共查询到10条相似文献,搜索用时 71 毫秒
1.
研究了N523(N,N-二乙基己基乙酰胺)-TBP(磷酸三丁酯)混合萃取体系从盐湖卤水中萃取锂的共萃取效应、盐析效应及共存离子影响。FeCl_3、CoCl_2、NiCl_2、CuCl_2、ZnCl_2等过渡金属氯化物盐对锂的共萃取效应研究表明,FeCl_3是最佳的共萃剂,Fe/Li摩尔比为1.3时萃取效果最优。卤水中KCl、CaCl_2、NaCl、MgCl_2、Al Cl3的盐析效应研究表明,MgCl_2是萃取锂天然的最佳盐析剂。卤水中Na~+、K~+、Ca~(2+)等共存离子对锂萃取效果的影响研究表明,锂与共存离子的分离因数顺序为βLiMgβLiKβLiNaβLiCa。N523-TBP混合萃取体系特别适合从高镁卤水中萃取锂,但不适于从含钙较高的卤水中萃取锂。 相似文献
2.
进行了以20%N523-30%TBP-50%磺化煤油萃取体系从青海高镁锂比盐湖卤水中萃取锂的工艺研究。根据相比实验求得萃取平衡等温线,通过阶梯图解法确定萃取理论级数为三级,并完成了三级逆流萃取串级实验。通过对洗涤、反萃、转相工艺进行的研究,确定了全流程八级萃取工艺。经此流程,锂的萃取率达96%,反萃液中杂质含量低,萃取剂经过多次循环无溶损,萃取性能良好,萃取过程分相快,未见三相及乳化现象。 相似文献
3.
4.
研究了用2-乙基己醇作萃取剂从高浓度氯化镁卤水中萃取硼的工艺。先用分液漏斗通过单因素和正交实验优化了萃取与反萃取的工艺条件,作出了萃取与反萃等温线。结果表明,萃取最佳条件:pH=1.8,盐(MgCl_2)浓度28%以上;反萃pH大于2.3。由McCabe-Thiele图解法得到逆流萃取和反萃取级数分别为3和4级。然后用8台Ф20 mm离心萃取器进行了连续逆流萃取与反萃取硼的实验。结果表明,离心萃取器在较大的流比和转速范围内级效率达到99%以上;用4台离心萃取器进行连续逆流萃取,硼的总萃取率达到96.9%;负载有机相用4台离心萃取器进行连续逆流反萃取,硼的总反萃取率达到99.8%。 相似文献
5.
含锂卤水中锂资源高效利用与绿色分离的新型萃取体系 总被引:1,自引:0,他引:1
针对现有高镁锂比盐湖卤水、碳酸锂产业排放的碱性料液、废旧锂电池回收液等含锂溶液的萃取分离技术现状以及高效、清洁、高值化利用的重大需求及关键基础科学问题,设计合成出数十种酰胺类、磷酸酯类以及双酮类锂特效萃取剂,通过对该类萃取剂的表征与不同放大规模的研究,筛选出多个具有工业应用前景的锂萃取体系,研发出适合我国盐湖卤水锂资源特点的、经济上可行的具有自主知识产权的分离提取锂的新萃取体系与工艺,突破高镁锂比盐湖卤水提锂这一世界性技术难题。经过产业化应用研究,萃取法从高镁锂比盐湖卤水中分离提取锂的技术,在锂镁选择性分离以及资源高效利用率方面已经凸显出了比现有任何提锂工艺更加优异的效果,为我国盐湖资源高效、清洁、高值化利用提供科学依据,提升我国在盐湖锂分离领域的国际地位和竞争力。 相似文献
6.
采用上升单液滴法,进行盐湖卤水中萃取铷的动力学研究,主要考察了比界面积、水相铷浓度和油相(t-BAMBP/磺化煤油)浓度对萃取速率的影响。通过比界面积的研究发现,t-BAMBP萃取铷的过程由界面化学反应和相内化学反应共同控制;通过对实验数据的非线性拟合,得到了萃取体系的动力学方程,R=9.936×10-7[Rb+]1.134[t-BAMBP]2.190,萃取速率对铷的反应级数为a=1.134,对t-BAMBP反应级数b=2.190,实验值和计算值的均方根误差为1.735%。 相似文献
7.
