首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A one‐dimensional uncoupled model governed by this research is a physics‐based modelling of the rainfall‐runoff induced erosion process. The presented model is composed of three parts of a three‐dimensional (3D) hillslope geometry, a nonlinear storage (kinematic wave) model for hillslope hydrological response, and an unsteady physically based surface erosion model. The 3D hillslope geometry model allows describing of the hillslope morphology by defining their plan shape and profile curvature. By changing these two topographic parameters, nine basic hillslope types are derived. The modelling of hillslope hydrological response is based on a flow continuity equation as the relation of discharge and flow depth is passed on kinematic wave approximation. The erosion model is based on a mass conservation equation for unsteady flow. The model assumes that suspended sediment does not affect flow dynamics. The model also accounts for the effect of flow depth plus loose soil depth on soil detachment. The presented model was run for two different precipitations, slope content, and length, and results were plotted for sediment detachment/deposition rate. Based on the obtained results, in hillslopes with convex and straight profile curvatures, sediment detachment only occurred in the whole length of the hillslope. However, in concave ones, sediment detachment and deposition only occurred together in hillslope. The hillslopes with straight profiles and convergent plans have the highest rate of detachment. Also, results show that most detachment rates occur in convex profile curvatures, which are about 15 times more than in straight profiles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Distributed erosion models, which simulate the physical processes of water flow and soil erosion, are effective for predicting soil erosion in forested catchments. Although subsurface flow through multiple pathways is dominant for runoff generation in forested headwater catchments, the process-based erosion model, Geo-spatial interface for Water Erosion Prediction Project(Geo WEPP), does not have an adequate subsurface component for the simulation of hillslope water flow. In the current study, t...  相似文献   

3.
This paper presents an erosion model, ARMOUR, which simulates time‐varying runoff, erosion, deposition and surface armour evolution down a hillslope either as a result of a single erosion event or as the cumulative impact of many events over periods up to decades. ARMOUR simulates sediment transport for both cohesive and non‐cohesive soil and dynamically differentiates between ‘transport‐limited’ and ‘source‐limited’ processes. A variety of feasible processes for entrainment of different size classes can be modelled and evaluated against data. The generalized likelihood of uncertainty estimation (GLUE) technique was used to calibrate and validate ARMOUR using data collected during rainfall simulator experiments at two contrasting sites: (1) non‐cohesive stony sediments at Ranger Uranium Mine, Northern Territory, Australia; and (2) cohesive silty sediments at Northparkes Gold Mine, NSW, Australia. The spatial and temporal variations of model predictions within the individual runoff events showed that some entrainment processes could not model the spikes in concentration and subsequent depletion, while the hiding model of Andrews and Parker best simulated the concentration trends for both calibrated and independent runoff events. ARMOUR also successfully captured the coarsening of the surface material, though small, over the duration of the rainfall simulator trials. This was driven by the depletion of the finest size class of the soil. For a constant discharge, ARMOUR simulated higher sediment flux at the start of the storm with the sediment flux and concentration diminishing with time. For natural rainfall a power law relationship between sediment flux and discharge was observed. The calibration exercise showed that sediment concentration and discharge alone are insufficient to calibrate all aspects of the physics, in particular the armour depth. This appears to be because the armouring during the short duration events is driven by depletion of the finest classes of the sediments (diameters less then 62·5 mm), which are not normally measured. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the effect of introducing spatially varying rainfall fields to a hydrological model simulating runoff and erosion. Pairs of model simulations were run using either spatially uniform (i.e. spatially averaged) or spatially varying rainfall fields on a 500‐m grid. The hydrological model used was a simplified version of Thales which enabled runoff generation processes to be isolated from hillslope averaging processes. Both saturation excess and infiltration excess generation mechanisms were considered, as simplifications of actual hillslope processes. A 5‐year average recurrence interval synthetic rainfall event typical of temperate climates (Melbourne, Australia) was used. The erosion model was based on the WEPP interrill