首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用新方法制作出含可控裂缝的双孔隙人工砂岩物理模型,具有与天然岩石更为接近的矿物成分、孔隙结构和胶结方式,其中裂缝密度、裂缝尺寸和裂缝张开度等裂缝参数可以控制以得到实验所需要的裂缝参数,岩样具有真实的孔隙和裂缝空间并可以在不同饱和流体状态下研究流体性质对于裂缝介质性质的影响.本次实验制作出一组具有不同裂缝密度的含裂缝人工岩样,对岩样利用SEM扫描电镜分析可以看到真实的孔隙结构和符合我们要求的裂缝参数,岩样被加工成八面棱柱以测量不同方向上弹性波传播的速度,用0.5 MHz的换能器使用透射法测量在饱和空气和饱和水条件下各个样品不同方向上的纵横波速度,并得出纵横波速度、横波分裂系数和纵横波各向异性强度受裂缝密度和饱和流体的影响.研究发现流体对于纵波速度和纵波各向异性强度的影响较强,而横波速度、横波分裂系数和横波各向异性强度受饱和流体的影响不大,但是对裂缝密度的变化更敏感.  相似文献   

2.
裂缝广泛分布于地球介质中并且具有多尺度的特点,裂缝尺度对于油气勘探和开发有着重要的意义.本文制作了一组含不同长度裂缝的人工岩样,其中三块含裂缝岩样中的裂缝直径分别为2 mm、3 mm和4 mm,裂缝的厚度都约为0.06 mm,裂缝密度大致相同(分别为4.8%、4.86%和4.86%).在岩样含水的条件下测试不同方向上的纵横波速度,实验结果表明,虽然三块裂缝岩样中的裂缝密度大致相同,但是含不同直径裂缝岩样的纵横波速度存在差异.在各个方向上,含数量众多的小尺度裂缝的岩样中纵横波速度都明显低于含少量的大尺度裂缝的岩样中纵横波速度.尤其是对纵波速度和SV波速度,在不同尺度裂缝岩样中的差异更明显.在含数量多的小尺度裂缝的岩样中纵波各向异性和横波各向异性最高,而含少量的大尺度的裂缝的岩样中的纵波各向异性和横波各向异性较低.实验测量结果与Hudson理论模型预测结果进行了对比分析,结果发现Hudson理论考虑到了裂缝尺度对纵波速度和纵波各向异性的影响,但是忽略了其对横波速度和横波各向异性的影响.  相似文献   

3.
Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green’s function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.  相似文献   

4.
地震地电阻率各向异性变化数值模拟   总被引:3,自引:1,他引:2  
阮爱国  卢军  符琼玉  吴振利 《华南地震》2004,24(3):M001-M010
将APE模式中差应力与裂隙的演化理论与前期研究中建立的张量形式的各向异性电性模型相结合,推导出了裂隙演化参数(密度、孔压、纵横比、闭合角)与电导率关系的动态方程,用数值模拟方法研究了饱水岩石在水平向应力作用下电阻率的各向异性变化.并结合实验和观钡5结果,讨论了电阻率各向异性变化的可能机理。  相似文献   

5.
岩石中裂纹对弹性波速度的影响   总被引:13,自引:2,他引:13  
本文在常温常压下,对岩石中的层理,裂纹或裂缝引起的弹性波速变化特征进行了实验研究,并通过简化的人工裂缝模型,研究了裂缝密度和相对位置的变化对波速的影响取得了一些有意义的结果。  相似文献   

6.
陈文康  姚陈  郝重涛 《地震地质》2011,33(3):684-692
利用任意空间取向横向各向同性介质( ATI)的弹性张量解析表达式,分析ATI弹性常数之间的内在关系,得到一个判断ATI介质的必要条件.假若介质弹性矩阵满足这个ATI必要条件,可做ATI假设,确定可能的ATI对称轴空间取向.此时,如果通过坐标变换得到的是VTI弹性矩阵,就说明介质确实是ATI介质,这就完整地解决了从包含2...  相似文献   

