首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Drought hotspot identification requires continuous drought monitoring and spatial risk assessment. The present study analysed drought events in the agriculture‐dominated mid‐Mahanadi River Basin in Odisha, India, using crop water stress as a drought indicator. This drought index incorporated different factors that affect crop water deficit such as the cropping pattern, soil characteristics, and surface soil moisture. The drought monitoring framework utilized a relevance vector machine model‐based classification that provided the uncertainty associated with drought categorization. Using the proposed framework, drought hotspots are identified in the study region and compared with indices based on precipitation and soil moisture. Further, a bivariate copula is employed to model the agricultural drought characteristics and develop the drought severity–duration–frequency (S–D–F) relationships. The drought hotspot maps and S–D–F curves are developed for different locations in the region. These provided useful information on the site‐specific drought patterns and the characteristics of the devastating droughts of 2002 and 2012, characterized by an average drought duration of 7 months at several locations. The site‐specific risk of short‐ and long‐term agricultural droughts are then investigated using the conditional copula. The results suggest that the conditional return periods and the S–D–F curves are valuable tools to assess the spatial variability of drought risk in the region.  相似文献   

2.
Near real-time monitoring of hydrological drought requires the implementation of an index capable of capturing the dynamic nature of the phenomenon. Starting from a dataset of modelled daily streamflow data, a low-flow index was developed based on the total water deficit of the discharge values below a certain threshold. In order to account for a range of hydrological regimes, a daily 95th percentile threshold was adopted, which was computed by means of a 31-day moving window. The observed historical total water deficits were statistically fitted by means of the exponential distribution and the corresponding probability values were used as a measure of hydrological drought severity. This approach has the advantage that it directly exploits daily streamflow values, as well as allowing a near real-time update of the index at regular time steps (i.e. 10 days, or dekad). The proposed approach was implemented on discharge data simulated by the LISFLOOD model over Europe during the period 1995–2015; its reliability was tested on four case studies found within the European drought reference database, as well as against the most recent summer drought observed in Central Europe in 2015. These validations, even if only qualitative, highlighted the ability of the index to capture the timing (starting date and duration) of the main historical hydrological drought events, and its good performance in comparison with the commonly used standardized runoff index (SRI). Additionally, the spatial evolution of the most recent event was captured well in a simulated near real-time test case, suggesting the suitability of the index for operational implementation within the European Drought Observatory.  相似文献   

3.
Retrieval of the terrestrial moisture storage dataset from the Gravity Recovery and Climate Experiment (GRACE) satellite remote sensing system is possible when the catchment of interest is of large spatial scale. These dataset are of paramount importance for the estimation of the total storage deficit index (TSDI), which enables the characterization of a particular drought event from the perspective of the terrestrial moisture storage over that catchment. Incidentally, the GRACE gravity signal over the 13,000 km2 Upper Assiniboine River Basin on the drought-prone Canadian Prairie is so poor therefore making the computation of the total storage deficit index for this basin infeasible. Consequently, the estimation of the terrestrial moisture storage from other reliable sources becomes imperative in order to enable the computation of the TSDI over this basin.This study explores the utilization of the Variable Infiltration Capacity (VIC) model, a physically based, spatially distributed hydrologic model to simulate the total moisture storage over the Upper Assiniboine River Basin which was then employed in the estimation of the TSDI over this basin for subsequent characterization of the recent Prairie-wide drought. Interestingly, the temporal patterns in the computed TSDI from the VIC model reveal a strong resemblance with the same drought characterization undertaken over the larger adjacent Saskatchewan River Basin, which was accomplished utilizing terrestrial moisture storage from the GRACE-based approach. Additionally, these independent techniques employed in the characterization of the last Prairie drought over the two adjacently situated basins resulted in similar drought severity classification from the standpoint of the total moisture storage deficits over these basins. This study has therefore shown that in the computation of the total storage deficit index over small-scale catchments during anomalous climatic conditions that propagate extreme dryness through the terrestrial hydrologic systems, simulations of the total water storage from a structurally sound model such as the VIC model could be resourceful for the computation of the monthly total storage deficit index if no constraint is placed on the availability of accurate meteorological forcing.  相似文献   