equation, modified to allow nonlinear terms relating the erosion rate to rainfall or runoff‐squared. The model results were extracted at different scales to investigate whether the effects of spatially varying rainfall were scale dependent. A series of statistical metrics were developed to assess the variability due to introducing the spatially varying rainfall field. At the catchment (approximately 150 km2) scale, it was found that particularly for saturation excess runoff, model predictions of runoff were insensitive to the spatial resolution of the rainfall data. Generally, erosion processes at smaller sub‐catchment scales, particularly when the sediment generation equation had non linearity, were more sensitive to spatial rainfall variability. Introducing runon infiltration reduced the total runoff and sediment yield at all scales, and this process was also most sensitive to the rainfall resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, a quantitative assessment of uncertainty was made in connection with the calibration of Australian Water Balance Model (AWBM) for both gauged and ungauged catchment cases. For the gauged catchment, five different rainfall data sets, 23 different calibration data lengths and eight different optimization techniques were adopted. For the ungauged catchment case, the optimum parameter sets obtained from the nearest gauged catchment were transposed to the ungauged catchments, and two regional prediction equations were used to estimate runoff. Uncertainties were ascertained by comparing the observed and modelled runoffs by the AWBM on the basis of different combinations of methods, model parameters and input data. The main finding from this study was that the uncertainties in the AWBM modelling outputs could vary from ?1.3% to 70% owing to different input rainfall data, ?5.7% to 11% owing to different calibration data lengths and ?6% to 0.2% owing to different optimization techniques adopted in the calibration of the AWBM. The performance of the AWBM model was found to be dominated mainly by the selection of appropriate rainfall data followed by the selection of an appropriate calibration data length and optimization algorithm. Use of relatively short data length (e.g. 3 to 6 years) in the calibration was found to generate relatively poor results. Effects of different optimization techniques on the calibration were found to be minimal. The uncertainties reported here in relation to the calibration and runoff estimation by the AWBM model are relevant to the selected study catchments, which are likely to differ for other catchments. The methodology presented in this paper can be applied to other catchments in Australia and other countries using AWBM and similar rainfall–runoff models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
We present a system of ordinary differential equations (ODEs) capable of reproducing simultaneously the aggregated behavior of changes in water storage in the hillslope surface, the unsaturated and the saturated soil layers and the channel that drains the hillslope. The system of equations can be viewed as a two-state integral-balance model for soil moisture and groundwater dynamics. Development of the model was motivated by the need for landscape representation through hillslopes and channels organized following stream drainage network topology. Such a representation, with the basic discretization unit of a hillslope, allows ODEs-based simulation of the water transport in a basin. This, in turn, admits the use of highly efficient numerical solvers that enable space–time scaling studies. The goal of this paper is to investigate whether a nonlinear ODE system can effectively replicate observations of water storage in the unsaturated and saturated layers of the soil. Our first finding is that a previously proposed ODE hillslope model, based on readily available data, is capable of reproducing streamflow fluctuations but fails to reproduce the interactions between the surface and subsurface components at the hillslope scale. However, the more complex ODE model that we present in this paper achieves this goal. In our model, fluxes in the soil are described using a Taylor expansion of the underlying storage flux relationship. We tested the model using data collected in the Shale Hills watershed, a 7.9-ha forested site in central Pennsylvania, during an artificial drainage experiment in August 1974 where soil moisture in the unsaturated zone, groundwater dynamics and surface runoff were monitored. The ODE model can be used as an alternative to spatially explicit hillslope models, based on systems of partial differential equations, which require more computational power to resolve fluxes at the hillslope scale. Therefore, it is appropriate to be coupled to runoff routing models to investigate the effect of runoff and its uncertainty propagation across scales. However, this improved performance comes at the expense of introducing two additional parameters that have no obvious physical interpretation. We discuss the implications of this for hydrologic studies across scales.  相似文献   

7.