7.
Most sedimentary rocks are anisotropic, yet it is often difficult to accurately incorporate anisotropy into seismic workflows because analysis of anisotropy requires knowledge of a number of parameters that are difficult to estimate from standard seismic data. In this study, we provide a methodology to infer azimuthal P‐wave anisotropy from S‐wave anisotropy calculated from log or vertical seismic profile data. This methodology involves a number of steps. First, we compute the azimuthal P‐wave anisotropy in the dry medium as a function of the azimuthal S‐wave anisotropy using a rock physics model, which accounts for the stress dependency of seismic wave velocities in dry isotropic elastic media subjected to triaxial compression. Once the P‐wave anisotropy in the dry medium is known, we use the anisotropic Gassmann equations to estimate the anisotropy of the saturated medium. We test this workflow on the log data acquired in the North West Shelf of Australia, where azimuthal anisotropy is likely caused by large differences between minimum and maximum horizontal stresses. The obtained results are compared to azimuthal P‐wave anisotropy obtained via orthorhombic tomography in the same area. In the clean sandstone layers, anisotropy parameters obtained by both methods are fairly consistent. In the shale and shaly sandstone layers, however, there is a significant discrepancy between results since the stress‐induced anisotropy model we use is not applicable to rocks exhibiting intrinsic anisotropy. This methodology could be useful for building the initial anisotropic velocity model for imaging, which is to be refined through migration velocity analysis.  相似文献   

8.
双相各向异性研究、问题与应用前景   总被引:13,自引:4,他引:9  
地球内部流体的存在和岩石各向异性是地下介质的两大表征,考虑地下流体和介质各向异性问题的双相各向异性理论是当今地震学和地球物理学理论与应用研究的前沿和难题之一。孔隙流体的存在、固体和流体之间的相互作用会弱化或硬化岩石的力学属性,上起声波或弹性声波速度的频散的振幅的衰减,并产生第二类压缩波。裂缝或裂隙的定向分布、岩层的旋性沉积、应力场的定向排列,都会引起传播速度的各向异性、横波发生分裂等重要现象,这些  相似文献   

9.
Crack damage results in a decrease of elastic wave velocities and in the development of anisotropy. Using non-interactive crack effective medium theory as a fundamental tool, we calculate dry and wet elastic properties of cracked rocks in terms of a crack density tensor, average crack aspect ratio and mean crack fabric orientation from the solid grains and fluid elastic properties. Using this same tool, we show that both the anisotropy and shear-wave splitting of elastic waves can be derived. Two simple crack distributions are considered for which the predicted anisotropy depends strongly on the saturation, reaching up to 60% in the dry case. Comparison with experimental data on two granites, a basalt and a marble, shows that the range of validity of the non-interactive effective medium theory model extends to a total crack density of approximately 0.5, considering symmetries up to orthorhombic. In the isotropic case, Kachanov's (1994) non-interactive effective medium model was used in order to invert elastic wave velocities and infer both crack density and aspect ratio evolutions. Inversions are stable and give coherent results in terms of crack density and aperture evolution. Crack density variations can be interpreted in terms of crack growth and/or changes of the crack surface contact areas as cracks are being closed or opened respectively. More importantly, the recovered evolution of aspect ratio shows an exponentially decreasing aspect ratio (and therefore aperture) with pressure, which has broader geophysical implications, in particular on fluid flow. The recovered evolution of aspect ratio is also consistent with current mechanical theories of crack closure. In the anisotropic cases—both transverse isotropic and orthorhombic symmetries were considered—anisotropy and saturation patterns were well reproduced by the modelling, and mean crack fabric orientations we recovered are consistent with in situ geophysical imaging. Our results point out that: (1) It is possible to predict damage, anisotropy and saturation in terms of a crack density tensor and mean crack aspect ratio and orientation; (2) using well constrained wave velocity data, it is possible to extrapolate the contemporaneous evolution of crack density, anisotropy and saturation using wave velocity inversion as a tool; 3) using such an inversion tool opens the door in linking elastic properties, variations to permeability.  相似文献   

