首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Day-time Pc 3–4 (≃5–60 mHz) and night-time Pi 2 (≃5–20 mHz) ULF waves propagating down through the ionosphere can cause oscillations in the Doppler shift of HF radio transmissions that are correlated with the magnetic pulsations recorded on the ground. In order to examine properties of these correlated signals, we conducted a joint HF Doppler/magnetometer experiment for two six-month intervals at a location near L = 1.8. The magnetic pulsations were best correlated with ionospheric oscillations from near the F region peak. The Doppler oscillations were in phase at two different altitudes, and their amplitude increased in proportion to the radio sounding frequency. The same results were obtained for the O- and X-mode radio signals. A surprising finding was a constant phase difference between the pulsations in the ionosphere and on the ground for all frequencies below the local field line resonance frequency, independent of season or local time. These observations have been compared with theoretical predictions of the amplitude and phase of ionospheric Doppler oscillations driven by downgoing Alfvén mode waves. Our results agree with these predictions at or very near the field line resonance frequency but not at other frequencies. We conclude that the majority of the observations, which are for pulsations below the resonant frequency, are associated with downgoing fast mode waves, and models of the wave-ionosphere interaction need to be modified accordingly.  相似文献   

2.
Atmospheric waves influence the dynamics and energetic budget of the upper atmosphere. Using the continuous HF Doppler sounder, we study the wave activity in the ionosphere during tropospheric convective storms in western and central part of the Czech Republic. The study is focused on acoustic-gravity waves in the period range 2–30 minutes. We discuss possible methods of distinguishing the waves emitted by meteorological sources from waves of different origin, particularly waves of geomagnetic origin. In two cases out of twenty-five analysed, we found waves in the infrasonic period range which might be generated by exceptionally intense meteorological activity in the troposphere. The results differ considerably from those previously obtained in North America. In the central part of the United States, infrasonic waves were frequently observed during convective storms. As a possible reason, we discuss different intensity and dynamics of weather systems in both regions.  相似文献   

3.
Acoustic waves have a remarkable ability to transfer energy from the ground up to the uppermost layers of the atmosphere. On the ground, there are many permanent sources of infrasound, and also pulsed and/or sporadic sources (e.g., sea waves, infrasonic and sonic noise of cities, lightning, earthquakes, explosions, etc.). The infrasonic waves carry away the major part of their energy upwards through the atmosphere. What are the consequences of the upward energy transfer? What heights of the atmosphere are supplied by energy from various sources of an infrasonic wave? In most cases, the answers to these questions are not well known at present. The only opportunity to monitor the propagation of an infrasonic wave to high altitudes is to watch for its influence on the ionospheric plasma. Unfortunately, most of standard equipment for ionospheric sounding, as a rule, cannot detect plasma fluctuations in the infrasonic range. Besides, the form of an infrasonic wave strongly varies during propagation due to nonlinear effects. However, the development of the Doppler method of radiosounding of the ionosphere has enabled progress to be made. Simultaneously, the ionospheric method for sensing aboveground and underground explosions has been developed. Its main advantage is the remote observation of an explosion in the near field zone by means of short radio waves, i.e., the radio sounding of the ionosphere directly above the explosion. The theory of propagation of an acoustic pulse produced by an explosion on the ground up to ionospheric heights has been developed better than the theory for other sources, and has been quantitatively confirmed by experiments. A review of some advances in the area of infrasound investigations at ionospheric heights is given and some current problems are presented.  相似文献   

4.
We present an analysis of phenomena observed by HF distance-diagnostic tools located in St. Petersburg combined with multi-instrument observation at Tromsø in the HF modified ionosphere during a magnetospheric substorm. The observed phenomena that occurred during the Tromsø heating experiment in the nightside auroral Es region of the ionosphere depend on the phase of substorm. The heating excited small-scale field-aligned irregularities in the E region responsible for field-aligned scattering of diagnostic HF waves. The equipment used in the experiment was sensitive to electron density irregularities with wavelengths 12–15 m across the geomagnetic field lines. Analysis of the Doppler measurement data shows the appearance of quasiperiodic variations with a Doppler frequency shift, fd and periods about 100–120 s during the heating cycle coinciding in time with the first substorm activation and initiation of the upward field-aligned currents. A relationship between wave variations in fd and magnetic pulsations in the Y-component of the geomagnetic field at Tromsø was detected. The analysis of the magnetic field variations from the IMAGE magnetometer stations shows that ULF waves occurred, not only at Tromsø, but in the adjacent area bounded by geographical latitudes from 70.5° to 68° and longitudes from 16° to 27°. It is suggested that the ULF observed can result from superposition of the natural and heater-induced ULF waves. During the substorm expansion a strong stimulated electromagnetic emission (SEE) at the third harmonic of the downshifted maximum frequency was found. It is believed that SEE is accompanied by excitation of the VLF waves penetrating into magneto-sphere and stimulating the precipitation of the energetic electrons (10–40 keV) of about 1-min duration. This is due to a cyclotron resonant interaction of natural precipitating electrons (1–10 keV) with heater-induced whistler waves in the magnetosphere. It is reasonable to suppose that a new substorm activation, exactly above Tromsø, was closely connected with the heater-induced precipitation of energetic electrons.  相似文献   

