首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Three-phase NaCl-H2O fluid inclusions featuring halite dissolution temperature(Tm)higher than vapor bubble disappearance temperature(Th) are commonly observed in porphyry copper/molybdenum deposits,skarn-type deposits and other magmatic- hydrothermal ore deposits.Based on |ΔV1|(the absolute value of volume variation of NaCl-H2O solution in a heating or cooling process of inclusions)= |ΔVs|(the absolute value of volume variation of the halite crystal in a heating or cooling process of inclusions) and on the principle of conservation of the mass of NaCl and H2O,we systematically calculated the densities of NaCl-H2O solutions in the solid-liquid two-phase field for temperatures(Th) from 0.1℃ to 800℃ and salinities from 26.3 wt%to 99.2wt%.Consequently for the first time we obtained the upper limit of the density of NaCI-H2O solutions in the solid-liquid twophase field for Tbm inclusions with variant salinities.The results indicate that for inclusions of the Thm type with the same Th,the higher the Tm or salinity is,the higher the density of the NaClsaturated solution will be.If a group of fluid inclusions were homogeneously trapped,they must have the same Th value and the same Tm or salinity value.This may be used to distinguish homogeneous,inhomogeneous,and multiple entrapments of fluid inclusions.  相似文献   

2.
The bulk salinity cannot be directly obtained from the dissolution temperatures of halite in highly saline fluid inclusions that contain solid, liquid, and vapour at room temperature. At least two of the following independent parameters must be determined to estimate the bulk composition and density of these inclusions: 1. dissolution temperature of halite in the presence of vapour; 2. total homogenization temperature of liquid and vapour; and 3. volume fraction of the vapour phase. A new V m -x diagram for phase stabilities in the H2O-NaCl system has been constructed to obtain these bulk fluid properties from inclusions that homogenize liquid and vapour phase at higher temperatures than dissolution of halite.  相似文献   

3.
The P-V-T-X properties of H2O-salt systems are compared depending on the solubility coefficient of compounds contained in these systems and the presence or absence of critical phenomena in the saturated solutions. Data on synthetic and natural inclusions captured in minerals at elevated temperatures and pressures and employed to discuss the principal features of phase diagrams of the H2O-NaCl system (type I) and H2O-NaF system (type II or P-Q type). It is demonstrated how characteristics of magmatic fluids of various types are manifested during the development of miarolitic pegmatites (Malkhan field in Transbaikalia) and during the crystallization of F-rich ongonitic melts (Ary-Bulak Massif in eastern Transbaikalia). Characteristics of solutions and gas-rich (gaseous) fluid inclusions in quartz phenocrysts from porphyritic ongonites (disappearance of the liquid regardless of its density and the overall salinity near the critical point of water, distinctive features of the dissolution of the crystalline phase, and the ability of the inclusions to withstand heating to 1400°C without decrepitation), and the richness of the fluid-magmatic system as a whole in F suggest that the ongonite melt crystallized in the presence of low-density NaF-bearing fluids of the P-Q type with a minor admixture of chlorides. It is important to identify the type of solutions in the fluid inclusions, because without knowing this type, it is impossible to accurately enough calculate the pressure at the temperatures of inclusion capture. For example, the unwarranted classification of solutions of type II (P-Q) in inclusions with the chloride system results in a significant overestimation of the calculated fluid pressures. A technique is proposed for studying the high-temperature immiscibility region in P-Q systems based on data obtained on gaseous fluid inclusions.  相似文献   

4.
The phase state of the fluid in the H2O–KF ± KCl ± NaF system is studied in the presence of quartz for an experimental assay of the mutual influence of various salts of the fluid-forming mixture on heterogeneous fluid equilibria. The fluid inclusions were synthesized in quartz by the fracture healing method from solutions with KF + KCl and KF + NaF mixtures at 1 or 2 kbar and 700, 750, or 800°C. The results of the fluid inclusion study indicate a heterogeneous state of the fluid and variation in the fluid composition during experiments as a result of its interaction with quartz. The increase in temperature and pressure, as well as variation in the proportions of the salt contents in the fluid-forming mixture, changed the course of chemical reactions. After all the experiments, a glassy phase was observed in some types of inclusions. It is known that aqueous KF or KCl solutions, the solubility of which increases during heating, are characterized by phase equilibria of systems of the first type (Valyashko, 1990), when liquid and vapor are equilibrated for a heterogeneous state of the fluid. In this case, some inclusions should homogenize to vapor. However, no similar inclusions were observed in contrast to denser fluid phases (liquids), which are typical of the upper heterogeneous area of systems of the second (P–Q) type. Some inclusions host solid phases, the solubility of which decreases as the temperature increases. The results of experiments in the presence of KF + NaF solutions showed that the amount of inclusions of heterogeneous entrapment increases at higher temperatures simultaneously with a decrease in the H2O content of the glassy phase.  相似文献   