10.
Knowledge about the spatial distribution of the fracture density and the azimuthal fracture orientation can greatly help in optimizing production from fractured reservoirs. Frequency-dependent seismic velocity and attenuation anisotropy data contain information about the fractures present in the reservoir. In this study, we use the measurements of velocity and attenuation anisotropy data corresponding to different seismic frequencies and azimuths to infer information about the multiple fracture sets present in the reservoir. We consider a reservoir model with two sets of vertical fractures characterized by unknown azimuthal fracture orientations and fracture densities. Frequency-dependent seismic velocity and attenuation anisotropy data is computed using the effective viscoelastic stiffness tensor and solving the Christoffel equation. A Bayesian inversion method is then applied to measurements of velocity and attenuation anisotropy data corresponding to different seismic frequencies and azimuth to estimate the azimuthal fracture orientations and the fracture densities, as well as their uncertainties. Our numerical examples suggest that velocity anisotropy data alone cannot recover the unknown fracture parameters. However, an improved estimation of the unknown fracture parameters can be obtained by joint inversion of velocity and attenuation anisotropy data.  相似文献   

11.
The integrated study of the geological and seismic reflection data from the drilling area of CCSD has discovered that the density and the P-wave velocity of orthogneiss are almost the same as that of the paragneiss in the area; but the orthogneiss and the paragneiss hold different reflection attributes. The strong seismic reflector packes coinciding spatially with the paragneiss suites have implied that the paragneiss buried in the metamorphic crust itself can cause bone-like seismic reflector sets. The P-wave velocity of paragneiss shows little apparent difference with that of the orthogneiss; but its transverse wave velocity is lower, with the Vp/Vs ratios being high. The paragneiss has partially inherited the layering structures and textures of the protolithe of sedimentary rocks, hence shows strong heterogeneity and anisotropy, that is why the paragneiss are able to produce the bone-like reflectors in the upper crust. The low transverse wave velocity of paragneiss often means weak shear resistance, which will further cause cracks or fractures in the rock, consequentially increase its porosity and permeability during tectonic movements, and form the paragneiss reservoirs of low-permeability zones for gases uplifted from the deeper crust. Because the paragneiss in the crustal metamorphic basement can cause the seismic reflectors, seismic reflection sections are able to provide information about the paragneiss under certain prerequisites.  相似文献   

12.
Seismic velocity anisotropy is predicted for cracked rocks containing either a naturally-occurring or an artificially-induced preferred orientation of cracks. Methods developed for the study of velocity anisotropy in the uppermost mantle have been applied to the in situ measurement of P-wave velocity anisotropy in fractured Carboniferous Limestone in Northwest England. At three different sites, first-arrival travel-time data has been obtained using conventional refraction equipment and a weight-drop source. Velocity anisotropy of 15–29% is identified with directions of maximum and minimum velocities that can be broadly related to previously mapped orientations of joints.  相似文献   

13.
板岩作为一种浅变质岩在我国有着广泛的分布,对其地震波速度的研究将有助于对这类过渡性岩石的有效区分,对于浅层地壳的各向异性研究也具有重要意义.本文对采自云南丙中洛地区的板岩样品进行了地震波速度的室内实验研究,其中部分实验是在加拿大Dalhousie High Pressure Laboratory完成.实验获得了板岩在围压10~600 MPa条件下、不同构造主方向(X,Y和Z)上的地震波速度,在围压600 MPa时,X、Y、Z三个方向的P波速度分别为6.58、6.46、5.91 km/s,平均速度为6.30 km/s,S波平均速度约为3.62 km/s,VP/VS=1.74;并初步分析了板岩地震波速度、横波分裂及其波速各向异性随着围压的变化规律,发现所测量的板岩在较低围压(<150 MPa)时波速的各向异性随围压升高而迅速减小,主要是由于其内部微裂隙的定向排列引起的,而随着围压的继续增加(>150 MPa时)微裂隙基本闭合,黑云母、阳起石等片状矿物的定向排列成为其地震波各向异性的主导诱因,此时(围压为600 MPa)VP、VS的各向异性分别稳定在13%、16%左右.本研究所获取的基础实验数据及所探讨的板岩地震波性质将为确定地壳上部显微裂隙的优选定向、浅层地壳的各向异性分析、地球物理模型条件约束等提供基础.  相似文献   