5.
利用日本GPS网探测2011年Tohoku海啸引发的电离层扰动   总被引:2,自引:1,他引:1       下载免费PDF全文
海平面的海啸波会产生大气重力波进而引发电离层扰动.本文利用日本GPS总电子含量数据来探测2011年3月11日Tohoku海啸引发的电离层扰动.观测结果表明,在日本上空的电离层中存在两种重力波信号,分别由海平面的海啸波以及地震破裂过程产生.地震产生的电离层重力波分布在震中周围(包括海洋上空以及远离海洋的区域),而海啸引发的电离层重力波主要分布在海洋上空.地震产生的电离层重力波具有不同的水平速度,包括约210 m·s-1以及170 m·s-1,其频率为1.5 mHz;而海啸引发的电离层重力波水平速度快于前者,约为280 m·s-1,其频率为1.0 mHz.此外,海啸引发电离层重力波与海平面上的海啸波有相似的水平速度、方向、运行时间、波形以及频率等传播特征.本文的研究将电离层中的海啸信号与地震信号区分开来,进一步确认电离层对海啸波的敏感性.  相似文献   

6.
We discuss the propagation of sounding radio waves in the inhomogeneous ionosphere, in the reflection area of which there are small-scale artificial magnetically-positioned irregularities. The propagation of radio waves in such an area, where the lateral dimensions of strongly elongated artificial irregularities are smaller than the wavelength, has a diffraction nature. It is shown that the calculation of diffraction parameters makes it possible to derive the amplitude of density irregularities and their relative area perpendicular to the magnetic field direction. Comparison of theoretical calculations with experimental studies on modification of the electron density altitude profile by heating of the ionosphere with midlatitude stand Sura showed that the relative area of the negative density perturbations can reach several percent.  相似文献   

7.
We detected a decrease in the intensity of microwave radiation at the atmospheric ozone line at a frequency of 110836.04 MHz during ionospheric modification by high-power HF radiowaves radiated by the Sura Ionospheric Heating Facility. The obtained experimental data allowed us to hypothesize that this effect was caused by the fact that mesospheric ozone was affected by internal gravity waves generated in the E region of the ionosphere during its high-power HF radiowave heating.  相似文献   

8.
Physical mechanisms of man-made influences on the magnetosphere   总被引:3,自引:0,他引:3  
Since the discovery of the Luxembourg effect in the 1930s, it is clear that man-made activities can perturb the ionosphere and the magnetosphere. The anthropogenic effects are mainly due to different kinds of waves coming from the Earth's surface. Acoustic-gravity waves are generated by large explosions, spacecraft launches, or flight of supersonic planes. Electromagnetic waves are active in different frequency ranges. Power line harmonic radiation which is radiated in the ELF range by electrical power systems can be observed over industrial areas. At VLF and HF, the ground-based transmitters used for communications or radio-navigation heat the ionosphere and change the natural parameters. A large variety of phenomena is observed: wave-particle interaction, precipitation of radiation belt electrons, parametric coupling of EM whistler waves, triggered emissions, frequency shift, and whistler spectrum broadening. This paper will review the different physical mechanisms which are relevant to such perturbations. The possibility of direct chemical pollution in the ionosphere due to gas releases is also discussed.  相似文献   

