首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rayleigh lidar observations at Gadanki (13.5°N, 79.2°E) show an enhancement of the nightly mean temperature by 10–15 K at altitudes 70–80 km and of gravity wave potential energy at 60–70 km during the 2009 major stratospheric warming event. An enhanced quasi-16-day wave activity is observed at 50–70 km in the wavelet spectrum of TIMED–SABER temperatures, possibly due to the absence of a critical level in the low-latitude stratosphere because of less westward winds caused by this warming event. The observed low-latitude mesospheric warming could be due to wave breaking, as waves are damped at 80 km.  相似文献   

2.
The paper is focused on the global spatial structure, seasonal and interannual variability of the ~5-day Rossby (W1) and ~6-day Kelvin (E1) waves derived from the SABER/TIMED temperature measurements for 6 full years (January 2002–December 2007). The latitude structure of the ~5-day W1 wave is related to the gravest symmetric wave number 1 Rossby wave. The vertical structure of the ~5-day Rossby wave amplitude consists of double-peaked maxima centred at ~80–90 km and ~105–110 km. This wave has a vertically propagating phase structure from the stratosphere up to 120 km altitude with a mean vertical wavelength of ~50–60 km. The ~6-day E1 wave is an equatorially trapped wave symmetric about the equator and located between 20°N and 20°S. Its seasonal behaviour indicates some equinoctial and June solstice amplifications, while the vertical phase structure indicates that this is a vertically propagating wave between 20–100 km altitudes with a mean vertical wavelength of ~25 km.  相似文献   

3.
This paper analyzes variations of vertical velocity w simulated by the 1/10° Ocean General Circulation Model for the Earth Simulator (OFES). Strong w-variability is found in the deep oceans. When w is WKBJ-normalized, the standard deviation averaged over the Southern Ocean increases with depth and is larger than 8 × 10 − 3 cm/s throughout the water column below 1,500 m. Evidences are presented that link this w-variability to internal waves generated by quasi-steady currents over topography. The aliasing errors in lag-3-day correlations suggest a bottom generation of near-inertial waves. A scale analysis indicates that vertically propagating waves that can be resolved by the OFES model are waves with frequencies of the order of inertial frequency and wavelengths comparable to the order of the grid size. The vertical energy flux associated with these waves is substantial. When integrated globally, the vertical energy flux is upward in the upper 4 km and reaches maximum values of about 0.8 TW at about 1 to 2 km depth. Thus, the w-variability in the 1/10° OFES integration points not only to a strong bottom generation of near-inertial internal waves in the deep Southern Ocean but also to the possibility that the power provided by internal waves generated by non-tidal currents over topography can be comparable to the power provided by internal waves generated by tidal flows over topography.  相似文献   

4.
Measurements of the hydroxyl rotational temperatures at about 87 km altitude above Wuppertal (51.3°N, 7.2°E), Germany, are analysed. The time series covers the time interval from 1987 until 2005 and consists of more than 4000 night mean temperature data. Seasonal and longer-term trends are removed from the data set and OH* temperature fluctuations on temporal scales of about 3–40 days are derived. Various spectral analysis techniques (harmonic analysis, maximum entropy method and wavelet transform) are applied. Can – due to the Sun's rotation – the irregular pattern of sunspots on the solar disc lead to OH* temperature fluctuations? Pronounced spectral components in the OH* temperature fluctuations around a period from 27 to 31 days are frequently observed. We tentatively attribute these signatures to the differential rotation of the Sun: Sun's equatorial regions rotate faster (taking only about 27 days) than the polar regions. Sunspots occur at heliographic latitudes at about ±40°, which correspond to a rotation rate of about 27–31 days. The OH* temperature fluctuations within this period range show a long-term modulation of 11 years. Thus, tracking the spectral intensity of the 27- to 31-day component should allow the indirect monitoring of the solar sunspot cycle.  相似文献   