14.
The pressure dependence of P- and S-wave velocities, velocity anisotropy, shear wave splitting and crack-porosity has been investigated in a number of samples from different crustal rock types for dry and wet (water saturated) conditions. At atmospheric pressure, P-wave velocities of the saturated, low-porosity rocks (< 1%) are significantly higher than in dry rocks, whereas the differences for S-wave velocities are less pronounced. The effect of intercrystalline fluids on seismic properties at increased pressure conditions is particularly reflected by the variation of the Poisson's ratio because P-wave velocities are more sensitive to fluids than S-wave velocities in the low-porosity rocks. Based on the experimental data, the respective crack-density parameter (), which is a measure of the number of flat cracks per volume unit contained within the background medium (crack-free matrix), has been calculated for dry and saturated conditions. There is a good correlation between the calculated crack-densities and crack-porosities derived from the experimentally determined volumetric strain curves. The shear wave velocity data, along with the shear wave polarisation referred to a orthogonal reference system, have been used to derive the spatial orientation of effective oriented cracks within a foliated biotite gneiss. The experimental data are in reasonable agreement with the self consistent model of O'Connell and Budiansky (1974). Taking the various lithologies into account, it is clear from the present study, that combined seismic measurements ofV p andV s , using theV p V s -ratio, may give evidence for fluids on grain boundaries and, in addition, may provide an estimate on the in-situ crack-densities.  相似文献   

15.
对华北地区韧性剪切带几种代表上、中、下地壳深度的糜棱岩及其围岩在高温高压条件下进行纵波速度测定及各向异性研究.对实验样品的纵波速度测定得到以下结果:1.沿糜棱岩面理方向的纵波速度大于与面理垂直方向的纵波速度,差值为0.15-0.30km/s,各向异性为3%-5%;2.糜棱岩的纵波速度低于其围岩的纵波速度,差值为0.10-0.45km/s;3.中地壳角闪岩相糜棱岩的纵波速度各向异性高于上地壳绿片岩相糜棱岩和下地壳麻粒岩相糜棱岩的各向异性;4.地震波速各向异性与糜棱岩矿物优选定向有关.  相似文献   

16.
The purpose of this paper is the comparison of P‐wave velocity and velocity anisotropy, measured at different scales under laboratory and field conditions. A shallow seismic refraction survey with shot/receiver spacing of up to 10 m was carried out on a flat outcrop of lhertzolite in the southern part of the Balmuccia massif. Oriented rock samples were also obtained from the locality. The particular advantage of the laboratory method used is the possibility of measuring velocity in any direction under controlled conditions. Laboratory tests were made on spherical peridotite samples, 50 mm in diameter, by ultrasonic velocity measurements in 132 directions (meridian and parallel networks) under confining stress ranging from atmospheric to 400 MPa. The mean P‐wave velocity of the field and laboratory data differed by between 20–30%. In addition, P‐wave velocity anisotropy of 25% was detected in the field data. Whereas the anisotropy in the laboratory samples in the same orientation as the field surveys was less than 2%. This observed scaling factor is related to the different sampling sizes and the difference in frequencies of applied elastic waves. With an ultrasonic wavelength of 10 mm, laboratory samples represent a continuum. The field velocities and velocity anisotropy reflect the presence of cracks, which the laboratory rock samples do not contain. Three sub‐vertical fracture sets with differing strikes were observed in the field outcrop. Estimates of fracture stiffness from the velocity anisotropy data are consistent with other published values. These results highlight the difficulty of using laboratory velocity estimates to interpret field data.  相似文献   

