首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A case study on a desert‐oasis wetland ecosystem in the arid region of Northwest China measured the seasonal and interannual variation in energy partitioning and evapotranspiration to analyse the response of water and energy exchange on soil moisture, groundwater, and environmental variables. Energy partitioning showed a clear seasonal and interannual variability, and the process of water and energy exchange differed significantly in the monthly and interannual scales. The net radiation was 7.31 MJ m?2· day?1, and sensible heat flux accounted for 50.42% of net radiation in energy fluxes, 40.56% for latent heat flux, and 9.02% for ground heat flux. The parameters in energy fluxes were best described by a unimodal curve, whereas sensible heat flux followed a bimodal curve. Variations in the daily evapotranspiration and crop evapotranspiration also exhibited a single peak curve with annual values of 569.84 and 644.47 mm, respectively. Canopy conductance averaged 20.77 ± 13.75 mm s?1 and varied from 0.16 to 83.96 mm s?1 during the two hydrological years. The variation in water and energy exchange reflected environmental conditions and depended primarily on vapour pressure deficit, net radiation, soil moisture, and water depth. Although the effects of precipitation on evapotranspiration showed that the response of this ecosystem to climate changes was not obvious, the variation of air temperatures had a strong influence on evapotranspiration, resulting in a significant increase in evapotranspiration (R = 0.730; P < 0.01). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Analytical modelling of heat transport was used to address effects of uncertainty in thermal conductivity on groundwater–surface water exchange. In situ thermal conductivities and temperature profiles were measured in a coastal lagoon bed where groundwater is known to discharge. The field site could be divided into three sediment zones where significant spatial changes in thermal conductivity on metre to centimetre scale show that spatial variability connected to the sediment properties must be considered. The application of a literature‐based bulk thermal conductivity of 1.84 Wm?1 °C?1, instead of field data that ranged from 0.62 to 2.19 W m?1 °C?1, produced a mean overestimation of 2.33 cm d?1 that, considering the low fluxes of the study area, represents an 89% increase and up to a factor of 3 in the most extreme cases. Incorporating the uncertainty due to sediment heterogeneities leads to an irregular trend of the flux distribution from the shore towards the lagoon. The natural variability of the thermal conductivity associated with changes in the sediment composition resulted in a mean variation of ±0.66 cm d?1 in fluxes corresponding to a change of ±25.4%. The presence of organic matter in the sediments, a common situation in the near‐shore areas of surface water bodies, is responsible for the decrease of thermal conductivity. The results show that the natural variability of sediment thermal conductivity is a parameter to be considered for low flux environments, and it contributes to a better understanding of groundwater–surface water interactions in natural environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Groundwater interacts with surface water features nearly in all types of landscapes. Understanding these interactions has practical consequences on the quantity and quality of water in either system, because the depletion or contamination of one of the systems will eventually affect the other one. Many studies have shown that the use of heat as natural tracer in conjunction with water level measurements is an effective method for estimating water flow (fluxes) between groundwater and surface water. A number of studies have explored the effects of spatial and temporal variability of groundwater–surface water flux exchanges using temperature and water level measurements; however, the effect of temporal resolution of water level and temperature data on estimating flux remains unexplored. Therefore, this study investigated the effect of temporal resolution of input data on temporal variation of groundwater–surface water flux exchanges. To this end, we calibrated a variably saturated two‐dimensional groundwater flow and heat transport model (VS2DH) at hourly and daily time scales using temperatures measured at multiple depths below the riverbed of the Zenne River, located at a well‐known Belgian brownfield site. Results of the study showed that the computed water flux through the streambed ranged between ?32 mm/day and +25 mm/day using the hourly model and from ?10 mm/day to ?37 mm/day using the daily model. The hourly model resulted in detecting reversal of flow direction inducing short‐term surface water flow into the streambed. However, such events were not captured if daily temperature and water level measurements were used as input. These findings have important implications for understanding contaminant mass flux and their attenuation in the mixing zone of groundwater and surface water. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Evaporation dominates the water balance in arid and semi‐arid areas. The estimation of evaporation by land‐cover type is important for proper management of scarce water resources. Here, we present a method to assess spatial and temporal patterns of actual evaporation by relating water balance evaporation estimates to satellite‐derived radiometric surface temperature. The method is applied to a heterogeneous landscape in the Krishna River basin in south India using 10‐day composites of NOAA advanced very high‐resolution radiometer satellite imagery. The surface temperature predicts the difference between reference evaporation and modelled actual evaporation well in the four catchments (r2 = 0·85 to r2 = 0·88). Spatial and temporal variations in evaporation are linked to vegetation type and irrigation. During the monsoon season (June–September), evaporation occurs quite uniformly over the case‐study area (1·7–2·1 mm day?1), since precipitation is in excess of soil moisture holding capacity, but it is higher in irrigated areas (2·2–2·7 mm day?1). In the post‐monsoon season (December–March) evaporation is highest in irrigated areas (2·4 mm day?1). A seemingly reasonable estimate of temporal and spatial patterns of evaporation can be made without the use of more complex and data‐intensive methods; the method also constrains satellite estimates of evaporation by the annual water balance, thereby assuring accuracy at the seasonal and annual time‐scales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The