4.
Accepting the concept of standardization introduced by the standardized precipitation index, similar methodologies have been developed to construct some other standardized drought indices such as the standardized precipitation evapotranspiration index (SPEI). In this study, the authors provided deep insight into the SPEI and recognized potential deficiencies/limitations in relating to the climatic water balance it used. By coupling another well‐known Palmer drought severity index (PDSI), we proposed a new standardized Palmer drought index (SPDI) through a moisture departure probabilistic approach, which allows multi‐scalar calculation for accurate temporal and spatial comparison of the hydro‐meteorological conditions of different locations. Using datasets of monthly precipitation, temperature and soil available water capacity, the moisture deficit/surplus was calculated at multiple temporal scales, and a couple of techniques were adopted to adjust corresponding time series to a generalized extreme value distribution out of several candidates. Results of the historical records (1900–2012) for diverse climates by multiple indices showed that the SPDI was highly consistent and correlated with the SPEI and self‐calibrated PDSI at most analysed time scales. Furthermore, a simple experiment of hypothetical temperature and/or precipitation change scenarios also verified the effectiveness of this newly derived SPDI in response to climate change impacts. Being more robust and preferable in spatial consistency and comparability as well as combining the simplicity of calculation with sufficient accounting of the physical nature of water supply and demand relating to droughts, the SPDI is promising to serve as a competent reference and an alternative for drought assessment and monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The drought of summer 2018, which affected much of Northern Europe, resulted in low river flows, biodiversity loss and threats to water supplies. In some regions, like the Scottish Highlands, the summer drought followed two consecutive, anomalously dry, winter periods. Here, we examine how the drought, and its antecedent conditions, affected soil moisture, groundwater storage, and low flows in the Bruntland Burn; a sub-catchment of the Girnock Burn long-term observatory in the Scottish Cairngorm Mountains. Fifty years of rainfall-runoff observations and long-term modelling studies in the Girnock provided unique contextualisation of this extreme event in relation to more usual summer storage dynamics. Whilst summer precipitation in 2018 was only 63% of the long-term mean, soil moisture storage across much of the catchment were less than half of their summer average and seasonal groundwater levels were 0.5 m lower than normal. Hydrometric and isotopic observations showed that ~100 mm of river flows during the summer (May-Sept) were sustained almost entirely by groundwater drainage, representing ~30% of evapotranspiration that occurred over the same period. A key reason that the summer drought was so severe was because the preceding two winters were also dry and failed to adequately replenish catchment soil moisture and groundwater stores. As a result, the drought had the biggest catchment storage deficits for over a decade, and likely since 1975–1976. Despite this, recovery was rapid in autumn/winter 2018, with soil and groundwater stores returning to normal winter values, along with stream flows. The study emphasizes how long-term data from experimental sites are key to understanding the non-linear flux-storage interactions in catchments and the “memory effects” that govern the evolution of, and recovery from, droughts. This is invaluable both in terms of (a) giving insights into hydrological behaviours that will become more common water resource management problems in the future under climate change and (b) providing extreme data to challenge hydrological models.  相似文献   

6.
The time-lag effects of droughts on vegetation responses vary significantly across a large-scale river basin. The spatio-temporal response characteristics obtained are important for decision making processes on the allocation and transportation of regional water resources in mitigating drought impacts. Here we consider the Xijiang (West River) basin in South China as a case study, which has experienced severe drought events since the beginning of the 21st century. A threshold level approach is employed to identify the major drought events over the basin in the first decade of this century. The vegetation responses to land soil water evolution are examined, particularly for the severe drought events occurred. The time-lag effects of the vegetation responses within the basin range within 0–96 days. The lower reaches of the headwater sub-basins in the west part of the Xijiang basin are identified as the regions with short time-lag effects. The enhanced vegetation index (EVI) shows consistent responses to the soil water evolution in conjunction with the climate aridity in this area, which is the drought-vulnerable area in the Xijiang basin.  相似文献   

