首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on statistical data and a detailed analysis of geomagnetic response to the hard electromagnetic radiation of the X17 solar flare of September 7, 2005, we considered spatial features of current systems producing the geomagnetic solar flare effect (SFE). During flares accompanied by intensive X-rays and gamma rays, SFEs are shown to be observed globally, including the night hemisphere and high latitudes. Cause-effect relations of phenomena under consideration are discussed.  相似文献   

2.
南极中山站电离层的极区特征   总被引:9,自引:1,他引:8       下载免费PDF全文
本文利用1996年的电离层数字测高仪DPS-4所测的f0F2、f0E以及美国NOAA和DMSP卫星观测估算的半球功率指数和午夜极光区赤道侧边界纬度等资料,考察中山站电离层的极区特征。结果表明,在太阳和地磁宁静环境下,冬季极夜磁正午中山站处于极隙区中心时,电离层内的电离密度达全天的最大值;上、下午各有数小时间隔位极光带内时,高能粒子的电离作用也很重要;夜间进入极差区后,电子密度则很低。夏季极昼时,太阳EUV辐射的电离效应使电离层电离密度比冬季值大许多,而且,日变化的最大值时间也提前了1~2h,强磁扰时,极隙区和极光带均向低纬侧移动;中山站上空的电子密度会大幅度下降。在中等扰动环境下情况要加复杂:磁正午前后极隙区内软粒子沉降的电离强度有所减小,而上、下午极光区的高能粒子电离则有较大增加。  相似文献   

3.
中国西南区域孕震区电离层TEC变化长时间序列分析   总被引:2,自引:1,他引:1       下载免费PDF全文
通过中国地壳运动网络提供的GPS观测数据,获取了高精度电离层TEC分布,采用滑动四分位法分析了中国西南区域2008年4—10月(太阳和地磁活动平静时段)6次连续的MW6.0以上地震期间孕震区电离层TEC长时间变化及其异常分布;并在此基础上利用GIM数据对比分析了全球TEC变化特征。鉴于电离层主要受到太阳和地磁等空间天气的影响,将TEC变化与太阳EUV辐射、行星际磁场南向分量IMF Bz以及地磁活动指数Dst和Kp进行了比较。结果发现,该时段内电离层TEC异常扰动与太阳和地磁活动有很好的相关性;除汶川地震外,其他地震前没有发现明显的跟地震相关的TEC异常扰动现象。同时,对比分析了与上述研究区位于同一地磁纬度的"检验区"(30°~50°E,15°~35°N)的GPS TEC随时间变化和异常分布情况,结果显示TEC异常分布的时空特征与研究区域较为一致。由于电离层是一个复杂的系统,其扰动具有多源性,而且地震电离层扰动现象是复杂多变的,因此需要联合地基和天基手段共同观测,并加强其机理研究。  相似文献   

4.
高纬电离层特性的实例研究   总被引:1,自引:0,他引:1  
本文利用EISCAT雷达资料讨论磁层-电离层耦合的高纬电离层效应。研究表明,即使在夏季极昼情况下,磁扰期间的磁层过程对高纬电离层形态的影响也远大于太阳紫外辐射的作用。高能粒子沉降使电离层E层的电子密度大大增加;而磁层对流速度变大会使F层内电离复合加强。因而,磁扰时经常出现ne(E层)>e(F层)的情况。此现象不仅与宁静时完全相反,而且与中低纬电离层形态变化也有很大差别。  相似文献   

