首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
太湖入湖河口和开敞区CDOM吸收和三维荧光特征   总被引:13,自引:3,他引:13  
应用吸收和三维荧光光谱对2007年夏季太湖入湖河口和大太湖开敞区有色可溶性有机物(CDOM)浓度及来源进行研究.结果表明,河口区和开敞区CDOM吸收系数a(355)存在显著空间差异,河口区明显大于开敞(ANOVA,P<0.001),a(355)最大值出现在大浦河口和竺山湾漕桥河几附近,最小值出现在东太湖和胥口湾.a(355)与溶解性有机碳、化学耗氧量浓度存在显著正相关.所有样品一般都含有4个明显的荧光峰,包括1个可见光区的类腐殖质荧光C峰,1个紫外光区的类腐殖酸荧光A峰,2个类蛋白荧光B峰和D峰.河口区外源输入的类腐殖质荧光非常强,最著大于开敞区(ANOVA,P<0.05).而河口区和开敞区类蛋白荧光没有显著性差异,反映开敞区除外源河流输入外,内源生物降解等对类蛋白荧光贡献增加.在河口区B、C峰的比值r(B/C)/b于1,均值为0.62±0.14、在开敞区r(B/C)除12#是0.92,其他值均大于1,均值为1.12±0.13,初步判断r(B/C)可以作为区分CDOM来源的重要参数.CDOM吸收a(355)与类腐殖质荧光C峰、A峰均存在极显著的正相关,而与类蛋白荧光相关性则明显下降,与D峰存在显著正相关,与B峰没有显著相关.  相似文献   

2.
Hydrological events transport large proportions of annual or seasonal dissolved organic carbon (DOC) loads from catchments to streams. The timing, magnitude and intensity of these events are very sensitive to changes in temperature and precipitation patterns, particularly across the boreal region where snowpacks are declining and summer droughts are increasing. It is important to understand how landscape characteristics modulate event-scale DOC dynamics in order to scale up predictions from sites across regions, and to understand how climatic changes will influence DOC dynamics across the boreal forest. The goal of this study was to assess variability in DOC concentrations in boreal headwater streams across catchments with varying physiographic characteristics (e.g., size, proportion of wetland) during a range of hydrological events (e.g., spring snowmelt, summer/fall storm events). From 2016 to 2017, continuous discharge and sub-daily chemistry grab samples were collected from three adjacent study catchments located at the International Institute for Sustainable Development-Experimental Lakes Area in northwestern Ontario, Canada. Catchment differences were more apparent in summer and fall events and less apparent during early spring melt events. Hysteresis analysis suggested that DOC sources were proximal to the stream for all events at a catchment dominated by a large wetland near the outlet, but distal from the stream at the catchments that lacked significant wetland coverage during the summer and fall. Wetland coverage also influenced responses of DOC export to antecedent moisture; at the wetland-dominated catchment, there were consistent negative relationships between DOC concentrations and antecedent moisture, while at the catchments without large wetlands, the relationships were positive or not significant. These results emphasize the utility of sub-daily sampling for inferring catchment DOC transport processes, and the importance of considering catchment-specific factors when predicting event-scale DOC behaviour.  相似文献   