17.
Cross‐hole anisotropic electrical and seismic tomograms of fractured metamorphic rock have been obtained at a test site where extensive hydrological data were available. A strong correlation between electrical resistivity anisotropy and seismic compressional‐wave velocity anisotropy has been observed. Analysis of core samples from the site reveal that the shale‐rich rocks have fabric‐related average velocity anisotropy of between 10% and 30%. The cross‐hole seismic data are consistent with these values, indicating that observed anisotropy might be principally due to the inherent rock fabric rather than to the aligned sets of open fractures. One region with velocity anisotropy greater than 30% has been modelled as aligned open fractures within an anisotropic rock matrix and this model is consistent with available fracture density and hydraulic transmissivity data from the boreholes and the cross‐hole resistivity tomography data. However, in general the study highlights the uncertainties that can arise, due to the relative influence of rock fabric and fluid‐filled fractures, when using geophysical techniques for hydrological investigations.  相似文献   

18.
In-situ elastic properties in deep boreholes are controlled by several factors, mainly by lithology, petrofabric, fluid-filled cracks and pores. In order to separate the effects of different factors it is useful to extract lithology-controlled part from observedin-situ velocities. For that purpose we calculated mineralogical composition and isotropic crack-free elastic properties in the lower part of the Kola borehole from bulk chemical compositions of core samples. We use a new technique of petrophysical modeling based on thermodynamic approach. The reasonable accuracy of the modeling is confirmed by comparison with the observations of mineralogical composition and laboratory measurements of density and elastic wave velocities in upper crustal crystalline rocks at high confining pressure. Calculations were carried out for 896 core samples from the depth segment of 6840–10535m. Using these results we estimate density and crack-free isotropic elastic properties of 554 lithology-defined layers composing this depth segment. Average synthetic P- wave velocity appears to be 2.7% higher than the velocity from Vertical Seismic Profiling (VSP), and 5% higher than sonic log velocity. Average synthetic S-wave velocity is 1.4 % higher than that from VSP. These differences can be explained by superposition of effects of fabric-related anisotropy, cracks aligned parallel to the foliation plain, and randomly oriented cracks, with the effect of cracks being the predominant control. Low sonic log velocities are likely caused by drilling-induced cracking (hydrofractures) in the borehole walls. The calculated synthetic density and velocity cross-sections can be used for much more detailed interpretations, for which, however, new, more detailed and reliable seismic data are required.  相似文献   

19.
水饱和裂纹对地壳岩样中地震波速及各向异性的影响   总被引:11,自引:3,他引:8       下载免费PDF全文
选择4种地壳岩石样品,经干燥或水饱和处理后在不同围压条件下测量了在其中传播的纵、横波的速度及其各向异性.在大气压条件下低孔隙度(<1%岩样中,水饱和样品中的纵波速度明显地比干燥样品中的高,但横波速度的差别不大.因为在低孔隙度岩样中纵波速度对孔隙流体的反应比横波速度敏感,可以用泊松比的变化来反映随着围压的增加晶粒间流体对弹性波传播特性的影响.根据实验数据,按O’Connell模型分别计算了干燥和水饱和岩样中的裂纹密度,与通过实测体应变曲线得到的裂纹孔隙度十分吻合.利用横波的速度和偏振特性可以推断岩样中定向排列微裂纹的空间取向情况.研究表明,同时测量在岩样中传播的纵、横波的速度,通过Vp/Vs比值可以给出有关颗粒边界流体的证据,也可以估计岩样中的裂纹密度.  相似文献   

20.
Elastic wave velocities in sandstones vary with stress due to the presence of discontinuities such as grain boundaries and microcracks within the rock. In the presence of non-hydrostatic stress fields the elastic wave velocities in sandstones often show significant stress-induced anisotropy. The elastic anisotropy due to any discontinuities within the rock can be written in terms of a second-rank and a fourth-rank tensor which quantify the effect on the elastic wave velocities of the orientation distribution and normal and shear compliances of the discontinuities. This allows elastic wave velocity measurements to be inverted to obtain the components of these tensors. Application of the method to ultrasonic velocity measurements made in a triaxial loading frame shows that a simple theory using only the second-rank tensor allows the P-wave stress-induced anisotropy to be predicted to reasonable accuracy from the S-wave anisotropy and vice versa, thus confirming the correctness of the underlying model. Deviations between the measurements and the predictions of this simplified theory are used to determine the ratio of the normal to shear compliance of the discontinuities. The discontinuities are found to be more compliant in shear than in compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号