5.
On 9 October 2007, long-horizontal-wavelength gravity waves were observed for the first time to steepen and form mesospheric bores at the altitude of ~87 km, by an all-sky OH imager located at Fort Collins (41°N, 105°W), Colorado. The collocated sodium lidar simultaneously observed the presence of a temperature inversion layer as the ducting region. One mesospheric bore uniquely later evolved into a large-amplitude soliton-like perturbation. When the gravity wave and the associated soliton-like perturbation passed through the lidar beams, the lidar detected strong vertical disturbance at 90 km, indicating convective instability. A large cold front system recorded several hours before in the troposphere was aligned to phase fronts of these large gravity waves. For all of the 7 mesospheric bores observed over a 5 year period, we found a similar alignment with a cold front 1000–1500 km away as the likely source of these large-scale gravity waves.  相似文献   

6.
Analyses of hourly values of zonal and meridional wind near 95 km observed by meteor radar at Yambol (42.5°N, 26.6°E) during January 1991–June 1992 indicate the presence of planetary waves with prevailing periods of 1.5–2.5, 4–6, 9–10 and 16–18 days. About 20% of the whole power of atmospheric motions is connected with these waves, so they play an important role in the dynamics of the mesosphere-lower thermosphere (MLT) region. By dynamic spectral analysis applied to the hourly neutral wind and to the calculated hourly values of tidal amplitudes it has been demonstrated that there is considerable modulation of tidal amplitudes by planetary waves in the neutral wind, as this process is better expressed in the semidiurnal tides. The nonlinear interaction between tides and planetary waves is studied by bispectral analysis. The results of these analyses indicate again that the nonlinear interactions between semidiurnal tides and planetary waves with periods 2–20 days are stronger than those of the diurnal tides and planetary waves. A peculiar feature of dynamics in the MLT region above Bulgaria is the presence of strong oscillations with periods of 20 and 30 h, which indicate significant nonlinear coupling between them.  相似文献   

7.
Part 2 of the present paper is focused on the planetary wave coupling from the stratosphere to the lower thermosphere (30–120 km) during the Arctic winter of 2003/2004. The planetary waves seen in the TIMED/SABER temperature data in the latitudinal range 50°N–50°S are studied in detail. The altitude and latitude structures of the planetary wave (stationary and travelling) clearly indicate that the stratosphere and mesosphere (30–90 km) are coupled by direct vertical propagation of the planetary waves, while the lower thermosphere (above 90–95 km altitude) is only partly connected with the lower levels probably indirectly through in-situ generation of disturbances by the dissipation and breaking of gravity waves filtered by lower atmospheric planetary waves. A peculiar feature of the thermal regime in the lower thermosphere is that it is dominated by zonally symmetric planetary waves.  相似文献   

8.
The Millstone Hill incoherent scatter radar (42.6°N, 71.5°W) and the nearby Durham meteor wind radar (43.1°N, 70.9°W) have been used to study the structure of the winds in the mesosphere and lower thermosphere and to investigate the propagation of tidal components from the mesosphere into the lower thermosphere. In general, good agreement is found between the tidal wind amplitudes and phases determined by the two radars, but occasionally, some discontinuities have been observed in the vertical structure of the tidal components in the 90–110 km region. In order to validate the accuracy of the two techniques and the methodologies used in determining neutral winds, two common-volume experiments were conducted in 1996 and 1997 in which the two radar beams were overlayed at an altitude of 100 km. The horizontal components of the measured radar line-of-sight velocities during day-time periods were then compared at the overlapping altitudes of 95–100 km. Night-time measurements were also made using a Fabry–Perot Interferometer co-located with the radar at Millstone Hill which observed the Doppler shift of the atomic oxygen green line emission in the mesosphere. Good overall agreement is found between the instruments within the statistical uncertainties of the measurement techniques, although some differences have been found that are explained by consideration of the data statistics, the exact overlap of common volume within the different beam sizes, and the presence of altitude gradients and small scale irregularities in the sampled volumes of the atmosphere.  相似文献   