A 7-year sediment transport monitoring on the Upper Niger rivers was used to study the relationship between suspended sediment concentration and river discharge. During annual floods, these relationships show positive hysteresis. This paper presents the results of two models that estimate the time evolution of suspended sediment concentration using water discharge data only. The first model is based on a statistical approach using two relationships, one for the rising stage period of the flood and one for the recession period of the annual flood; the second model is a lumped conceptual one; it supposes that the sediment flux observed in the river comes from two different sources of sediment and that these two sources may be regarded as two different reservoirs. The erosion of the first reservoir represents hillslope erosion observed during the runoff season. Sediment supply from this ‘reservoir’ is limited in time because depletion occurs during the runoff season. The second reservoir is unlimited in time and quantity and its erosion represents contributions coming from bank erosion and mobilisation of deposits in the channel network.

Both of the models are compared with a simple rating curve based model. The model results show that the conceptual model has the highest efficiency to reproduce from weekly discharge only the time evolution of weekly suspended sediment concentrations, the time evolution of weekly sediment fluxes, and the global annual sediment yields.  相似文献   


8.
An adequately tested soil and water assessment tool (SWAT) model was applied to the runoff and sediment yield of a small agricultural watershed in eastern India using generated rainfall. The capability of the model for generating rainfall was evaluated for a period of 18 years (1981–1998). The watershed and subwatershed boundaries, drainage networks, slope, soil series and texture maps were generated using a geographical information system (GIS). A supervised classification method was used for land‐use/cover classification from satellite imageries. Model simulated monthly rainfall for the period of 18 years was compared with observations. Simulated monthly rainfall, runoff and sediment yield values for the monsoon season of 8 years (1991–1998) were also compared with their observed values. In general monthly average rainfall predicted by the model was in close agreement with the observed monthly average values. Also, simulated monthly average values of surface runoff and sediment yield using generated rainfall compared well with observed values during the monsoon season of the years 1991–1998. Results of this study revealed that the SWAT model can generate monthly average rainfall satisfactorily and thereby can produce monthly average values of surface runoff and sediment yield close to the observed values. Therefore, it can be concluded that the SWAT model could be used for developing a multiple year management plan for the critical erosion prone areas of a small watershed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Australian arid zone ephemeral rivers are typically unregulated and maintain a high level of biodiversity and ecological health. Understanding the ecosystem functions of these rivers requires an understanding of their hydrology. These rivers are typified by highly variable hydrological regimes and a paucity, often a complete absence, of hydrological data to describe these flow regimes. A daily time‐step, grid‐based, conceptual rainfall–runoff model was developed for the previously uninstrumented Neales River in the arid zone of northern South Australia. Hourly, logged stage data provided a record of stream‐flow events in the river system. In conjunction with opportunistic gaugings of stream‐flow events, these data were used in the calibration of the model. The poorly constrained spatial variability of rainfall distribution and catchment characteristics (e.g. storage depths) limited the accuracy of the model in replicating the absolute magnitudes and volumes of stream‐flow events. In particular, small but ecologically important flow events were poorly modelled. Model performance was improved by the application of catchment‐wide processes replicating quick runoff from high intensity rainfall and improving the area inundated versus discharge relationship in the channel sections of the model. Representing areas of high and low soil moisture storage depths in the hillslope areas of the catchment also improved the model performance. The need for some explicit representation of the spatial variability of catchment characteristics (e.g. channel/floodplain, low storage hillslope and high storage hillslope) to effectively model the range of stream‐flow events makes the development of relatively complex rainfall–runoff models necessary for multisite ecological studies in large, ungauged arid zone catchments. Grid‐based conceptual models provide a good balance between providing the capacity to easily define land types with differing rainfall–runoff responses, flexibility in defining data output points and a parsimonious water‐balance–routing model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Sediment transport in rill flows exhibits the characteristics of non‐equilibrium transport, and the sediment transport rate of rill flow