5.
2001年4月2日, 太阳爆发了一个近年来X射线通量最大的一次耀斑并伴有质子事件, 利用“资源一号”卫星星内粒子探测器和神舟二号飞船X射线探测器的观测资料, 对这一事件的高能粒子响应进行了特例研究. “资源一号”卫星运行于太阳同步轨道, 高度约800km, 和宁静时期的统计结果对比, 这次耀斑后, 星内粒子探测器在地球极盖区(地球开磁场区)观测到耀斑粒子的出现, 这是宁静时期没有的; 神舟二号飞船轨道高度400km, 倾角为42°, X射线探测器在42°中高纬地区也观测到高能电子通量比宁静时明显的增加, 这表明, 太阳耀斑引起的近地空间辐射环境的变化遍及纬度约40°以上的区域, 甚至在40°N附近400 km左右的高度上仍然有响应. 但是, 中高纬度、极光带和极盖区的粒子来源, 加速机制和响应方式却不一定相同, 需要分别讨论. 资料分析和对比还表明, 质子事件的强度并不一定和耀斑的X射线通量成正比, 因此, 近地空间高能粒子对耀斑的响应也不是完全决定于X射线强度.  相似文献   

6.
The main factors controlling NmF2 longitudinal variations at mid- and subauroral latitudes have been studied. The data of the Intercosmos-19 topside sounding, obtained at high solar activity for summer nighttime conditions, have been used in the analysis. The contributions of the solar ionization, neutral wind, and temperature and composition of the thermosphere to NmF2 longitudinal variations have been estimated based on ionospheric models. It has been indicated that NmF2 variations in the unsunlit midlatitude ionosphere mainly depends on the residual electron density and its decay under the action of recombination. At subauroral latitudes under summer nighttime conditions, the ionosphere is partially sunlit, and ionization by solar radiation mainly contributes to NmF2 longitudinal variations, whereas the effect of the neutral wind is slightly less significant. These results also indicate how the contribution of different factors to NmF2 longitudinal variations changes at different latitudes.  相似文献   

7.
An interpretation of the nature of the sudden ionospheric disturbance in terms of response to X-ray flux enhancement in the band 1–20 Å has been made by many authors. Last decades investigations revealed presence of important qualitative distinctions in spatially temporal pattern of geomagnetic response to solar flares featuring harder radiation spectra (with quanta energies above 100 keV). These distinctions can not be adequately described by classical theory implying ionization growing on E and D ionosperic layers and intensification of Sq-current system. In this respect, solar flare on 4 November 2003 characterizing by existence of two separate (time lag ~45 min) spectral maximums in X-rays range (average quantum energy <100 keV) and in γ-rays range (average quantum energy >100 keV), represents convenient proving ground for study of specifics the geomagnetic response to bursts marked by different hardness. In current article, we show that this flare has a number of unusual features including specific variation of accompanying current system and magnetospheric manifestation that is observed in trapped radiation fluxes and magnetic field on geosynchronous orbit. Possible physical mechanism leading to intensification of magnetospheric–ionospheric current system is discussed.  相似文献   

8.
本文在偶极子地磁模型和各种电离密度分布模型中,对中低纬非导管哨声波的传播特性进行了射线追踪研究。结果表明,地磁场位形及其引起的磁层等离子体的各向异性是决定哨声射线几何特征及速度结构的主要因素,而电离密度仅在一定程度上改变上述特征;电离层是形成哨声射线聚焦的主要原因;赤道异常和电离层显著地影响哨声波的到达纬度;哨声群时延和色散值主要决定于电离密度;中低纬非导管哨声近似符合Eckersley定律;电离层是决定波法线角能否满足透射条件的主要因素。  相似文献   

9.
本文利用1991年度南极中山站的地磁资料,分析研究极夜(5、6、7月)及极昼(11、12月)期间S、SD的变化特征。研究结果表明,H、D、Z三个分量的S、SD在极夜期间的变化幅度都小于极昼期间的变化幅度,S在世界时UT6时左右出现极值。这是由于在5、6、7月的太阳直射点在北半球,太阳紫外辐射和X射线辐射减少,在11、12月太阳的直射点在南半球,太阳紫外线和X射线辐射增大,致使空间电高层等效电流发生变化所产生。  相似文献   