采用上升单液滴法研究从盐湖卤水中萃取铷的动力学,主要考察了比界面积、水相铷浓度和油相(t-BAMBP/磺化煤油)浓度对萃取速率的影响,通过比界面积的研究发现t-BAMBP萃取铷的过程由界面化学反应和相内化学反应共同控制;通过对实验数据的非线性拟合得到了萃取体系的动力学方程,R=9.936×10-7[Rb+]1.134[t-BAMBP]2.190,萃取速率对铷的反应级数为a=1.134,对t-BAMBP反应级数b=2.190,实验值和计算值的均方根误差为1.735 %。 相似文献
8.
In this work, problems encountered by tri-butyl phosphate (TBP) in the industrialization of lithium extraction from salt lake brine were discussed in detail. The lithium extraction behavior of N, N-bi-(2-ethylhexyl) acetamide (N523) was investigated, and its defect was analyzed in the view of practical application. The N523-TBP mixture extraction system was proposed to alleviate or avoid the defects that N523 and TBP met when they were used severally. The composition of this mixture extraction system was determined as 20%N523-30%TBP-50% kerosene. The effects of brine acidity, Fe/Li molarity ratio, phase ratio and chloride ion concentration on lithium extraction efficiency were discussed respectively. The operation conditions in single stage extraction were optimized as brine acidity=0.05 mol/L, Fe/Li molarity ratio=1.3 and phase ratio=2. The high concentration of chloride ion in brine was benefit for extraction of lithium. The structure of extracted complex was proposed as (LiFeCl4·nN523·mTBP)·(2-n)N523·(2-m)TBP (m+n=2) by chemical analysis and slope fitting methods. The extraction thermodynamic functions were calculated preliminarily, and the results suggested that the extraction process was an exothermic (ΔH<0) and spontaneous (ΔG<0) reaction, and the degree of disorder increased (ΔS>0) during the extraction process. This work will give some guidance to the lithium industry of Qinghai in both fundamental theory and practical application. 相似文献
9.
SHI Dong LI Li-juan LI Jin-feng JI Lian-min SONG Fu-gen PENG Xiao-wu ZHANG Li-cheng ZHANG Yu-ze LI Hui-fang SONG Xue-xue NIE Feng ZENG Zhong-min LIU Zhi-qi GUO Fan 《盐湖研究》2019,27(2):95-110
In this work,problems encountered by tri-butyl phosphate( TBP) in the industrialization of lithium extraction from salt lake brine were discussed in detail. The behavior of N,N-bi-( 2-ethylhexyl) acetamide( N523) during lithium extraction was investigated,and its disadvantages were analyzed in the view of practical application. An N523-TBP mixture extraction system was proposed to alleviate or avoid the defects that N523 and TBP met when they were used separately. The optimal composition of this mixture extraction system was determined to be 20% N523-30% TBP-50% kerosene.The effects of brine acidity,Fe/Li molarity ratio,phase ratio and chloride ion concentration on lithium extraction efficiency were discussed. The operation conditions in single-stage extraction were optimized as brine acidity = 0. 05 mol/L,Fe/Li molarity ratio = 1. 3,and phase ratio = 2. The high concentration of chloride ions in brine was beneficial for the extraction of lithium. The structure of the extracted complex was proposed as( LiFeCl_4·n N523·m TBP)·( 2-n) N523·( 2-m) TBP( m + n = 2) by chemical analysis and slope-fitting methods. The extraction thermodynamic functions were calculated preliminarily,and the results suggested that the extraction process was an exothermic( ΔH 0) and spontaneous( ΔG 0) reaction,and the degree of disorder increased( ΔS 0) during the extraction process. This work will give some guidance to the lithium industry of Qinghai in both the fundamental theory and practical application. 相似文献