9.
临近空间大气扰动变化特性的定量研究   总被引:9,自引:0,他引:9       下载免费PDF全文
本文利用TIMED/SABER 2002年1月至2013年1月共11年的卫星温度探测数据,通过全球网格化及在网格内作数学统计的方法,得到了20~100km高度上全球网格点上温度的平均值和标准差,实现了对临近空间全球大气扰动进行定量刻画的目的.通过定量分析温度标准差的分布特性,文中得到了临近空间大气扰动的全球分布规律,并讨论了与这些分布规律相关的物理过程.结果表明,在20~70km高度上,温度标准差为1~10K,有显著的冬季/夏季的差异,冬季的温度标准差比夏季大;大气重力波扰动是最主要来源,同时大气传播性行星波引起的扰动也是来源之一.在70~100km高度上,温度标准差常年较强,量值为10~30K,冬季/夏季的差异小,低纬地区的温度标准差高于中高纬度地区,呈现许多局地化的小结构.大气重力波是引起该区域大气总扰动量的主要扰动来源,大气潮汐波、传播性行星波(准2天、准6.5天)也有重要贡献.  相似文献   

10.
An inter-hemispheric asymmetry is found in the characteristics of polar mesosphere summer echoes (PMSE) and upper mesosphere temperatures at conjugate latitudes (~69°) above Antarctica and the Arctic. The second complete mesosphere–stratosphere–troposphere (MST) radar summer observation season at Davis (68.6°S) revealed that PMSE occur less frequently, with lower strength and on average 1 km higher compared with their northern counterparts at Andenes (69.3°N). We consider the thermodynamic state of the mesosphere for conjoining hemispheric summers based on satellite and ground-based radar measurements, and show the mesopause region near ~80–87 km of the Southern Hemisphere (SH) to be up to 7.5 K warmer than its Northern Hemisphere (NH) counterpart. We show that this is consistent with our observation of asymmetries in the characteristics of PMSE and demonstrate how the mesosphere meridional wind field influences the existence and strength of the echoes in both hemispheres.  相似文献   

11.
The analyzed amplitude and phase variations in electromagnetic VLF and LF signals at 20–45 kHz, received in Moscow, Graz (Austria), and Sheffield (UK) during the total solar eclipse of March 20, 2015, are considered. The 22 analyzed paths have lengths of 200—6100 km, are differently oriented, and cross 40–100% occultation regions. Fifteen paths crossed the region where the occultation varied from 40 to 90%. Solar eclipse effects were found only on one of these paths in the signal phase (–50°). Four long paths crossed the 90–100% occultation region, and signal amplitude and phase anomalies were detected for all four paths. Negative phase anomalies varied from–75° to–90°, and the amplitude anomalies were both positive and negative and were not larger than 5 dB. It was shown that the effective height of the ionosphere varied from 6.5 to 11 km during the eclipse.  相似文献   

12.
Semidiurnal tidal features have been examined in the Mesosphere and Lower Thermosphere (MLT) from the long-term (2002–2007) meteor wind data over Maui (20.75°N, 156.43°W). Amplitude and phase obtained from the harmonic analysis exhibit large day to day variability. Mean amplitude obtained from the monthly mean data over the observation period is found to vary within ~8–28 m/s and 10–32 m/s for the zonal and meridional winds, respectively. The amplitude has revealed clear semiannual oscillation (SAO) pattern with maxima during solstices and altitudinal growth in both wind components. Significant resemblance in its variability with other observations carried out from the low latitude sites all over the globe is obtained. Vertical wavelength estimated from the phase gradients exposes large values (>90 km) in all seasons. Contribution of the semidiurnal tide to the total tidal variability in the MLT is found to vary over wide range throughout the year with generally higher influence during winter season over diurnal and terdiurnal components.  相似文献   