7.
With climate change and the rapid increase in water demand, droughts, whose intensity, duration and frequency have shown an increasing trend in China over the past decades, are increasingly becoming a critical constraint to China’s sustainable socio-economic development, especially in Northern China, even more so. Therefore, it is essential to develop an appropriate drought assessment approach in China. To propose a suitable drought index for drought assessment, the Luanhe river basin in the northern China was selected as a case study site. Based on the Principal Component Analysis of precipitation, evapotranspiration, soil moisture and runoff, the three latter variables of which were obtained by using the Variable Infiltration Capacity land surface macro-scale hydrology model, a new multivariate drought index (MDI) was formulated, and its thresholds were determined by use of cumulative distribution function. To test the applicability of the newly developed index, the MDI, the standardized precipitation index (SPI) and the palmer drought severity index (PDSI) time series on a monthly scale were computed and compared during 1962–1963, 1968 and 1972 drought events. The results show that the MDI exhibited certain advantages over the PDSI and the SPI, i.e. better assessing drought severity and better reflecting drought evolution. The MDI formulated by this paper could provide a scientific basis for drought mitigation and management, and references for drought assessment elsewhere in China.  相似文献   

8.
The reduction of soil moisture content during droughts lowers the plant water potential and decreases transpiration; this in turn causes a reduction of cell turgor and relative water content which brings about a sequence of damages of increasing seriousness. A review of the literature on plant physiology and water stress shows that vegetation water stress can be assumed to start at the soil moisture level corresponding to incipient stomatal closure and reach a maximum intensity at the wilting point. The mean crossing properties of these soil moisture levels crucial for water stress are derived analytically for the stochastic model of soil moisture dynamics described in Part II (F. Laio, A. Porporato, L. Ridolfi, I. Rodriguez-Iturbe. Adv. Water Res. 24 (7) (2001) 707–723). These properties are then used to propose a measure of vegetation water stress which combines the mean intensity, duration, and frequency of periods of soil water deficit. The characteristics of vegetation water stress are then studied under different climatic conditions, showing how the interplay between plant, soil, and environment can lead to optimal conditions for vegetation.  相似文献   

9.
Information on the main drivers of subsurface flow generation on hillslopes of alpine headwater catchments is still missing. Therefore, the dominant factors controlling the water table response to precipitation at the hillslope scale in the alpine Bridge Creek Catchment, Northern Italy, were investigated. Two steep hillslopes of similar size, soil properties and vegetation cover but contrasting topography were instrumented with 24 piezometric wells. Sixty‐three (63) rainfall‐runoff events were selected over three years in the snow‐free months to analyse the influence of rainfall depth, antecedent moisture conditions, hillslope topographic characteristics and soil depth on shallow water table dynamics. Piezometric response, expressed as percentage of well activation and water peak magnitude, was strongly correlated with soil moisture status, as described by an index combining antecedent soil moisture and rainfall depth. Hillslope topography was found to be a dominant control only for the convex‐divergent hillslope and during wet conditions. Timing of water table response depended primarily on soil depth and topographic position, with piezometric peak response occurring later and showing a greater temporal variability at the hillslope bottom, characterized by thicker soil. The relationship between mean hillslope water table level and standard deviation for all wells reflected the timing of the water table response at the different locations along the hillslopes. The outcomes of this research contribute to a better understanding of the controls on piezometric response at the hillslope scale in steep terrain and its role on the hydrological functioning of the study catchment and of other sites with similar physiographic characteristics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The thermal and moisture balance of permafrost regions has been altered by global warming, profoundly influencing vegetation dynamics and forest carbon cycling. To understand the spatial and temporal characteristics and driving forces responsible for changes in moisture conditions in the permafrost region of the Greater and Lesser Hinggan Mountains, northeastern China, we assessed long‐term trends for temperature, precipitation, and the standardized precipitation‐evapotranspiration index. From 1951 to 2014, annual mean temperature had a significant increase trend and the annual precipitation was not with significant trend. Since 1951, the annual standardized precipitation‐evapotranspiration index has decreased significantly at the boundary between regions with seasonal soil freezing and permafrost, suggesting that conspicuous permafrost degradation and moisture loss has occurred. The study area can be divided into 4 parts with a different balance between thermal and moisture conditions: the northern Songnen Plains, the Hulun Buir Sand Land, the middle reaches of the Heilongjiang River, and the Mohe region. However, only the middle reaches of the Heilongjiang River showed an obvious long‐term drying trend. The 4 areas showed quasi‐periodic oscillation and sea surface temperature during the winter half‐year affected drought intensity in the northern of Songnen Plains. When El Niño strengthened, moisture conditions increased in the northern of Songnen Plains, whereas stronger La Niña events decreased water availability. The result of this study will be beneficial for regional water resource management and prepare for potential drought hazards in the northeastern China.  相似文献   