gradually recovers along the flow direction by erosion. By employing the concept of partial equilibrium sediment transport from open channel hydraulics, a dynamic model of rill erosion on hillslopes was developed. In the model, a parameter, called the restoration coefficient of sediment transport capacity, was used to express the recovery process of sediment transport rate, which was analysed by dimensional analysis and determined from laboratory experimental data. The values of soil loss simulated by the model were in agreement with observed values. The model results showed that the length and gradient of the hillslope and rainfall intensity had different influences on rill erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Overland flow detectors (OFDs) were deployed in 2012 on a hillslope burned by the 2010 Fourmile Canyon fire near Boulder, Colorado, USA. These detectors were simple, electrical resistor‐type instruments that output a voltage (0–2·5 V) and were designed to measure and record the time of runoff initiation, a signal proportional to water depth, and the runoff hydrograph during natural convective rainstorms. Initiation of runoff was found to be spatially complex and began at different times in different locations on the hillslope. Runoff started first at upstream detectors 56% of the time, at the mid‐stream detectors 6%, and at the downstream detectors 38% of the time. Initiation of post‐wildfire runoff depended on the time‐to‐ponding, travel time between points, and the time to fill surface depression storage. These times ranged from 0·5–54, 0·4–1·1, and 0·2–14 minutes, respectively, indicating the importance of the ponding process in controlling the initiation of runoff at this site. Time‐to‐ponding was modeled as a function of the rainfall acceleration (i.e. the rate of change of rainfall intensity) and either the cumulative rainfall at the start of runoff or the soil–water deficit. Measurements made by the OFDs provided physical insight into the spatial and temporal initiation of post‐wildfire runoff during unsteady flow in response to time varying natural rainfall. They also provided data that can be telemetered and used to determine critical input parameters for hydrologic rainfall–runoff models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The performance of the Pan‐European Soil Erosion Risk Assessment (PESERA) model was evaluated by comparison with existing soil erosion data collected in plots under different land uses and climate conditions in Europe. In order to identify the most important sources of error, the PESERA model was evaluated by comparing model output with measured values as well as by assessing the effect of the various model components on prediction accuracy through a multistep approach. First, the performance of the hydrological and erosion components of PESERA was evaluated separately by comparing both runoff and soil loss predictions with measured values. In order to assess the performance of the vegetation growth component of PESERA, the predictions of the model based on observed values of vegetation ground cover were also compared with predictions based on the simulated vegetation cover values. Finally, in order to evaluate the sediment transport model, predicted monthly erosion rates were also calculated using observed values of runoff and vegetation cover instead of simulated values. Moreover, in order to investigate the capability of PESERA to reproduce seasonal trends, the observed and simulated monthly runoff and erosion values were aggregated at different temporal scale and we investigated at what extend the model prediction error could be reduced by output aggregation. PESERA showed promise to predict annual average spatial variability quite well. In its present form, short‐term temporal variations are not well captured probably due to various reasons. The multistep approach showed that this is not only due to unrealistic simulation of cover and runoff, being erosion prediction also an important source of error. Although variability between the investigated land uses and climate conditions is well captured, absolute rates are strongly underestimated. A calibration procedure, focused on a soil erodibility factor, is proposed to reduce the significant underestimation of soil erosion rates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Z. X. Xu  J. P. Pang  C. M. Liu  J. Y. Li 《水文研究》2009,23(25):3619-3630
The Soil and Water Assessment Tool (SWAT) was used to simulate the transport of runoff and sediment into the Miyun Reservoir, Beijing in this study. The main objective was to validate the performance of SWAT and the feasibility of using this model as a simulator of runoff and sediment transport processes at a catchment scale in arid and semi‐arid area in North China, and related processes affecting water quantity and soil erosion in the catchment were simulated. The investigation was conducted using a 6‐year historical streamflow and sediment record from 1986 to 1991; the data from 1986 to 1988 was used for calibration and that from 1989 to 1991 for validation. The SWAT generally performs well and could accurately simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily, with a Nash‐Sutcliffe coefficient of greater than 0·6, 0·9 and a coefficient of determination 0·75, 0·9 at two outlet stations (Xiahui and Zhangjiafen stations) during calibration. These values were 0·6, 0·85 and 0·6, 0·9 during validation. For sediment simulation, the efficiency is lower than that for runoff. Even so, the Nash‐Sutcliffe coefficient and coefficient of determination were greater than 0·48 and 0·6 for monthly sediment yield during calibration, and these values were greater than 0·84 and 0·95 during validation. Sensitivity analysis shows that sensitive parameters for the simulation of discharge and sediment yield include curve number, base flow alpha factor, soil evaporation compensation factor, soil available water capacity, soil profile depth, surface flow lag time and channel re‐entrained linear parameter, etc. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Techniques to predict temporal variations in concentrations and loads of suspended solids from highway runoff are required to estimate impacts on receiving water ecology and to inform the design of interception/treatment devices. A recent UK study included the collection of rainfall, highway runoff rates and sediment load and quality data from six different sites where motorway runoff drained directly into a receiving watercourse. This data set is used to critically evaluate a previously-published model (Kim et al. 2005) aimed at predicting temporal variations in runoff quality. The comparisons, based on discrete samples collected during 21 storm events, suggest that a simplification of the model, requiring just two parameters, provides a robust estimate of temporal variations in total suspended solids (TSS). Generic parameter values are provided, and the model’s application is illustrated. The model captures first flush effects well, but the identified generic parameters fail to fullypredict the variation in absolute TSS values that are observed in practice.  相似文献   

15.
A series of large rainfall simulator experiments was conducted in 2002 and 2003 on a small plot located in an experimental catchment in the North Island of New Zealand. These experiments measured both runoff and sediment transport under carefully controlled conditions. A physically based hydrological modelling system (SHETRAN) was then applied to reproduce the observed hydrographs and sedigraphs. SHETRAN uses physically based equations to represent flow and sediment transport, and two erodibility coefficients to model detachment of soil particles by raindrop erosion and overland flow erosion. The rate of raindrop erosion also depended on the amount of bare ground under the simulator; this was estimated before each experiment. These erodibility coefficients were calibrated systematically for summer and winter experiments separately, and lower values were obtained for the summer experiments. Earlier studies using small rainfall simulators in the vicinity of the plot also found the soil to be less erodible in summer and autumn. Limited validation of model parameters was carried out using results from a series of autumn experiments. The modelled suspended sediment load was also sensitive to parameters controlling the generation of runoff from the rainfall simulator plot; therefore, we found that accurate runoff predictions were important for the sediment predictions, especially from the experiments where the pasture cover was good and overland flow erosion was the dominant mechanism. The rainfall simulator experiments showed that the mass of suspended sediment increased post‐grazing, and according to the model this was due to raindrop detachment. The results indicated that grazing cattle or sheep on steeply sloping hill‐country paddocks should be carefully managed, especially in winter, to limit the transport of suspended sediment into watercourses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The creation of a hydrophobic layer in the soil during ?res in semi‐arid environments inhibits the in?ltration of rainfall. This leads to increased rates of runoff and associated sediment transport. When the hydrophobic layer is deposited beneath the soil surface, a perched water table develops which may cause thin (1–2 cm) hillslope failures that are distinguishable from features caused by rilling and sheet?ow. Evidence for these failures was observed after a ?re near Santa Barbara, California. The amount of sediment eroded from some hillslopes was substantial, with 290 kg of sediment per metre width of hillslope delivered to the valley ?oor. The mechanics of these failures are examined with a numerical model that incorporates a stability analysis with subsurface ?ow routing along a typical hillslope pro?le. The model correctly predicts the location of the failures as well as the rainfall amount necessary to trigger them. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
SomepeOPlehaverecognizedtheSPatialvariationoflandionnsandgeomorphicPeainthehillyloessregion,NOIthClam(Chenetal.1988).SuchvariationshaVe~linkedtotheverticalzonationofsoilerosionandsedimentproduedoninthisarea(Catetat.1994).HoWeVer,noneOftheStlldiesaPProachtheProbleminaqUantitativemanner.NorweretherelationsbetweensoilerosionPr~sontheoneban4andhydrologicandghgogicalcharacteristicsofthevariouSslopezonesontheother,dearlyestatiIisned.Inaaamon,~stubbesintheareahaveprtridtahotoshowthe~rtanceo…  相似文献   

18.