13.
Seismic techniques provide unique tools to investigate the structure and, in combination with petrological, geochemical and petrophysical study, the composition of the lower crust. Controversies can be solved with comparative study of metamorphic terrains or xenoliths that occur adjacent to areas where seismic refraction/reflection data are available. Xenoliths represent a direct sampling of the inaccessible lower crust at the time of the volcanism, whilst exposed crustal sections can only be used as analogue of present day lower crust.The present study is focused on the measurements of compressional wave velocities up to conditions exceeding the beginning of melting (950 °C at 500 MPa confining pressure) on three garnet–biotite–sillimanite metapelitic xenoliths recovered from the Neogene dacites of El Hoyazo (SE Spain). They preserve widespread interstitial rhyolitic glass as evidence of primary melt extraction and represent the best example of partially molten lower crust in the Alborán Domain. The influence of glass on Vp is primarily reflected by anomalous positive dVp/dT while heating with velocity increasing at 500 MPa from 4.98 to 5.50 km s 1 at room temperature to 5.85–6.79 km s 1 at 650–700 °C. This corresponds to the glass transition where all the grain boundaries and most of the pores within the glass are closed. After this point, the velocity decreases to 6.2–6.5 km s 1 at 950 °C where re-melting of the glass is achieved and additional partial melt produced. On cooling, the behavior is normal with negative dVp/dT. After the thermal treatment velocities are 30% higher (6.07–7.21 km s 1) and reveal that in the presence of intergranular melt velocity measurements at room temperature cannot be extrapolated to high temperatures.P-waves measured at melting conditions are in agreement with deep seismic refraction data and tomography in the area and corroborate the hypothesis that partial melts are actually present in Alborán lower crust.  相似文献   

14.
Among 2187 nights of airglow observations of the OH(6-2) and O2b(0-1) bands from Argentina (mainly from El Leoncito, 32°S 69°W), 132 show airglow brightness jumps (ABJs) of short duration (16 min median). ABJs are supposed to be related to mesospheric bores or similar nonlinear waves. Several occurrence patterns were identified, which a successful explanation must take into account. ABJs occur preferably in the OH layer at 87 km, and are less likely in the O2 layer at 95 km, maybe because ducts prefer lower altitudes. The seasonal distribution of nights when ABJs are observed only in the OH layer clearly shows a winter maximum centered around solstice, and equinox minima. In contrast, the seasonal distribution of ABJ nights in O2 is flat. Most ABJs simultaneously present in OH and O2 show anticorrelated variation between both layers. ABJ nights tend to occur in clusters lasting several days, which probably reflects duct lifetime.  相似文献   

15.
Centroid depth of earthquakes is essential for seismic hazard mitigation. But, various studies provided different solutions for the centroid depth of the damaging 2013 Lushan earthquake, thus hindering further studies of the earthquake processes. To resolve its centroid depth and assess the uncertainties, we apply the teleseismic cut and paste method to invert for centroid depth with teleseismic body waves in the epicentral distance of 30°–90°. We performed the inversion for P waves only as well the case of both P and SH waves and found that both cases lead to depth solutions with difference less than 0.5 km. We also investigated the effects on depth inversion from azimuth gap of seismic stations, source duration, and corner frequency of filter. These various tests show that even azimuthal distribution of seismic stations is helpful for accurate depth inversion. It is also found that estimate of centroid depth is sensitive to source duration. Moreover, the depth is biased to larger values when corner frequency of low-pass filter is very low. The uncertainty in the velocity model can also generate some error in the depth estimation (~1.0 km).With all the above factors considered, the centroid depth of Lushan earthquake is proposed to be around 12 km, with uncertainty about 2 km.  相似文献   

