数的增加,先增大后减小;固化土体中重金属离子浓度较低时,滤出液中金属离子浓度随干湿循环次数增加而增大;重金属离子浓度较高时,滤出液中金属离子浓度基本保持不变。  相似文献   

16.
砂岩峰后卸除围压过程的渗透性试验研究   总被引:3,自引:1,他引:2  
为了探讨煤层开采引起的围岩卸除围压过程中砂岩渗透性的变化规律,本文用数控瞬态渗透法在电液伺服岩石力学试验系统MTS815.02上进行了砂岩试样的渗透特性试验。得出了试样峰前渗透系数-应变与应力-应变的关系曲线,以及在峰后保持轴向应变一定卸除围压过程中试样的渗透系数-围压与主应力差-围压的关系曲线;对试验砂岩在变形破坏过程中渗透性变化规律进行了总结,重点分析了其峰后卸除围压过程中渗透性的变化规律;并对试验砂岩峰后渗透系数与有效围压关系进行了拟合,得出了拟合方程式,为煤层开采引起的围岩体应力场与渗流场耦合问题提供参考。  相似文献   

17.
麦秸秆加筋石灰固化盐渍土的破坏形态分析   总被引:1,自引:0,他引:1  
土的破坏形态是其受力大小与状态的综合反映,也是其内部结构变化的宏观体现。对比分析了不同养护时间、布筋方式和围压下的盐渍土、麦秸秆加筋盐渍土、石灰固化土、麦秸秆加筋石灰固化土试样的三轴剪切破坏形态。结果显示:①盐渍土和麦秸秆加筋盐渍土均呈塑性破坏。其中,盐渍土呈典型的"鼓胀"破坏;受到加筋的约束,加筋土的横向变形小于盐渍土的。②养护前期,石灰同化土和麦秸秆加筋石灰固化土均呈塑性破坏;养护后期,均呈脆性破坏。麦秸秆加筋石灰同化土的破裂面较石灰固化土的不规则,没有类似石灰同化土的对称性破裂块。③低围压下,加筋土的约束力主要来自筋土间的摩阻力,土的破裂纹形态较高围压下的复杂。高围压下,约束力来自筋土摩阻力和围压的共同作用。④麦秸秆的加筋作用可有效地约束和阻止裂纹的发生和扩展。分区布筋时,土样的破坏主要发生于未加筋部位。麦秸秆和石灰共同加筋固化能有效地提高土的抗变形能力,是改善滨海盐渍土的一种可行的处理方法。  相似文献   

18.
废旧轮胎胶粉用于填埋场衬垫材料改性,是提高衬垫系统有效性和扩展废旧轮胎资源化利用途径的一种手段。以高岭土作为黏性土的代表,开展废旧轮胎胶粉-高岭土混合土的力学和水力学性质试验,重点探讨胶粉掺量及尺寸对混合土渗透性、压缩性和收缩性的影响规律。研究表明,废旧轮胎胶粉-高岭土混合土的渗透系数、压缩系数、回弹指数、固结系数和体缩率等均随胶粉掺入比的增加而增大。高岭土及混合土的无侧限抗压强度大于200kPa,50kPa和200kPa压力下渗透系数满足≤1.0×10-7cm·s-1的要求,均属于中压缩性土,且体缩率小于体积应变合格值4%。与30目胶粉相比,12目胶粉-高岭土混合土压缩性和回弹量较小、固结系数较大,胶粉尺寸对无侧限抗压强度、体缩率和渗透系数的影响不显著。在本文试验条件下,为提高黏土衬垫对有机污染物的吸附能力并满足渗透性、强度及变形的要求,12目25%胶粉改性黏土可作为填埋场黏土衬垫材料。  相似文献   

19.
滨海盐渍土的固化方法及固化土的偏应力-应变   总被引:2,自引:0,他引:2  
王沛  王晓燕  柴寿喜 《岩土力学》2010,31(12):3939-3944
滨海盐渍土可使用水泥、石灰、粉煤灰和高分子材料SH固土剂单独及联合固化,以提高土的强度、抗变形能力和水稳性。为研究各种固化方法固化盐渍土的抗变形能力和偏应力-应变特征,通过三轴UU压缩试验得到盐渍土和6种固化盐渍土的偏应力-应变曲线。曲线显示:水泥+石灰类固化土呈应变软化型、石灰+粉煤灰类固化土呈应变软化型、石灰类固化土呈应变硬化型。掺入SH固土剂,提高了固化土的浸水前后的强度,同时也增强了固化土的水稳性。掺入SH固土剂使固化土达到偏应力峰值所需的应变增加,即抗变形能力增强;0.9%SH固土剂+12%石灰+36%粉煤灰固化土具有适中的强度、良好的弹性变形和水稳性的优点,作为轻质路堤填料使用,还可减少滨海地区软土路基的沉降量,这使其成为滨海盐渍土的6种固化方案中的最适宜方案。  相似文献   

20.
为模拟地基土普遍受上覆荷载等实际情况,研制了可加载渗透仪。文章以兰新铁路第二双线一处典型膨胀泥岩为研究对象,进行了原状土和重塑土不同荷载等级下渗透试验,荷载大小为0,0.1,0.2,0.3,0.4 MPa。试验结果表明:随着渗透时间变长,原状土和重塑土的渗透系数略微增大。原状土渗透系数随荷载增大而变小,为现场地基土随埋深增加渗透性变小提供依据;重塑土渗透系数随荷载增大而变小,对于高填方路基底层土而言上覆荷载对其渗透性产生影响。通过进一步对比原状土与重塑土渗透性差异,可知重塑土渗透系数比原状土渗透系数大1个数量级,且原状土渗透系数呈“外凸形”减小,重塑土渗透系数呈“内凹形”减小,荷载对两种土体渗透系数影响机理不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号