11.
Warm winters and high precipitation in north-eastern Japan generate snow covers of more than three meters depth and densities of up to 0.55 g cm−3. Under these conditions, rain/snow ratio and snowmelt have increased significantly in the last decade under increasing warm winters. This study aims at understanding the effect of rain-on-snow and snowmelt on soil moisture under thick snow covers in mid-winter, taking into account that snowmelt in spring is an important source of water for forests and agriculture. The study combines three components of the Hydrosphere (precipitation, snow cover and soil moisture) in order to trace water mobility in winter, since soil temperatures remained positive in winter at nearly 0.3°C. The results showed that soil moisture increased after snowmelt and especially after rain-on-snow events in mid-winter 2018/2019. Rain-on-snow events were firstly buffered by fresh snow, increasing the snow water equivalent (SWE), followed by water soil infiltration once the water storage capacity of the snowpack was reached. The largest increase of soil moisture was 2.35 vol%. Early snowmelt increased soil moisture with rates between 0.02 and 0.035 vol% hr−1 while, rain-on-snow events infiltrated snow and soil faster than snowmelt and resulted in rates of up to 1.06 vol% hr−1. These results showed the strong connection of rain, snow and soil in winter and introduce possible hydrological scenarios in the forest ecosystems of the heavy snowfall regions of north-eastern Japan. Effects of rain-on-snow events and snowmelt on soil moisture were estimated for the period 2012–2018. Rain/snow ratio showed that only 30% of the total precipitation in the winter season 2011/2012 was rain events while it was 50% for the winter 2018/2019. Increasing climate warming and weakening of the Siberian winter monsoons will probably increase rain/snow ratio and the number of rain-on-snow events in the near future.  相似文献   

12.
A conceptual water‐balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
The Earth’s surface fluid mass redistribution, e.g., groundwater depletion and severe drought, causes the elastic surface deformation, which can be measured by global positioning system (GPS). In this paper, the continuous GPS observations are used to estimate the terrestrial water storage (TWS) changes in southwestern USA, which have a good agreement with TWS changes derived from Gravity Recovery And Climate Experiment (GRACE) and hydrological models. The seasonal variation is mostly located in the Rocky mountain range and Mississippi river watershed. The largest amplitude of the seasonal variation is between 12 and 15 cm in equivalent water thickness. The timing and duration of TWS anomalies caused by the severe drought in 2012 are observed by the GPS-derived TWS, which are confirmed by the GRACE results. Different hydrological models are further used for comparison with GPS and GRACE results. The magnitude of TWS depletion from GRACE and GPS observations during the drought is larger than that from hydrological models, which indicates that the drought was caused by comparable groundwater and surface water depletion. The interannual TWS changes from GPS are also consistent with the precipitation pattern over the past 6 years, which further confirms the severe drought in 2012. This study demonstrates that continuous GPS observations have the potential as real-time drought indicator.  相似文献   