9.
The effect of ionospheric wind on the gravity wave propagation is studied. These waves arise in the ionosphere due to intensification of their sources near the Earth’s surface during enhanced seismic activity. The influence of the wind on these waves is connected with the Ampere’s force that produces the ion-drag force acting on the atmosphere. This results in the occurrence of the discrete wave spectrum the maximum of which increases in proportion to the numbers of the natural scale. Furthermore, these waves are amplified during propagation from the source region in the direction perpendicular to the wind direction. These peculiarities of the gravity waves can be used for monitoring of seismic activity based on the ionosphere sounding.  相似文献   

10.
Ultra low frequency (ULF) wave activity in the high-latitude ionosphere has been observed by a high frequency (HF) Doppler sounder located at Tromsø, Norway (69.71°N, 19.2°E geographic coordinates). A statistical study of the occurrence of these waves has been undertaken from data collected between 1979 and 1984. The diurnal, seasonal, solar cycle and geomagnetic activity variations in occurrence have been investigated. The findings demonstrate that the ability of the sounder to detect ULF wave signatures maximises at the equinoxes and that there is a peak in occurrence in the morning sector. The occurrence rate is fairly insensitive to changes associated with the solar cycle but increases with the level of geomagnetic activity. As a result, it has been possible to characterise the way in which prevailing ionospheric and magnetospheric conditions affect such observations of ULF waves.  相似文献   

11.
An analytical solution of direct and inverse problems arising in the study of the internal gravity waves (IGWs) dynamic via recording of the Doppler frequency shift, is presented. The direct problem is to determine the response of the Doppler shift to IGWs in the region of the radio wave reflection point; the inverse problem is the determination of IGW parameters from data on the Doppler frequency shift. Solutions were obtained in an approximation of the isothermal ionosphere for the heights of the F-region. They are presented in a form convenient for their practical use and can have a wide range of applications, including the detection of soliton-like wave structures in the F-region of the ionosphere.  相似文献   

12.
13.
There have been reports for many years that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes (EQs) attracts a lot of attention as a very promising candidate for short-term EQ prediction. In this review we present a possible use of VLF/LF (very low frequency (3–30 kHz)/low frequency (30–300 kHz)) radio sounding of seismo-ionospheric perturbations. In order to avoid the overlapping with my own previous reviews, we first show some pioneering results for the Kobe EQ and we try to present the latest results including the statistical evidence on the correlation between the VLF/LF propagation anomalies (ionospheric perturbations) and EQs (especially with large magnitude and with shallow depth), medium-distance (6-8 Mm) propagation anomalies, the fluctuation spectra of subionospheric VLF/LF data (the effect of atmospheric gravity waves, the effect of Earth's tides, etc.), and the mechanism of lithosphere-atmosphere-ionosphere coupling. Finally, we indicate the present situation of this kind of VLF/LF activities going on in different parts of the globe and we suggest the importance of international collaboration in this seismo-electromagnetic study.  相似文献   

14.
The experimental ionograms of the oblique-incidence sounding of the ionosphere, obtained on the St. Petersburg-Spitsbergen high-latitude HF radio path during the magnetically quiet period December 14–15, 2001, are compared with the model calculations of radiowave trajectories. For this purpose, the corresponding oblique-incidence ionograms are numerically synthesized using the technique based on the shooting method and the computer program for constructing HF radiowave trajectories. The three-dimensional electron density distribution, calculated using the mathematical model of the high-latitude ionosphere previously developed at the Polar Geophysical Institute (PGI), is used to model radio propagation. The numerical calculations make it possible mainly to explain the specific features of the experimental data on the oblique-incidence sounding of the ionosphere.  相似文献   

15.
The giant Tohoku-Oki earthquake of 11 March 2011 in offshore Japan did not only generate tsunami waves in the ocean but also infrasound (or acoustic–gravity) waves in the atmosphere. We identified ultra-long-period signals (>500 s) in the recordings of infrasound stations in northeast Asia, the northwest Pacific, and Alaska. Their source was found close to the earthquake epicenter. Therefore, we conclude that in general, infrasound observations after a large offshore earthquake are evidence that the surface and the floor of the sea have been significantly vertically displaced by the earthquake and that a tsunami must be expected. Since infrasound is traveling faster than the tsunami, such information may be used for tsunami early warnings.  相似文献   