16.
Comparative studies of short-term ionospheric variability in the F region ionosphere during rapid sequence sounding campaign “HIRAC/SolarMax” (23–29 April 2001) are presented. The ionospheric short-term fluctuations have been studied in detail using measurements from vertical sounding at Ebro (40.8 °N, 0.5 ° E) and Průhonice (49.9 °N, 14.5 °E) in the period range from 15 minutes to 2 hours. The electron density measurements contain variations that indicate the possible presence of propagating gravity waves. Regular wave-like bursts were found during quiet days at both stations in electron concentration in F region, with an increase of the oscillation activity after sunrise and then during late afternoon, and at sunset and after sunset. Solar Terminator is assumed to be one of the sources of the regular wave bursts detected in the ionosphere during campaign HIRAC. As expected, substantial intensification in longer period gravity waves was found to occur during the disturbed period on April 28. Particular enhancement of the wave-like activity during disturbed day is discussed, being significant evidences of a change of the wave-like activity pattern at a height around 200 km.  相似文献   

17.
Landforming processes are highly active in the Arctic, and luminescence dating can be used to establish a chronological framework for these processes. For example, luminescence ages of raised littoral and marine deposits provide the age control for many reconstructions of Pleistocene events in the Arctic. Due to the nature of the depositional environment (e.g. short transport distance, turbid water, long polar night) these types of sediment may not be completely zeroed at the time of deposition. To test the significance of incomplete bleaching in this type of environment, surface sediments were sampled along a transect from the margin of a glacier out into a nearby bay on NW Svalbard. The water in the bay is very turbid (secchi depth 0.1 m), but there is significant reworking by waves along the shores.Quartz optically stimulated luminescence (OSL) and feldspar infrared stimulated luminescence (IRSL) were measured using sand-sized grains. For quartz OSL and feldspar IRSL (50 °C) the ice-proximal sample showed relatively high doses (∼12 Gy) while nearby beach sand and shallow-marine deposits, as well as ice-distal sandur sediments, had much lower doses: most OSL doses were consistent with zero, while IRSL (50 °C) ranged from 0.5 to 6.5 Gy. Post-IR IRSL (290 °C) doses were overall much higher (∼20–55 Gy), which partly is due to a significant (∼12 Gy) unbleachable residual, and partly due to slower bleaching rates than for the IRSL (50 °C) signal.In this Arctic environment it appears that bleaching is limited in the first ∼100 m of meltwater transport from the glacier margin, but for material transported at least 3 km bleaching of OSL and IRSL (50 °C) signals is more or less complete. Given the very limited light penetration through the seawater in the bay, any bleaching must have occurred during fluvial/subaerial transport to the bay or by wave-reworking on the beach. Apart from the ice-proximal glacifluvial sediments, residual apparent doses recorded by quartz OSL and feldspar IRSL (50 °C) are negligible for the luminescence dating of Pleistocene-aged deposits of ice-distal, littoral and shallow-marine origin.  相似文献   