3.
4.
The molecular characteristics of dissolved organic matter (DOM) reflect both its source material and its biogeochemical history. In glacial systems, DOM characteristics might be expected to change over the course of a melt season as changes in the glacier drainage system cause the mobilization of DOM from different OM pools. To test this hypothesis we used Principal Components Analysis (PCA) of synchronous fluorescence spectra to detect and describe changes in the DOM in meltwater from a glacier system in the Coast Mountains of northern British Columbia, Canada. For most of the melt season, the dominant component of subglacially routed meltwater DOM is characterized by a tyrosine‐like fluorophore. This DOM component is most likely derived from supraglacial snowmelt. During periods of high discharge, a second component of DOM is present which is humic in character and similar to DOM sampled from a nearby non‐glacial stream. This DOM component is inferred to be derived from a moss‐covered soil environment that has been glacially overrun. It is probably entrained into glacial melt waters when the supraglacial meltwater flux exceeds the capacity of the principal subglacial drainage channels and water floods areas of the glacier bed that are normally isolated from the subglacial drainage system. Another source of DOM also appears to be mobilized during periods of high air temperatures. It is characterized by both humic and proteinaceous fluorophores and may be derived from the drainage of supraglacial cryoconite holes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Exploring the chemical characterization of dissolved organic matter (DOM) is important for understanding the fate of laterally transported organic matter in watersheds. We hypothesized that differences in water-extractable organic matter (WEOM) in soils of varying land uses and rainfall events may significantly affect the quality and the quantity of stream DOM. To test our hypotheses, characteristics of rainfall-runoff DOM and WEOM of source materials (topsoil from different land uses and gullies, as well as typical vegetation) were investigated at two adjacent catchments in the Loess Plateau of China, using ultraviolet–visible absorbance and excitation emission matrix fluorescence with parallel factor analysis (PARAFAC). Results indicated that land-use types may significantly affect the chemical composition of soil WEOM, including its aromaticity, molecular weight, and degree of humification. The PARAFAC analysis demonstrated that the soils and stream water were dominated by terrestrial/allochthonous humic-like substances and microbial transformable humic-like fluorophores. Shifts in the fluorescence properties of stream DOM suggested a pronounced change in the relative proportion of allochthonous versus autochthonous material under different rainfall patterns and land uses. For example, high proportions of forestland could provide more allochthonous DOM input. This study highlights the relevance of soils and hydrological dynamics on the composition and fluxes of DOM issuing from watersheds. The composition of DOM in soils was influenced by land-use type. Precipitation patterns influenced the proportion of terrestrial versus microbial origins of DOM in surface runoff. Contributions of allochthonous, terrestrially derived DOM inputs were highest from forested landscapes.  相似文献   

6.
7.
淀山湖有色可溶性有机物的光谱吸收特性   总被引:1,自引:2,他引:1  
探讨了淀山湖水体中有色可溶性有机物(CDOM)的光谱吸收特性,CDOM与叶绿素a、浊度和COD等水质参数的关系,以及不同波段范围内CDOM光谱吸收形状(指数函数斜率S值)的变化.结果表明:淀山湖CDOM吸收系数不高,在355 nm波长处的吸收系数变化范围是6.95-10.28 m-1,而且湖南区高于湖北区;CDOM吸收系数和叶绿素a、浊度、COD等水质参数的相关性都不高,证明湖中的CDOM主要来自于城镇生活污水和工业废水的排放;CDOM吸收系数在300-500 nm范围内随着波长的增加呈指数递减,超过500 nm之后呈线性递减,在300-500 nm波段范围内指数函数的曲线斜率S为11.7-14.8 μm-1,在501-750 nm波段范围内波长每增1 nm,CDOM的吸收系数减小0.0021 m-1.  相似文献   

8.
江苏省西部湖泊溶解性有机物光谱学特征和来源解析   总被引:9,自引:2,他引:9  
利用光谱学手段研究江苏省西部湖泊表层水体中溶解性有机物(DOM)组成与结构,并对其来源进行分析.单位浓度可溶性有机碳在254和280 nm波长下的吸光度值(SUVA)测定结果表明,各湖泊芳香性程度及分子量大小依次为邵伯湖>天岗湖>白马湖>石臼湖>洪泽湖>固城湖>骆马湖>高邮湖>宝应湖.特定波长下吸光度的比值(E2/E3、E3/E4)显示邵伯湖和白马湖中的DOM结构复杂、分子量大、苯环多,以腐殖酸为主要成分;其它湖泊的DOM腐殖化程度较低,以富里酸为主.指数函数曲线斜率(S275~295nm)拟合结果也同样表明邵伯湖DOM分子量最大,而宝应湖最低.各湖泊荧光指数和生物指数分别处于1.13~1.30和0.47~0.67范围内,体现出DOM强烈的陆源性.四个主要荧光峰的相对荧光强度之间均存在良好的相关性,表明这些湖泊的类腐殖酸及类蛋白物质可能有着相同的来源.结合这些湖泊的特征及流域经济发展水平,可以初步推断经入湖河流携带的由农业及其下游产业产生的有机质是江苏西部湖泊中DOM的主要来源.  相似文献   