5.
Heating and freezing studies on fluid inclusions in quartz from mineralized quartzfeldspar reef reveal the presence of type A CO2-H2O (H2O>50% by volume), type B CO2-H2O (H2O<50% by volume), type C pure CO2 and type D pure aqueous inclusions. Types A, B and C are primary and/or psuedo-secondary inclusions while type D are secondary. Types A and B homogenize on heating into different phases at similar temperatures ranging between 307 and 476°C, indicating entrapment from boiling hydrothermal solutions. Type D inclusions homogenize into a liquid phase at temperatures between 88 and 196°C. Boiling of hydrothermal solutions led to the formation of a CO2-rich phase of low density and salinity that coexisted with another dense and saline aqueous phase with very little CO2 dissolved in it. Ore and gangue mineral assemblage of primary ores indicate that ore deposition was characterized by logf O 2=?34.4 to ?30.2 atm, logf S 2=?11.6 to ?8.8 atm and pH=4.5 to 6.5.  相似文献   

6.
Phase equilibria in the system H2O-NaCl have been determined to 1000°C and 1500 bars using synthetic fluid inclusions formed by healing fractures in inclusion-free Brazilian quartz in the presence of the two coexisting, immiscible H2O-NaCl fluids at various temperatures and pressures. Petrographic and microthermometric analyses indicate that the inclusions trapped one or the other of the two fluids present, or mixtures of the two. Salinities of the two coexisting phases were obtained from heating and freezing studies on those inclusions which trapped only a single, homogeneous fluid phase.Results of the present study are consistent with previously published data on the H2O-NaCl system at lower temperatures and pressures, and indicate that the two-phase field extends well into the P-T range of most shallow magmatic-hydrothermal activity. As a consequence, chloride brines exsolved from many epizonal plutons during the process of “second-boiling” should immediately separate into a high-salinity liquid phase and a lower salinity vapor phase and produce coexisting halite-bearing and vapor-rich fluid inclusions. This observation is consistent with results of numerous fluid inclusion studies of ore deposits associated with shallow intrusions, particularly the porphyry copper deposits, in which halite-bearing and coexisting vapor-rich inclusions are commonly associated with the earliest stages of magmatic-hydrothermal activity.  相似文献   

7.
The metastable superheated solutions are liquids in transitory thermodynamic equilibrium inside the stability domain of their vapor (whatever the temperature is). Some natural contexts should allow the superheating of natural aqueous solutions, like the soil capillarity (low T superheating), certain continental and submarine geysers (high T superheating), or even the water state in very arid environments like the Mars subsurface (low T) or the deep crustal rocks (high T). The present paper reports experimental measurements on the superheating range of aqueous solutions contained in quartz as fluid inclusions (Synthetic Fluid Inclusion Technique, SFIT) and brought to superheating state by isochoric cooling. About 40 samples were synthetized at 0.75 GPa and 530-700 °C with internally-heated autoclaves. Nine hundred and sixty-seven inclusions were studied by micro-thermometry, including measuring the temperatures of homogenization (Th: L + V → L) and vapor bubbles nucleation (Tn: L → L + V). The Th-Tn difference corresponds to the intensity of superheating that the trapped liquid can undergo and can be translated into liquid pressure (existing just before nucleation occurs at Tn) by an equation of state. Pure water (840-935 kg m−3), dilute NaOH solutions (0.1 and 0.5 mol kg−1), NaCl, CaCl2 and CsCl solutions (1 and 5 mol kg−1) demonstrated a surprising ability to undergo tensile stress. The highest tension ever recorded to the best of our knowledge (−146 MPa, 100 °C) is attained in a 5 m CaCl2 inclusion trapped in quartz matrix, while CsCl solutions qualitatively show still better superheating efficiency. These observations are discussed with regards to the quality of the inner surface of inclusion surfaces (high P-T synthesis conditions) and to the intrinsic cohesion of liquids (thermodynamic and kinetic spinodal). This study demonstrates that natural solutions can reach high levels of superheating, that are accompanied by strong changes of their physico-chemical properties.  相似文献   