14.
Hydrological simulations at multi-temporal time scales by a widely used land surface model (LSM) are investigated under contrasting vegetation and meteorological conditions. Our investigation focuses particularly on the effects of two different representations of root water uptake and root profile on simulated evapotranspiration (ET) and soil moisture by the Integrated BIosphere Simulator (IBIS). For this purpose, multi-year eddy covariance measurements, collected at four flux-tower sites across North America, were used to gauge IBIS simulations with: (a) its standard version (IBIS2.1), in which static root water uptake (RWU) and root profile schemes are incorporated; and (b) a modified version in which dynamic RWU and root profile schemes replaces the static schemes used in the standard version. Overall, our results suggest that the modified version of the model performs more realistically than the standard version, particularly when high atmospheric demand for evaporation is combined with high atmospheric vapour pressure deficit and low soil water availability. The overall correlation between simulated and measured monthly ET rates at the simulated sites reached 0.87 and 0.91 for the standard and the modified versions, respectively. Our results also show that the incorporation of the dynamic RWU in IBIS yields improved simulations of ET under very dry conditions, when soil moisture falls down to very low levels. This suggests that adequate representations of vegetation responses to drought are needed in LSMs as many state of the art climate models projections of future climate indicate more frequent and/or more intense drought events occurring in some regions of the globe. Our analysis also highlighted the urgent need for adequate methodologies to correct field measurements that exhibit energy imbalances in order to provide rigorous assessments of land surface model simulations of heat and mass exchanges between the land surface and the atmosphere.  相似文献   

15.
Drought events are increasing worldwide. Socio-economic drought is the least investigated type of drought, and is the only type for which water demand is taken into consideration. In this research, socio-economic drought was studied in Lake Mead, USA, using a multivariate standardized water-scarcity index (MSWSI) over the period 1990–2014, combining two water-scarcity indices based on time series of inflow, outflow, reservoir storage, and water demand. The inflow and outflow were determined from streamgage data, and reservoir storage from lake level data; demand was based on water pumped by the Southern Nevada Water Authority. Missing observations in input streamgage data were filled through regression modeling. The results indicate that Lake Mead has been in socio-economic drought since 2000, with the most severe drought occurring between 2006 and 2012, and the highest intensity drought in April–July 2014. The Lake Mead droughts revealed through the MSWSI are consistent with those reported in US Drought Monitor (USDM) products. The temporal behavior of MSWSI provides an insight into the socio-economic effects of droughts not captured by USDM products.  相似文献   

16.
NIR-red spectral space based new method for soil moisture monitoring   总被引:4,自引:0,他引:4  
Drought is a complex natural disaster that occurs frequently. Soil moisture has been the main issue in remote monitoring of drought events as the most direct and important variable describing the drought. Spatio-temporal distribution and variation of soil moisture evidently affect surface evapotranspiration, agricultural water demand, etc. In this paper, a new simple method for soil moisture monitoring is de- veloped using near-infrared versus red (NIR-red) spectral reflectance space. First, NIR-red spectral reflectance space is established using atmospheric and geometric corrected ETM data, which is manifested by a triangle shape, in which different surface covers have similar spatial distribution rules. Next, the model of soil moisture monitoring by remote sensing (SMMRS) is developed on the basis of the distribution characteristics of soil moisture in the NIR-red spectral reflectance space. Then, the SMMRS model is validated by comparison with field measured soil moisture data at different depths. The results showed that satellite estimated soil moisture by SMMRS is highly accordant with field measured data at 5 cm soil depth and average soil moisture at 0―20 cm soil depths, correlation coef- ficients are 0.80 and 0.87, respectively. This paper concludes that, being simple and effective, the SMMRS model has great potential to estimate surface moisture conditions.  相似文献   