9.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

10.
好氧反硝化因其独特优势成为近年来生物脱氮的研究热点,溶解性有机物(DOM)作为微生物碳源是造成群落差异的重要原因,为了探究白洋淀不同功能区好氧反硝化菌群落结构对溶解性有机物碳源的响应,本文结合荧光区域积分法以及napA反硝化基因的高通量测序技术,对白洋淀春季沉积物中的好氧反硝化菌群落结构特征以及好氧反硝化菌对溶解性有机...  相似文献   

11.
In arctic and sub‐arctic environments, mercury (Hg), more specifically toxic methylmercury (MeHg), is of growing concern to local communities because of its accumulation in fish. In these regions, there is particular interest in the potential mobilization of atmospherically deposited Hg sequestered in permafrost that is thawing at unprecedented rates. Permafrost thaw and the resulting ground surface subsidence transforms forested peat plateaus into treeless and permafrost‐free thermokarst wetlands where inorganic Hg released from the thawed permafrost and draining from the surrounding peat plateaus may be transformed to MeHg. This study begins to characterize the spatial distribution of MeHg in a peat plateau–thermokarst wetland complex, a feature that prevails throughout the wetland‐dominated southern margin of thawing discontinuous permafrost in Canada's Northwest Territories. We measured pore water total Hg, MeHg, dissolved organic matter characteristics and general water chemistry parameters to evaluate the role of permafrost thaw on the pattern of water chemistry. A gradient in vegetation composition, water chemistry and dissolved organic matter characteristics followed a toposequence from the ombrotrophic bogs near the crest of the complex to poor fens at its downslope margins. We found that pore waters in poor fens contained elevated levels of MeHg, and the water draining from these features had dissolved MeHg concentrations 4.5 to 14.5 times higher than the water draining from the bogs. It was determined through analysis of historical aerial images that the poor fens in the toposequence had formed relatively recently (early 1970s) as a result of permafrost thaw. Differences between the fens and bogs are likely to be a result of their differences in groundwater function, and this suggests that permafrost thaw in this landscape can result in hotspots for Hg methylation that are hydrologically connected to downstream ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
峡谷分层型水源水库表层沉积物溶解性有机物光谱特征   总被引:6,自引:1,他引:6  
结合三维荧光光谱技术(EEMs)与紫外吸收光谱(UV-vis),并利用平行因子分析(PARAFAC)的方法,对金盆水库表层沉积物中溶解性有机质(DOM)光谱的空间分布特征及来源进行分析,并探讨沉积物DOM的荧光组分与可溶性有机氮(SON)、可溶性无机氮(SIN)之间的相关性.结果表明,金盆水库表层沉积物DOM由3类荧光组分组成,分别是类富里酸C1(235 nm,315 nm/430 nm)、类色氨酸C2(220 nm,275 nm/330 nm)和类胡敏酸C3(265 nm/520 nm),各组分荧光强度占总荧光强度百分比的平均值分别为43.15%、31.54%和25.31%.表层沉积物DOM浓度在空间上呈现从上游到主库区先减少后增加的趋势.光谱斜率S275-295S350-400和光谱斜率比SR反映出各采样点陆源与内源占比的差异性.荧光指数、自生源指标和腐殖化指标都表明金盆水库沉积物DOM的来源具有内源与陆源双重特征.相关性分析表明,表层沉积物DOM各组分与SON和SIN均呈显著正相关,说明DOM与氮元素的迁移转化密切相关.  相似文献   

13.
Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow-weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in-network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous-like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo-oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs.  相似文献   