8.
New experimental data on the solubility of NaCl in gaseous CO2 were obtained at pressures (P) of 30–70 MPa and temperatures of 623 and 673 K on experimental equipment making possible to sample a portion of the gas in the course of the experiment. The new measures have demonstrated that the NaCl solubility increases with increasing temperature (T) and pressure and is approximately four to five orders of magnitude higher than the saturated vapor pressure of NaCl at the corresponding temperature. The paper also reports newly obtained experimental data on the equilibrium conditions of the reaction of talc decomposition into enstatite and quartz at a variable H2O/NaCl ratio in the fluid. The results of the experiments validate the empirical equations previously suggested for H2O and NaCl activities in concentrated aqueous salt solutions that can be used in describing silica-saturated fluids at high T-P parameters. A new empirical equation is suggested for the Gibbs free mixing energy in the H2O-CO2-NaCl ternary system, with the parameters of the equation calibrated against experimental data on phase equilibria in marginal binary systems and on the location of the boundary of the region of homogeneous three-component fluid according to data on synthetic fluid inclusions in quartz.  相似文献   

9.
A H2O-NaCl-KCl-rich fluid occurs occasionally in fluid inclusions in a variety of geological environments. The properties of this fluid provide information about the conditions of entrapment, and thereby, conditions that have affected the rock. New purely empirical and thermodynamic models are developed in this study to reproduce the properties of the H2O-NaCl-KCl fluid system, especially the liquidus at variable pressures (the solid–liquid-vapour surface, i.e. SLV), and at constant pressures (the solid–liquid surface, i.e. SL). The SLV surface is modelled according to “best-fit” polynomial equations, which relate temperature, pressure and composition. The SL surfaces, at constants pressures, are modelled according to thermodynamic principles, i.e. the equality of chemical potentials of components (NaCl and KCl) in each phase at equilibrium. The models are valid up to 400?MPa and 900°C and can be applied to fluid inclusions studies to obtain salinities from dissolution temperatures of salt crystals. The new models are included in the program AqSo WHS that forms part of the software package FLUIDS (Bakker, Chem Geol 194:3–23, 2003), to be able to apply directly the mathematical functions in fluid inclusion studies and in general fluid properties investigations.  相似文献   

10.
The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H_2O-CO_2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO_2 melting temperatures(T_(m,CO2)) of H_2O-CO_2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T_(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T_(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T_(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO_2-phase densities being 0.50-0.86 g/cm~3.H_2O-CO_2 inclusions in Q2 have T_(m,CO_2) from-61.9℃ to-56.9℃,T_(m,clath)from 1.3℃ to 9.5℃,T_(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T_(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO_2-phase densities being 0.48-0.89 g/cm~3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ~(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ~(18)O_(H2O) values calculated from δ~(18)O of quartz range from-0.2‰ to 8.3‰(SMOW).The δD-δ~(18)O_(H2O)data are close to the magmatic and metamorphic fields.The fluid inclusion and stable isotope data documented in this study indicate that the vein-type copper mineralization in the Wulasigou Pb-Zn-Cu deposit took place in an orogenic-metamorphic enviroment.  相似文献   

11.
This work reports the application of thermodynamic models, including equations of state, to binary (salt-free) CH4-H2O fluid inclusions. A general method is presented to calculate the compositions of CH4-H2O inclusions using the phase volume fractions and dissolution temperatures of CH4 hydrate. To calculate the homogenization pressures and isolines of the CH4-H2O inclusions, an improved activity-fugacity model is developed to predict the vapor-liquid phase equilibrium. The phase equilibrium model can predict methane solubility in the liquid phase and water content in the vapor phase from 273 to 623 K and from 1 to 1000 bar (up to 2000 bar for the liquid phase), within or close to experimental uncertainties. Compared to reliable experimental phase equilibrium data, the average deviation of the water content in the vapor phase and methane solubility in the liquid phase is 4.29% and 3.63%, respectively. In the near-critical region, the predicted composition deviations increase to over 10%. The vapor-liquid phase equilibrium model together with the updated volumetric model of homogenous (single-phase) CH4-H2O fluid mixtures (Mao S., Duan Z., Hu J. and Zhang D. (2010) A model for single-phase PVTx properties of CO2-CH4-C2H6-N2-H2O-NaCl fluid mixtures from 273 to 1273 K and from 1 to 5000 bar. Chem. Geol.275, 148-160), is applied to calculate the isolines, homogenization pressures, homogenization volumes, and isochores at specified homogenization temperatures and compositions. Online calculation is on the website: http://www.geochem-model.org/.  相似文献   