17.
Each type of drought has different characteristics in different regions. It is important to distinguish different types of droughts and their correlations. Based on gauged precipitation, temperature, simulated soil moisture, and runoff data during the period 1951–2012, the relationships among meteorological, agricultural, and hydrological droughts were analyzed at different time scales in Southwest China. The standardized precipitation evapotranspiration index (SPEI), soil moisture anomaly percentage index (SMAPI), and standardized runoff index (SRI) were used to describe meteorological, agricultural, and hydrological droughts, respectively. The results show that there was a good correlation among the three indices. SMAPI had the best correlation with the 3 month SPEI and SRI values. It indicates that agricultural drought was characterized by a 3-month scale. The three drought indices displayed the similar special features such as drought scope, drought level, and drought center during the extreme drought of 2009–2010. However, the scope and level of SPEI were bigger than those of SMAPI and SRI. The propagation characteristics of the three types of droughts were significantly different. The temporal drought process in typical grids reflect that the meteorological drought occurred ahead of agricultural and hydrological droughts by about 1 and 3 months, respectively. Agricultural drought showed a stable drought process and reasonable time periods for the drought beginning and end. These results showed the quantitative relationships among three types of drought and thus provided an important supporting evidence for regional drought monitoring and strategic decisions.  相似文献   

18.
Seasonal hydrological forecasts, or outlooks, can potentially provide water managers with estimates of river flows and water resources for a lead time of several months ahead. An experimental modelling tool for national hydrological outlooks has been developed which combines a hydrological model estimate of sub‐surface water storage across Britain with a range of seasonal rainfall forecasts to provide estimates of area‐wide hydrological conditions up to a few months ahead. The link is made between a deficit in sub‐surface water storage and a requirement for additional rainfall over subsequent months to enable sub‐surface water storage and river flow to return to mean monthly values. The new scheme is assessed over a recent period which includes the termination of the drought that affected much of Britain in the first few months of 2012. An illustration is provided of its use to obtain return‐period estimates of the ‘rainfall required’ to ease drought conditions; these are well in excess of 200 years for several regions of the country, for termination within a month of 1 April 2012, and still exceed 40 years for termination within three months. National maps of sub‐surface water storage anomaly show for the first time the current spatial variability of drought severity. They can also be used to provide an indication of how a drought situation might develop in the next few months given a range of possible future rainfall scenarios. © 2013 CEH/Crown and John Wiley & Sons, Ltd.  相似文献   

19.
20.
Hydrological drought analysis is very important in the design of hydrotechnical projects and water resources management and planning. In this study, a methodology is proposed for the analysis of streamflow droughts using the threshold level approach. The method has been applied to Yermasoyia semiarid basin in Cyprus based on 30‐year daily discharge data. Severity was defined as the accumulated water deficit volume occurring during a drought event, in respect with a target threshold. Fixed and variable thresholds (seasonal, monthly, and daily) were employed to derive the drought characteristics. The threshold levels were determined based on the Q50 percentiles of flow extracted from the corresponding flow duration curves for each threshold. The aim is to investigate the sensitivity of these thresholds in the estimation of maximum drought severities for various return periods and the derivation of severity–duration–frequency curves. The block maxima and the peaks over threshold approaches were used to perform the extreme value analysis. Three pooling procedures (moving average, interevent time criterion, and interevent time and volume criterion) were employed to remove the dependent and minor droughts. The application showed that the interevent time and volume criterion is the most unbiased pooling method. Therefore, it was selected to estimate the drought characteristics. The results of this study indicate that monthly and daily variable thresholds are able to capture abnormal drought events that occur during the whole hydrological year whereas the other two, only the severe ones. They are also more sensitive in the estimation of maximum drought severities and the derivation of the curves because they incorporate better the effect of drought durations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号