While it is well recognized that vegetation can affect erosion, sediment yield and, over longer timescales, landform evolution, the nature of this interaction and how it should be modeled is not obvious and may depend on the study site. In order to develop quantitative insight into the magnitude and nature of the influence of vegetation on catchment erosion, we build a landscape evolution model to simulate erosion in badlands, then calibrate and evaluate it against sediment yield data for two catchments with contrasting vegetation cover. The model couples hillslope gravitational transport and stream alluvium transport. Results indicate that hillslope transport processes depend strongly on the vegetation cover, whereas stream transport processes do not seem to be affected by the presence of vegetation. The model performance in prediction is found to be higher for the denuded catchment than for the reforested one. Moreover, we find that vegetation acts on erosion mostly by reducing soil erodibility rather than by reducing surface runoff. Finally, the methodology we propose can be a useful tool to evaluate the efficiency of previous revegetation operations and to provide guidance for future restoration work. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
Wildfires raise concerns over the risk of accelerated erosion as a result of increased overland flow and decreased protection of the soil by litter and ground vegetation cover. We investigated these issues following the 1994 fires that burnt large areas of native Eucalyptus forest surrounding Sydney, Australia. A review of previous studies identifies the fire and rainfall conditions that are likely to lead to increased runoff and accelerated erosion. We then compare runoff and erosion between burnt and unburnt sites for 10 months after the 1994 fires. At the scale of hillslope plots, the 1994 fire increased runoff by enhancing soil hydrophobicity, and greatly increased sediment transport, mainly through the reduced ground cover, which lowered substantially the threshold for initial sediment movement. However, both runoff and sediment transport were very localized, resulting in little runoff or sediment yield after the fire at the hillslope catchment scale. We identify that after moderately intense fires, rainfall events of greater than one year recurrence interval are required to generate substantial runoff and sediment yield. Such events did not occur during the monitoring period. Past work shows that mild burns have little effect on erosion, and it is only after the most extreme fires that erosion is produced from small, frequent storms. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Water is a major limiting factor in arid and semi‐arid agriculture. In the Sahelian zone of Africa, it is not always the limited amount of annual rainfall that constrains crop production, but rather the proportion of rainfall that enters the root zone and becomes plant‐available soil moisture. Maximizing the rain‐use efficiency and therefore limiting overland flow is an important issue for farmers. The objectives of this research were to model the processes of infiltration, runoff and subsequent erosion in a Sahelian environment and to study the spatial distribution of overland flow and soil erosion. The wide variety of existing water erosion models are not developed for the Sahel and so do not include the unique Sahelian processes. The topography of the Sahelian agricultural lands in northern Burkina Faso is such that field slopes are generally low (0–5°) and overland flow mostly occurs in the form of sheet flow, which may transport large amounts of fine, nutrient‐rich particles despite its low sediment transport capacity. Furthermore, pool formation in a field limits overland flow and causes resettlement of sediment resulting in the development of a surface crust. The EUROSEM model was rewritten in the dynamic modelling code of PCRaster and extended to account for the pool formation and crust development. The modelling results were calibrated with field data from the 2001 rainy season in the Katacheri catchment in northern Burkina Faso. It is concluded that the modified version of EUROSEM for the Sahel is a fully dynamic erosion model, able to simulate infiltration, runoff routing, pool formation, sediment transport, and erosion and deposition by inter‐rill processes over the land surface in individual storms at the scale of both runoff plots and fields. A good agreement is obtained between simulated and measured amounts of runoff and sediment discharge. Incorporating crust development during the event may enhance model performance, since the process has a large influence on infiltration capacity and sediment detachment in the Sahel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号