首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Giant piston core MD99-2269 recovered 25 m of sediment in Hunáfloáall, a deep trough on the North Iceland margin fronting the Iceland Sea, and the site of a shelf sediment drift. The rate of sediment accumulation is 2 m/kyr (5 yr/cm); the core terminated in the Vedde tephra (12 cal ka). The sediment was sampled at between 5 and 50 yr/sample, including rock magnetic, grain-size, and sediment properties. Data reduction was carried out using principal component analysis. Two PC axes for the 5-yr/sample magnetic data are strongly correlated with measures of coercivity (ARM20 mT/ARM) and magnetic concentrations (kARM). In turn ARM20 mT/ARM is highly correlated (negatively) with grain-size and the mean size of the sortable silt fraction. Analyses of the two PC axes with MTM spectral methods indicate a series of significant (>99%) periodicities at millennial to multidecadal scales, including those at 200, 125, and 88 yr which are associated with solar variability. We also document a strong correlation between the sediment magnetic properties and the ∂18O on benthic foraminifera on the North Iceland inner shelf. We hypothesize that the links between variations in grain-size, magnetic concentrations, and solar forcing are controlled by atmospheric and oceanographic changes linked to changes in the relative advection of Atlantic and polar waters along the North Iceland margin. Today these changes are associated with variations in the deep convection in the Greenland and Iceland Seas. The precise linkages are, however, presently elusive although a combination of coarser sediments and low ∂18O values define a Holocene thermal maximum between 8 and 6 cal ka.  相似文献   

2.
3.
《Marine pollution bulletin》2014,78(1-2):227-236
Total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N were measured in sediment cores at three sites in Sishili Bay, China, to track the impacts of anthropogenic activities on the coastal environment over the last 100 years. The increased TOC and TN in the upper section of sediment cores indicated a eutrophic process since 1975. In comparison, the TOC and TN in the sediment core near to a scallop aquaculture area displayed a much slower increase, indicating the contribution of scallop aquaculture in mitigating eutrophication. Combined information from δ13C, δ15N and TOC:TN indicated an increased terrestrial signal, although organic matter sources in Sishili Bay featured a mixture of terrestrial and marine sources, with phytoplankton being dominant. Increased fertilizer use since 1970s contributed to the eutrophic process in Sishili Bay since 1975, and increased sewage discharge from 1990s has added to this process.  相似文献   

4.
During strong ground motion it is expected that extended structures (such as bridges) are subjected to excitation that varies along their longitudinal axis in terms of arrival time, amplitude and frequency content, a fact primarily attributed to the wave passage effect, the loss of coherency and the role of local site conditions. Furthermore, the foundation interacts with the soil and the superstructure, thus significantly affecting the dynamic response of the bridge. A general methodology is therefore set up and implemented into a computer code for deriving sets of appropriately modified time histories and spring–dashpot coefficients at each support of a bridge with account for spatial variability, local site conditions and soil–foundation–superstructure interaction, for the purposes of inelastic dynamic analysis of RC bridges. In order to validate the methodology and code developed, each stage of the proposed procedure is verified using recorded data, finite‐element analyses, alternative computer programs, previous research studies, and closed‐form solutions wherever available. The results establish an adequate degree of confidence in the use of the proposed methodology and code in further parametric analyses and seismic design. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号