12.
Mixtures of CO2-NaCl-H2O contained in synthetic fluid inclusions are studied by laser Raman spectroscopy at high temperatures. With increasing temperature, the band splitting (X) of υ1-2υ2 diad of spectrum of CO2 presents more variations, and the intensity ratios of the hot bands to the υ1-2υ2 diad increase. For mixtures of gas phase rich in CO2 and liquid phase rich in H2O before homogenization, the strength of hydrogen bonding of water in the liquid phase decreases almost linearly with increasing temperature. When mixtures become homogeneous liquid phases, carbon dioxide content increases significantly as a result of the abrupt decrease in hydrogen bonds. Our results show that the hydrogen bonds change only slightly at higher temperatures above the homogeneous point, and a certain extent of the hydrogen bonds still remains at the highest temperature of 550°C of this work. The study is helpful to Raman spectroscopic analysis of natural fluid inclusions at high temperatures.  相似文献   

13.
Extraction of useful geochemical, petrologic and structural information from deformed fluid inclusions is still a challenge in rocks displaying moderate plastic strain. In order to better understand the inclusion modifications induced by deviatoric stresses, six deformation experiments were performed with a Griggs piston-cylinder apparatus. Natural NaCl–H2O inclusions in an oriented quartz crystal were subjected to differential stresses of 250–470 MPa at 700–900 °C and at 700–1,000 MPa confining pressure. Independently of the strain rate and of the crystallographic orientation of the quartz, the inclusions became dismembered and flattened within a crystallographic cleavage plane subperpendicular to σ 1. The neonate (newly formed) inclusions that result from dismemberment have densities that tend towards equilibrium with P fluid = σ 1 at T shearing. These results permit ambiguities in earlier deformation experiments on CO2–H2O–NaCl to be resolved. The results of the two studies converge, indicating that density changes in neonate inclusions are promoted by high differential stresses, long periods at high P and high T, and fluid compositions that maximize quartz solubility. Neonates spawned from large precursor inclusions show greater changes in density that those spawned from small precursors. These findings support the proposal that deformed fluid inclusions can serve as monitors of both the orientation and magnitude of deviatoric stresses during low-strain, ductile deformation of quartz-bearing rocks.  相似文献   

14.
Solutions of H2O–NaCl–CH4 occur in fluid inclusions enclosed by quartz, apatite and feldspar from gabbroic pegmatitites, anorthositic structures and intercumulus minerals within the Skaergaard intrusion. The majority of the fluid inclusions resemble 10 m diameter sub-to euhedral negative crystals. A vapour phase and a liquid phase are visible at room temperature, solids are normally absent. The salinity of the fluids ranges from 17.5 to 22.8 wt.% NaCl. CH4, which comprises less than six mole percent of the solution, was detected in the vapour phase of the fluid inclusions with Raman microprobe analysis. Homogenization of the fluid inclusions occurred in the liquid phase in the majority of the fluid inclusions, though 10% of the inclusions homogenized in the gas phase. Thermodynamic consideration of the stability of feldspars + quartz, and the C–O–H system, indicates that the solutions were trapped at temperatures between 655 and 770°C, at oxygen fugacities between 1.5 and 2.0 log units below the QFM oxygen buffer. Textural evidence and the composition of the solutions suggest that the fluids coexisted with late-magmatic intercumulus melts and the melts which formed gabbroic pegmatites. These solutions are thought to have contributed to late-magmatic metasomatism of the primocryst assemblages of the Skaergaard intrusion.  相似文献   