18.
To study the occurrence characteristics of equatorial spread-F irregularities and their latitudinal extent, simultaneous digital ionosonde data (January–December 2001) from Trivandrum (8.2°N), Waltair (17.7°N) and Delhi (28.6°N) and 4 GHz scintillation data from Sikandarabad (26.8°N) and Chenglepet (10.4°N), and 250 MHz scintillation data from Bhopal (23.2°N) for equinoxes period are analysed. It is noted that except summer months, occurrence of spread F is always maximum at Trivandrum, minimum at Delhi and moderate at Waltair. During equinoxes and winter months. Their occurrences at higher latitude station are always conditional to their prior occurrences at lower latitudes indicating their association with the generation of equatorial plasma bubble and associated irregularities. Scintillation occurrences also follow the similar pattern. During the summer months, the spread-F occurrences are highest at equatorial location Trivandrum, moderate at Delhi and minimum at Waltair and seem to be caused by irregularities generated locally especially over Delhi.To gain forecasting capability, night-to-night occurrences of spread-F/scintillation at these locations are examined in relation to post sunset rise of h’F and upward ExB drift velocity over the magnetic equator using Trivandrum ionosonde data. It is noted that except the summer months, the spread-F at Trivandrum, Waltair and Delhi are observed only when equatorial ExB (h’F) is more than about 15 m/s (325 km), 20 m/s (350 km) and 25 m/s (375 km), respectively. With these threshold values their corresponding success rate of predictions are more than 90%, 50% and 15% at the respective locations. Whereas in the case of GHz scintillations near equator are observed only when ExB (h’F) is more than 15 m/s (325 km), whereas for low latitude, the same should be 30 m/s (400 km) and their success rate of prediction is about 90% and 30%, respectively. The intensity of 4 GHz scintillation at low latitude is also found to be positively correlated with equatorial upward ExB drift velocity values, whereas correlation is poor with that of equatorial scintillations. In conclusions, near magnetic equator threshold values of ExB or h’F can be successfully used for the night-to-night prediction of spread-F/scintillations occurrences, whereas these are necessary but not sufficient for their prediction at higher latitudes. For that some other controlling parameters like background electron density, neutral winds, gravity waves, etc. should also be examined.  相似文献   

19.
The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy tracking algorithms are applied to simulated horizontal velocity vectors, and the anticyclonic and cyclonic eddies identified are composited to obtain their three-dimensional structures. The mean lifetime of all long-lived eddies is about 52 days, and their mean diameter is 147 km. Two typical characteristics of mesoscale eddies are revealed and possible dynamic explanations are analyzed. One typical characteristic is that surface eddies are generally separated from subthermocline eddies along the bifurcation latitude(~13°N) of the North Equatorial Current in the western tropical Pacific, which may be associated with different eddy energy sources and vertical eddy energy fluxes in subtropical and tropical gyres. Surface eddies have maximum swirl velocities of 8–9 cm s~(-1) and can extend to about 1500 m depth. Subthermocline eddies occur below 200 m, with their cores at about 400–600 m depth, and their maximum swirl velocities can reach 10 cm s~(-1). The other typical characteristic is that the meridional velocity component of the eddy is much larger than the zonal component. This characteristic might be due to more zonal eddy pairs(two eddies at the same latitude),which is also supported by the zonal wavelength(about 200 km) in the high-frequency meridional velocity component of the horizontal velocity.  相似文献   

20.
We report observations of a noctilucent cloud (NLC) over central Alaska by a ground-based lidar and camera on the night of 9–10 August 2005. The lidar at Poker Flat Research Range (PFRR), Chatanika (65°N, 147°W) measured a maximum integrated backscatter coefficient of 2.4×10?6 sr?1 with a peak backscatter coefficient of 2.6×10?9 m?1 sr?1 corresponding to an aerosol backscatter ratio of 120 at an altitude of 82.1 km. The camera at Donnelly Dome, 168 km southeast of PFRR, recorded an extensive NLC display across the sky with distinct filamentary features corresponding to wave structures measured by the lidar. The occurrence of the maximum integrated backscatter coefficient corresponded to the passage of a bright cloud band to the southwest over PFRR. The camera observations indicate that the cloud band had a horizontal width of 50 km and a length of 150 km. The horizontal scale of the cloud band was confirmed by medium-frequency radar wind measurements that reported mesopause region winds of 30 m/s to the southwest during the period when the cloud band passed over PFRR. Comparison of these measurements with current NLC microphysical models suggests a lower bound on the water vapor mixing ratio at 83 km of 7–9 ppmv and a cloud ice mass of 1.5–1.8×103 kg. Satellite measurements show that this NLC display occurred during a burst of cloud activity that began on 5 August and lasted for 10 days. This cloud appeared 10 days after a launch of the space shuttle. We discuss the appearance of NLCs in August over several years at this lower polar latitude site in terms of planetary wave activity and space shuttle launches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号