10.
本文利用SWARM A和C双星高精度的矢量磁场数据研究了不同季节高纬地区场向电流(FACs)随地磁经度和地方时的变化情况.研究发现:在南北半球,FACs存在明显的经度变化,南半球FACs的变化强度大约是北半球的1.2~3.2倍.利用潮汐谱分析法我们发现FACs中占主导的非迁移潮汐分量为DW2和D0.在春秋和夏季半球,DW2波更为明显.D0波可用太阳光照的经度变化来解释,向阳侧靠近磁极的经度带比远离磁极的经度带有更强的太阳光照射.DW2波则与地磁场强度和地磁倾角等因素有关.全球电离层与热层模型计算的FACs中D0波占主导,且中性风和对流电场对D0波的贡献几乎相当.  相似文献   

11.
In this paper, we present analyses of the great geomagnetic storms observed during last two cycles of solar activity. This study is based on data from a network of ionosondes located within the longitudinal sector of 80–150°Е. it was found that the superstorms were observed predominantly in equinox. Long-lasting severe decreases of ionization at high and middle latitudes were the most impressive storm effect. A short-time positive phase occurred in response to the onset of both ssc and recovery phases of the magnetic storm in the daytime at high and middle latitudes. Large time-varying rates of foF2 were observed at low latitudes. Modeling results of the ionospheric response to two superstorms are also presented. It is established that the storm effect at middle latitudes was controlled predominantly by disturbed thermospheric composition. At high latitudes, the impact of magnetospheric processes and thermospheric composition on the ionosphere was the same.  相似文献   

12.
Our previous quantitative analyses have shown that geomagnetic activity and planetary ion density of the F2 layer of the ionosphere seem to share the same parent cause, the solar wind, whose entry into geospace is controlled by the Sun–Earth geometry. The thrust of this paper is four fold: (a) to establish the reality of this not clearly recognized connection, (b) to demonstrate that geomagnetic activity varies seasonally with three separate and independent components, viz. a semiannual, an annual and a Sun–Earth-distance determined component, all of which can be accurately derived from solar–terrestrial geometry alone, (c) to evaluate the contribution of each of these components which, taken together, appear to represent the steady-state signatures of the mechanism of magnetopause reconnection, and (d) to highlight the fact that the currently used planetary geomagnetic indices are deficient and therefore need to be revised. Since detailed understanding of the precise mechanism of the entry of solar wind energy into geospace is still lacking, no mechanism is suggested to show how solar wind energy is transported to the F2 layer (including low and equatorial latitudes). Magnetospheric electric fields, precipitation of energetic neutrals produced through charge exchange reactions with ions in the ring current and radiation belt particles, Joule heating, etc., may all be involved, but the energy for all such processes still comes from the solar wind. Apart from the three components of the reconnection mechanism mentioned above, a steady component due to the viscous interaction mechanism should also be present.  相似文献   

13.
Schumann resonances (SR) are the electromagnetic oscillations of the spherical cavity bounded by the electrically conductive Earth and the conductive but dissipative lower ionosphere (Schumann in Z Naturforsch A 7:6627–6628, 1952). Energetic emissions from the Sun can exert a varied influence on the various parameters of the Earth’s SR: modal frequencies, amplitudes and dissipation parameters. The SR response at multiple receiving stations is considered for two extraordinary solar events from Solar Cycle 23: the Bastille Day event (July 14, 2000) and the Halloween event (October/November 2003). Distinct differences are noted in the ionospheric depths of penetration for X-radiation and solar protons with correspondingly distinct signs of the frequency response. The preferential impact of the protons in the magnetically unshielded polar regions leads to a marked anisotropic frequency response in the two magnetic field components. The general immunity of SR amplitudes to these extreme external perturbations serves to remind us that the amplitude parameter is largely controlled by lightning activity within the Earth–ionosphere cavity.  相似文献   