14.
Parallel factor analysis of fluorescence excitation emission matrices of surface water samples of a globally large river (Yangtze River, China) watershed identified three classes of fluorescent dissolved organic matter (FDOM) that had ex/em = 280/330 nm, 305/385 nm and 350/450 nm respectively, resembling “peak T”, “peak M” and “peak C” commonly identified in natural water, respectively. Peak T (a tyrosine/tryptophan-like FDOM) did not show correlations to peak M or C which were humic-like substances, while a positive correlation (r = 0.935, p < 0.001) was present between the natural log-transformed maximum fluorescence intensity (Fmax) of peaks T and M indicating a tight link during their production and processing. Fmax values (in Raman unit nm?1) normalized to dissolved organic carbon (DOC) concentration were low, varying in ranges 15.93–85.95, 29.83–83.54 and 19.73–51.05 × 10?5 nm?1 (μmol/L)?1 for peaks T, M and C, respectively, in line with the history of strong photobleaching of the water samples as indicated by fairly high absorption spectral slope ratios (0.75–1.53 with a mean 1.03). Intermediate fluorescence index (FI) (1.46–1.83 with a mean 1.61) and small specific absorption at 254 nm (0.64–1.93 with a mean 1.15 m?1 mg?1 L) of the water samples, indicated the presence of both aquatic microbial DOM (e.g. peak T) and soil DOM (e.g. peak C). Peak C could be substantially removed by UV-A (320–400 nm) irradiation, while peak M was slightly increased when a microbe-containing water was exposed to the same UV-A irradiation. Taken together, peak C was attributed to diffuse soil source while peak M was likely attributed to joint effects of microbial activities and solar irradiation on the chromophores in the sample.  相似文献   

15.
有机质对城市污染河道沉积物铵态氮吸附-解吸的影响   总被引:2,自引:0,他引:2  
采集污染程度不同的城市河道沉积物(通吕运河、濠河和通甲河),在分析H2O2对沉积物有机质和铵态氮影响的基础上,分析沉积物在去除有机质前后铵态氮释放动力学和吸附热力学过程,研究城市污染河道沉积物有机质对铵态氮吸附-解吸的影响.结果表明:单位体积H2O2对有机质去除率随H2O2使用量增多而降低;去除有机质后,沉积物铵态氮含量显著增加,通吕运河、濠河和通甲河铵态氮最大含量分别是有机质去除前的4.16、3.55和2.85倍;沉积物对铵态氮的饱和吸附量随有机质含量减少而下降;沉积物铵态氮释放过程均表现为先快速释放,后减缓至平衡过程;去除有机质后,随着有机质含量的减少,沉积物铵态氮的最大释放量呈增大趋势;沉积物有机质和铵态氮含量是影响沉积物铵态氮释放的主要因素.  相似文献   

16.
Changes in the concentration of iron and dissolved organic matter (DOM), and in the colour and fluorescence properties in the River Kiiminkijoki were investigated as functions of the seasonal flow regime over a two-year period. The iron concentration in filtrates and the ratio of Fe to DOC in the river increased under low flow conditions and decreased during the flood periods. The colour of the dissolved organic matter increased with increasing iron content, the effect being more pronounced during the warm period of the year than in winter. The ratio of fluorescence to DOC increased during the warm period of the year but not in winter, and decreased rapidly with discharge at the beginning of the flood period in autumn. The results give indications of the origin, formation, nature, and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of iron-organic colloids seem to be important. Estimates are given for the amounts and transport rates of iron discharged into the Gulf of Bothnia by the river.  相似文献   

17.
高邮湖、南四湖和东平湖作为南水北调东线枢纽湖泊,其水质状况对保障调水安全起到关键性作用本文运用三维荧光光谱平行因子分析法(EEMs-PARAFAC)分析了3个湖泊在不同水文情景下有色可溶性有机物(CDOM)吸收、荧光光谱特征以及荧光组分与主要水质参数的相关性,以探究3个湖泊CDOM来源组成特征结果表明,平行因子分析法解析CDOM三维荧光图谱,得到陆源类腐殖质C1、类色氨酸C2和类酪氨酸C3不同水文情景对高邮湖CDOM来源与结构组成影响较明显,丰水期其类腐殖质荧光强度显著大于枯水期(t-test,P<0.01),并且与a(254)呈正相关(R2=0.85,P<0.01),表明类腐殖质是CDOM主要部分,该荧光组分贡献率可达50%[FmaxC1/(FmaxC1+FmaxC2+FmaxC3)×100%],高邮湖受到入湖河流来水的影响较大,丰水期入湖口附近荧光强度明显高于其他水域东平湖和南四湖CDOM来源组成特征相似,丰水期东平湖和南四湖组分C2和C3显著低于枯水期(t-t...  相似文献   