15.
Fluid inclusions in the gold-bearing quartz veins at the Um Rus area are of three types: H2O, H2O−CO2 and CO2 inclusions. H2O inclusions are the most abundant, they include two phases which exhibit low and high homogenization temperatures ranging from 150 to 200°C and 175 to 250°C, respectively. The salinity of aqueous inclusions, based on ice melting, varies between 6.1 and 8 equiv. wt% NaCl. On the other hand, H2O−CO2 fluid inclusions include three phases. Their total homogenization temperatures range from 270 to 325°C, and their salinity, based on clathrate melting, ranges between 0.8 and 3.8 equiv. wt% NaCl. CO2 fluid inclusions homogenize to a liquid phase and exhibit a low density range from 0.52 to 0.66 g/cm3. The partial mixing of H2O−CO2 and salt H2O−NaCl fluid inclusions is the main source of fluids from which the other types of inclusions were derived. The gold-bearing quartz veins are believed to be of medium temperature hydrothermal convective origin.  相似文献   

16.
Plagioclase-aqueous solution equilibrium: Concentration dependence   总被引:1,自引:0,他引:1  
The plagioclase-(NaCl + CaCl2) exchange equilibrium was examined experimentally at 700°C, 0.5 GPa in aqueous solutions with salt concentrations from 1 to 64 m. The Ca/(Ca + Na) distribution between plagioclase and solution (salt melt) is illustrated in five diagrams constructed for concentrations of 1, 4, 8, 16, and 64 m. The elevated bulk salinity of the fluid at a constant Ca/(Ca + Na) ratio results in plagioclase albitization, with this effect reaching a maximum in relatively dilute solutions (1–4 m). In concentrated solutions (salt melts), the shift in the plagioclase composition with variations in the salinity is relatively insignificant. The simple hydration of basic rocks (purely metamorphic reaction) is associated with the albitization of plagioclase, and calculations suggest a possible shift from anorthite to oligoclase. This is also applicable to chemically more complex mineral associations: an increase in the overall salinity of the fluid should result in an increase in the activity of monovalent cations relative to that of bivalent ones and, correspondingly, stimulate reactions in which alkali earth cations (Ca + Mg + Fe) are substituted for alkalis (Na + K + Li). Although our experiments were carried out at temperatures 50°C lower than the melting point of albite under a pure water pressure (0.5 GPa), the addition of CaCl2 solution to albite (i.e., plagioclase anorthitization and a decrease in the water activity in the salt solutions) induced the appearance of melt because of quartz formation by the reaction 2Ab + CaCl2An + 2NaCl + 4Qtz and the eutectic phase proportions in the Ab + Qtz system.  相似文献   

17.
Synthetic hydrocarbon and aqueous inclusions have been created in the laboratory batch reactors in order to mimic inclusion formation or re-equilibration in deeply buried reservoirs. Inclusions were synthesized in quartz and calcite using pure water and Mexican dead oil, or n-tetradecane (C14H30), at a temperature and pressure of 150 °C and 1 kbar. One-phase hydrocarbon inclusions are frequently observed at standard laboratory conditions leading to homogenization temperatures between 0 and 60 °C. UV epifluorescence of Mexican oil inclusions is not uniform; blue and green-yellow colored inclusions coexist; however, no clear evidence of variations in fluid chemistry were observed. Homogenization temperatures were recorded and the maxima of Th plotted on histograms are in good agreement with expected Th in a range of 6 °C. Broad histograms were reconstructed showing non-symmetrical Th distributions over a 20 °C temperature range centered on the expected Th. This histogram broadening is due to the fragility of the fluid inclusions that were created by re-filling of pre-existing microcavities. Such Th histograms are similar to Th histograms recorded on natural samples from deeply buried carbonate reservoirs. Th values lower than those expected were measured for hydrocarbon inclusions in quartz and calcite, and for aqueous inclusions in calcite. However, the results confirm the ability of fluid inclusions containing two immiscible fluids to lead to PT reconstructions, even in overpressured environments.  相似文献   

18.
Phase assemblages and temperatures of phase changes provide important information about the bulk properties of fluid inclusions, and are typically obtained by microthermometry. Inclusions are synthesized in natural quartz containing an aqueous fluid with a composition in the ternary systems of H2O-NaCl2-CaCl2, H2O-NaCl-MgCl2, and H2O-CaCl2-MgCl2. This study reveals that these fluid inclusions may behave highly unpredictably at low temperatures due to the formation of metastable phase assemblages. Eutectic temperatures cannot be detected in most of the fluid inclusions containing these ternary systems. Nucleation of a variety of solid ice and salt-hydrate phases in single fluid inclusions is often partly inhibited. Raman spectroscopy at low temperatures provides an important tool for interpreting and understanding microthermometric experiments, and visualizing stable and metastable phase assemblages. Final dissolution temperatures of ice, salt-hydrates, and salt must be treated with care, as they can only be interpreted by purely empirical or thermodynamic models at stable conditions.  相似文献   