14.
我国中低纬度地区Sq焦点的分析与研究   总被引:1,自引:0,他引:1  
本文利用1988年3月-1989年3月几次大的太阳活动期间我国9个台站的地磁资料,采用无穷大平板电流的等效电流体系方法,分析了我国中低纬度地区Sq焦点位置的变化特征,并对照KpDst,Ap等指数给出了Sq焦点位置变化的合理解释。结构表明:(1)在不同的Kp指数段Sq焦点有不同的规律性,当Kp<4时,随着Kp指数增大,Sq焦点向高纬方向移动;当Kp在4和6之间时,随着Kp指数增大,Sq焦点向低纬方向  相似文献   

15.
延续2008-2009年的太阳极低活动期,第24太阳活动周开始后太阳活动性上升缓慢,即使在趋近峰年时太阳极紫外(EUV)辐射通量的水平仍显著低于前几个活动周.比较第23、24周的太阳辐射水平,及日本国分寺和子午工程武汉站的电离层测高仪观测,发现第24周的太阳EUV辐射、电离层F区临界频率(foF2)和峰值高度(hmF2)都显著低于第23周的同期水平;在较低高度上,偏低的EUV辐射带来的电子密度变化不明显,而峰值电子密度(NmF2)和0.1~50 nm太阳EUV辐射通量在多数时候都同步的偏低25%~50%;但是在夏季NmF2与EUV辐射的关联性较差,即NmF2的偏低在夏季较少.分析认为这与热层中性风的季节特点有关:在夏季午后,吹向极区的子午向风总是较弱,在第24周偏低的EUV辐射背景下,减弱的离子曳力使其他季节的极区向风得到增强,进一步促进了NmF2和hmF2的降低,使这一机制的效果非常显著.基于上述结论,在对第24周电离层进行预测预报时,需更多地考虑非直接电离机制的影响.总体而言,第24周的热层和电离层变化特征可能将有别于之前几个活动周的观测,并偏离人们在此基础上所形成的认识.  相似文献   

16.
This paper studies the ionospheric and geomagnetic response to an X6.2 solar flare recorded at 14:30 UT on December 13, 2001, in quiet geomagnetic conditions which allow the variations in the geomagnetic field and ionosphere measurements to be easily related to the solar flare radiation.By using measurements from the global positioning system (GPS) and geomagnetic observatories, the temporal evolution of ionospheric total electron content variation, vTECV, and geomagnetic field variations, δB, as well as their rates of variation, were obtained around the subsolar point at different solar zenith angles. The enhancement of both parameters was recorded one to three minutes later than the Geostationary Operational Environmental Satellite (GOES) programme recording; such delay tends to depend on the latitude, longitude, and solar zenith angle of the observatory's observations.The vTECV is related to the local time and the δB to the intensity and position of the ionospheric currents.The vTECV′s maximum value is always recorded later than the maximum values reached by δB and the X-ray intensity. The maximum δB is larger in the local morning than in the afternoon.The rates of vTECV and δB have two maximum values at the same time as the maximum values recorded by Hα (for each ribbon).This work shows the quantitative and qualitative relations between a solar flare and the ionospheric and geomagnetic variations that it produces.  相似文献   