18.
为了研究暴雨事件对千岛湖有色可溶性有机物(CDOM)和颗粒物吸收光谱的影响,利用2016年暴雨前(3月1-6日)和暴雨后(4月6-11日)采集的水样,对暴雨前、后千岛湖水体CDOM、浮游藻类和非藻类颗粒物的吸收光谱特征进行分析,探讨暴雨事件对其造成的影响.结果表明:千岛湖作为典型的深水型内陆湖泊,其CDOM、浮游藻类颗粒物和非藻类颗粒物的吸收强度较太湖等浅水型湖泊弱.暴雨前,CDOM光谱吸收系数aCDOM(λ)值在0~0.6 m-1范围内变化,其光谱拟合系数SCDOM的均值为0.0158±0.00145 nm-1.暴雨前浮游藻类光谱吸收在总颗粒物中占主导,aph(λ)在0~0.35m-1范围内变化,非藻类颗粒物光谱吸收系数aNAP(λ)在0~0.15 m-1范围内变化,其光谱拟合系数SNAP均值为5.62±0.57μm-1;暴雨后CDOM光谱吸收系数aCDOM(λ)值在0~1.6 m-1范围内变化,其光谱拟合系数SCDOM的均值为0.0157±0.00101 nm-1.暴雨后浮游藻类光谱吸收系数aph(λ)在0~2.5 m-1范围内变化,非藻类颗粒物光谱吸收在部分区域已占据主导地位,aNAP(λ)在0~0.8 m-1范围内变化,其光谱拟合系数SNAP均值为5.72±0.68μm-1.由CDOM吸收特征值相对分子质量M值得出,暴雨前、后千岛湖不同区域CDOM组成都以富里酸为主,且暴雨前M值分布较均匀,暴雨后M值呈现从新安江向缓冲区、东南区递增的趋势,这说明西北区随暴雨输入的腐殖酸增加了CDOM的相对分子质量.暴雨对SNAP值影响较大的区域为西北区、西南区、东北区,对西南区影响最小.本研究为使用光学手段深入探讨暴雨事件对千岛湖水环境的影响提供重要依据.  相似文献   

19.
Frequent heavy rainfalls during the East Asian summer monsoon drastically increase water flow and chemical loadings to surface waters. A solid understanding of hydroclimatic controls on watershed biogeochemical processes is crucial for water quality control during the monsoon period. We investigated spatio‐temporal variations in the concentrations and spectroscopic properties of dissolved organic matter (DOM) and the concentrations of trace metals in Hwangryong River, Korea, during a summer period from the relatively dry month of June through the following months with heavy rainfall. DOM and its spectroscopic properties differed spatially along the river, and also depended on storm and flow characteristics around each sampling time. At a headwater stream draining a forested watershed, the concentrations (measured as dissolved organic carbon (DOC)), aromaticity (measured as specific UV absorbance at 254 nm), and fulvic acid‐ and protein‐like fluorescence of DOM were higher in stormflow than in baseflow waters. DOC concentrations and fluorescence intensities increased along the downstream rural and urban sites, in which DOC and fluorescence were not higher in stormflow waters, except for the ‘first flush’ at the urban site. The response of DOM in reservoir waters to monsoon rainfalls differed from that of stream and river waters, as illustrated by storm‐induced increases in DOM aromaticity and fulvic‐like fluorescence, and no significant changes in protein‐like fluorescence. The results suggest that surface water DOM and its spectroscopic properties differentially respond to changes in hydroclimatic conditions, depending on watershed characteristics and the influence of anthropogenic organic matter loadings. DOC concentrations and intensities of spectroscopic parameters were positively correlated with some of the measured trace metals (As, Co, and Fe). Further research will be needed to obtain a better understanding of climate effects on the interaction between DOM and trace metals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability (<1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll‐a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290–350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically‐mediated processes. The results of this study highlight that short‐term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short‐term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号