16.
Various pre-seismic and co-seismic effects have been reported in the literature in the solid Earth, hydrosphere, atmosphere, electric/magnetic field and in the ionosphere. Some of the effects observed above the surface, particularly some of the pre-seismic effects, are still a matter of debate. Here we analyze the co-seismic effects of a relatively weak earthquake of 28 October 2008, which was a part of an earthquake swarm in the westernmost region of the Czech Republic. Special attention is paid to unique measurements of infrasonic phenomena. As far as we know, these have been the first infrasonic measurements during earthquake in the epicentre zone. Infrasonic oscillations (~1–12 Hz) in the epicentre region appear to be excited essentially by the vertical seismic oscillations. The observed oscillations are real epicentral infrasound not caused by seismic shaking of the instruments or by meteorological phenomena. Seismo-infrasonic oscillations observed 155 km apart from the epicentre were excited in situ by seismic waves. No earthquake-related infrasonic effects have been observed in the ionosphere. Necessity to make vibration tests of instruments is pointed out in order to be sure that observed effects are not effects of mechanical shaking of the instrument.  相似文献   

17.
Comparative studies of short-term ionospheric variability in the F region ionosphere during rapid sequence sounding campaign “HIRAC/SolarMax” (23–29 April 2001) are presented. The ionospheric short-term fluctuations have been studied in detail using measurements from vertical sounding at Ebro (40.8 °N, 0.5 ° E) and Průhonice (49.9 °N, 14.5 °E) in the period range from 15 minutes to 2 hours. The electron density measurements contain variations that indicate the possible presence of propagating gravity waves. Regular wave-like bursts were found during quiet days at both stations in electron concentration in F region, with an increase of the oscillation activity after sunrise and then during late afternoon, and at sunset and after sunset. Solar Terminator is assumed to be one of the sources of the regular wave bursts detected in the ionosphere during campaign HIRAC. As expected, substantial intensification in longer period gravity waves was found to occur during the disturbed period on April 28. Particular enhancement of the wave-like activity during disturbed day is discussed, being significant evidences of a change of the wave-like activity pattern at a height around 200 km.  相似文献   

18.
利用射线追踪研究电离层扰动   总被引:8,自引:1,他引:7       下载免费PDF全文
基于返回散射探测的电离层扰动电离图,本文建立了一个新的对称的准余弦电离层扰动数学模型.基于这种模型,利用HF射线追踪技术合成了HF电离层返回散射电离图,并利用迭代的技术拟合了高频返回散射设备探测的电离层扰动电离图的Pmin-f曲线(Pmin为最小时延,f为工作频率),从而推断了沿探测路径电离层扰动区域的位置及大小,扰动的临界频率波动的幅度.最后基于这种电离层扰动模型,利用射线追踪技术描述了不同电离层扰动参数下的电波传播情况,研究了其天波传播的跳距、覆盖区域的大小及射线“俘获”等.  相似文献   

19.
电离层人工调制可以激发甚低频(VLF)波,其中向上传播进入磁层的VLF波,不但能够用来研究磁层中的各种物理现象,且具有人工沉降高能粒子,消除辐射带等实际用途.本文使用射线追踪方法,模拟电离层调制激发的VLF波在磁层的传播路径,分析激发纬度和调制频率对传播路径和传播特性的影响;并基于低频波的色散方程和波粒共振条件,分析VLF波传播路径上与磁层高能粒子的最低共振能及其分布.研究表明,VLF波通过在磁层来回反射向更高的L-shell传播,最终稳定在某一L-shell附近.以较低的调制频率或者从较高的纬度激发的VLF波能够传播到更高的L-shell,但是,当激发纬度过高时,低频波也可能不发生磁层反射而直接进入电离层和大气层.低频波在磁层的传播过程中,在较高的纬度或者较低的L-shell能够与较高能量的电子发生共振相互作用,在较高的L-shell并且低纬地区,能够与较低能量的电子发生共振相互作用.共振谐数越高,能发生波粒共振的电子能量越高.  相似文献   

20.
用数字测高仪漂移测量研究电离层声重波扰动   总被引:8,自引:1,他引:8  
数字测高仪Digisonde中的漂移测量,常用来研究小尺度电离层扰动,如电离层小不均匀体的漂移。文中提出一种新的分析方法,利用漂移测量数据中多普勒频移和到达角参量的最大熵动态功率谱,估算声重波一类大尺度电离层扰动的水平传播速度和传播方向。作为实例,研究了Millstone Hill测高仪站的漂移观测资料,并对处理结果进行了初步分析。分析结果表明,从数字测高仪漂移测量数据中,可有效地提取声重波一类大尺度电离层扰动的传播参量,在电离层动力过程的研究中很有意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号