17.
One way to investigate the magnetosphere–ionosphere coupling is through the simultaneous observation of different parameters measured at different locations of the geospace environment and try to determine some relationships among them. The main objective of this work is to examine how the solar energetic particles and the interplanetary medium conditions may affect the space and time configuration of the ring current at low-latitudes and also to get a better understanding on how these particles interfere with the lower ionosphere in the South Atlantic Magnetic Anomaly region (SAMA). To accomplish this, the cosmic noise absorption (CNA) and the horizontal component of the Earth's magnetic field data measured from sites located in the SAMA region were compared with the proton and electron fluxes, interplanetary medium conditions (solar wind and the north–south component of the interplanetary magnetic field measured on board satellites), the SYM-H index and magnetometer data from Kakioka (KAK-Japan), located significantly outside the SAMA region. The time series analyzed correspond to the geomagnetic disturbance that occurred on August 25–30, 1998. The analysis was performed by implementing wavelet techniques, with particular attention to singularities detection, which highlights the presence of transient signals. The results are discussed in terms of the first three wavelet decomposition levels of the parameters. The magnitude of wavelet coefficients of the solar wind and proton flux at the two energy ranges analyzed is timely well correlated, indicating that these two signals are energetically linked. The larger wavelet coefficient amplitude of KAK and VSS magnetograms shows time delays that are compatible with an asymmetric configuration of the ring current, considering that at the storm time, VSS was at the dawn sector of the magnetosphere and KAK at the dusk side. The wavelet analysis of CNA signals reveals that the signal may be sensitive to the ionization produced by energetic electrons and protons as well. The time delays observed in wavelet coefficients may give an indication of the different accelerating process to which the particles are submitted when traveling along the magnetic field lines, from higher to lower latitudes, and the likely contribution of these particles to the ionization measured as an absorption of the cosmic noise in the lower ionosphere.  相似文献   

18.
In this paper it is attempted to evaluate the relative importance of Lyman , EUV, solar X-rays and the secondary cosmic rays in producing ionization in the D-region below 90 km. The resulting ionization is studied in reference to its variations with the solar zenith angle and the solar activity. The currently available absorption and ionization cross-sections and the radiation fluxes have been used. The computed production rates and the currently accepted positive and negative ion reaction schemes are used to compute the positive and negative ion composition. The resulting electron density profiles are compared with the rocket and the theoretical profiles obtained by other workers. The agreement with the rocket results (Mechtly and Smith) appears to be satisfactory whereas the theoretical profiles given by others differ considerably below 70 and 80 km respectively for the solar minimum and maximum conditions.  相似文献   

19.
Changes in the three components of geomagnetic field are reported at the chain of ten geomagnetic observatories in India during an intense solar crochet that occurred at 1311 h 75° EMT on 15 June 1991 and the subsequent sudden commencement (SSC) of geomagnetic storm at 1518h on 17 June 1991. The solar flare effects (SFE) registered on the magnetograms appear to be an augmentation of the ionospheric current system existing at the start time of the flare. An equatorial enhancement in AH due to SFE is observed to be similar in nature to the latitudinal variation of SQ (H) at low latitude. AF registered the largest effect at 3.6° dip latitude at the fringe region of the electrojet. AZ had positive amplitudes at the equatorial stations and negative at stations north of Hyderabad. The SSC amplitude in the H component is fairly constant with latitude, whereas the Z component again showed larger positive excursions at stations within the electrojet belt. These results are discussed in terms of possible currents of internal and external origin. The changes in the Y field strongly support the idea that meridional current at an equatorial electrojet station flows in the ionospheric dynamo, E.Presently at: School of Physics, University of New South Wales, Sydney, Australia  相似文献   

20.
In this paper, we investigate the solar flare effects of the ionosphere at middle latitude with a one-dimensional ionosphere theoretical model. The measurements of solar irradiance from the SOHO/Solar EUV Monitor (SEM) and GOES satellites have been used to construct a simple time-dependent solar flare spectrum model, which serves as the irradiance spectrum during solar flares. The model calculations show that the ionospheric responses to solar flares are largely related to the solar zenith angle. During the daytime most of the relative increases in electron density occur at an altitude lower than 300 km, with a peak at about 115 km, whereas around sunrise and sunset the strongest ionospheric responses occur at much higher altitudes (e.g. 210 km for a summer flare). The ionospheric responses to flares in equinox and winter show an obvious asymmetry to local midday with a relative increase in total electron content (TEC) in the morning larger than that in the afternoon. The flare-induced TEC enhancement increases slowly around sunrise and reaches a peak at about 60 min after the flare onset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号