19.
A microthermometric study of inclusions in granites and pegmatites in the Proterozoic Harney Peak Granite system identified four types of inclusions. Type 1 inclusions are mixtures of CO2 and H2O and have low salinities, on average 3.5 wt.% NaCleq; type 2 inclusions are aqueous solutions of variable salinities, from 0 to 40% wt.% NaCleq; type 3 inclusions are carbonic, dominated by CO2, with no detectable water; and type 4 inclusions consist of 20 to 100% solids, with the remaining volume occupied by a CO2-H2O fluid. Many inclusions have a secondary character; however, a primary character can be unambiguously established in several occurrences of the type 1 inclusions. These inclusions were trapped above the solidus and represent the exsolved magmatic fluid. The secondary populations of types 1, 2, and 3 probably formed as a result of reequilibration and unmixing of the type 1 fluid that progressively changed composition and density with decreasing temperature and pressure and was finally trapped along healed microfractures under subsolidus conditions. Type 4 inclusions are primary and are interpreted to be trapped, fluid-bearing, complex silicate melts that subsequently solidified or underwent other posttrapping changes.It is demonstrated that primary type 1 fluid inclusions that coexist with crystallized melt inclusions in the complex, Li-bearing Tin Mountain pegmatite were trapped along the two-fluid phase boundary in the system CO2-H2O-NaCleq. Consequently, the temperature and pressure conditions of trapping are identical to the bulk homogenization conditions—on average 340°C and 2.7 kbar. These conditions indicate that this Li-, Cs-, Rb-, P-, and B-rich pegmatite crystallized at some of the lowest known temperatures for a silicate melt in the crust. An internally consistent, empirical solvus surface in P-T-XCO2 coordinates was generated for the pseudobinary CO2-(H2O-4.3 wt.% NaCleq) pegmatite fluid system. Distribution coefficients for the major species CO2, H2O, NaCl, and CH4 between the immiscible CO2-rich and H2O-rich fluid phases as a function of pressure and temperature were extracted from data for the two cogenetic fluid inclusions types.  相似文献   

20.
Considerable advances in our understanding of physicochemical properties of geological fluids and their roles in many geological processes have been achieved by the use of synthetic fluid inclusions. We have developed a new method to synthesize fluid inclusions containing organic and inorganic material in fused silica capillary tubing. We have used both round (0.3 mm OD and 0.05 or 0.1 mm ID) and square cross-section tubing (0.3 × 0.3 mm with 0.05 × 0.05 mm or 0.1 × 0.1 mm cavities). For microthermometric measurements in a USGS-type heating-cooling stage, sample capsules must be less than 25 mm in length. The square-sectioned capsules have the advantage of providing images without optical distortion. However, the maximum internal pressure (P; about 100 MPa at 22 °C) and temperature (T; about 500 °C) maintained by the square-sectioned capsules are less than those held by the round-sectioned capsules (about 300 MPa at room T, and T up to 650 °C).The fused silica capsules can be applied to a wide range of problems of interest in fluid inclusion and hydrothermal research, such as creating standards for the calibration of thermocouples in heating-cooling stages and frequency shifts in Raman spectrometers. The fused silica capsules can also be used as containers for hydrothermal reactions, especially for organic samples, including individual hydrocarbons, crude oils, and gases, such as cracking of C18H38 between 350 and 400 °C, isotopic exchanges between C18H38 and D2O and between C19D40 and H2O at similar temperatures. Results of these types of studies provide information on the kinetics of oil cracking and the changes of oil composition under thermal stress.When compared with synthesis of fluid inclusions formed by healing fractures in quartz or other minerals or by overgrowth of quartz at elevated P-T conditions, the new fused-silica method has the following advantages: (1) it is simple; (2) fluid inclusions without the presence of water can be formed; (3) synthesized inclusions are large and uniform, and they are able to tolerate high internal P; (4) it is suitable for the study of organic material; and (5) redox control is possible due to high permeability of the fused silica to hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号