spatial and temporal characterization of geochemical tracers over Alpine glacierized catchments is particularly difficult, but fundamental to quantify groundwater, glacier melt, and rain water contribution to stream runoff. In this study, we analysed the spatial and temporal variability of δ2H and electrical conductivity (EC) in various water sources during three ablation seasons in an 8.4‐km2 glacierized catchment in the Italian Alps, in relation to snow cover and hydro‐meteorological conditions. Variations in the daily streamflow range due to melt‐induced runoff events were controlled by maximum daily air temperature and snow covered area in the catchment. Maximum daily streamflow decreased with increasing snow cover, and a threshold relation was found between maximum daily temperature and daily streamflow range. During melt‐induced runoff events, stream water EC decreased due to the contribution of glacier melt water to stream runoff. In this catchment, EC could be used to distinguish the contribution of subglacial flow (identified as an end member, enriched in EC) from glacier melt water to stream runoff, whereas spring water in the study area could not be considered as an end member. The isotopic composition of snow, glacier ice, and melt water was not significantly correlated with the sampling point elevation, and the spatial variability was more likely affected by postdepositional processes. The high spatial and temporal variability in the tracer signature of the end members (subglacial flow, rain water, glacier melt water, and residual winter snow), together with small daily variability in stream water δ2H dynamics, are problematic for the quantification of the contribution of the identified end members to stream runoff, and call for further research, possibly integrated with other natural or artificial tracers.  相似文献   

6.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Many of the existing stream–aquifer interaction models available in the literature are very complex with limited applicability in semi‐gauged and ungauged catchments. In this study, to estimate the influent and effluent subsurface water fluxes under limited geo‐hydrometeorological data availability conditions, a simple stream–aquifer interaction model, namely, the variable parameter McCarthy–Muskingum (VPMM) hillslope‐storage Boussinesq (hsB) model, has been developed. This novel model couples the VPMM streamflow transport with the hsB groundwater flow transport modules in online mode. In this integrated model, the surface water–groundwater flux exchange process is modelled by the Darcian approach with the variable hydraulic heads between the river stage and groundwater table accounting for the rainfall forcing. Considering the exchange fluxes in the hyporheic zone and lateral overland flow contribution, this approach is field tested in a typical 48‐km stretch of the Brahmani River in eastern India to simulate the streamflow and its depth with the minimum Nash–Sutcliffe efficiency of 94% and 88%; the maximum root mean square error of 134 m3/s and 0.35 m; and the minimum index of agreement of 98% and 97%, respectively. This modelling approach could be very well utilized in data‐scarce world‐river basins to estimate the stream–aquifer exchange flux due to rainfall forcings.  相似文献   

8.
A two‐dimensional variable‐density groundwater flow and transport model was developed to provide a conceptual understanding of past and future conditions of nitrate (NO3) transport and estimate groundwater nitrate flux to the Gulf of Mexico. Simulation results show that contaminant discharge to the coast decreases as the extent of saltwater intrusion increases. Other natural and/or artificial surface waters such as navigation channels may serve as major sinks for contaminant loading and act to alter expected transport pathways discharging contaminants to other areas. Concentrations of NO3 in the saturated zone were estimated to range between 30 and 160 mg?L?1 as NO3. Relatively high hydraulic vertical gradients and mixing likely play a significant role in the transport processes, enhancing dilution and contaminant migration to depth. Residence times of NO3 in the deeper aquifers vary from 100 (locally) to about 300 years through the investigated aquifer system. NO3 mass fluxes from the shallow aquifers (0 to 5.7 × 104 mg?m?2?day?1) were primarily directed towards the navigation channel, which intersects and captures a portion of the shallow groundwater flow/discharge. Direct NO3 discharge to the sea (i.e. Gulf of Mexico) from the shallow aquifer was very low (0 to 9.0 × 101 mg · m?2?day?1) compared with discharge from the deeper aquifer system (0 to 8.2 × 103 mg?m?2?day?1). Both model‐calibrated and radiocarbon tracer‐determined contaminant flux estimates reveal similar discharge trends, validating the use of the model for density‐dependent flow conditions. The modelling approach shows promise to evaluate contaminant and nutrient loading for similar coastal regions worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
There are several methods for determining the spatial distribution and magnitude of groundwater inputs to streams. We compared the results of conventional methods [dye dilution gauging, acoustic Doppler velocimeter (ADV) differential gauging, and geochemical end‐member mixing] to distributed temperature sensing (DTS) using a fibre‐optic cable installed along 900 m of Ninemile Creek in Syracuse, New York, USA, during low‐flow conditions (discharge of 1·4 m3 s?1). With the exception of differential gauging, all methods identified a focused, contaminated groundwater inflow and produced similar groundwater discharge estimates for that point, with a mean of 66·8 l s?1 between all methods although the precision of these estimates varied. ADV discharge measurement accuracy was reduced by non‐ideal conditions and failed to identify, much less quantify, the modest groundwater input, which was only 5% of total stream flow. These results indicate ambient tracers, such as heat and geochemical mixing, can yield spatially and quantitatively refined estimates of relatively modest groundwater inflow even in large rivers. DTS heat tracing, in particular, provided the finest spatial characterization of groundwater inflow, and may be more universally applicable than geochemical methods, for which a distinct and consistent groundwater end member may be more difficult to identify. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Submarine groundwater discharge (SGD) introduces solute and nutrients to the global oceans, resulting in considerable nutrient cycling and dynamics in the coastal areas. We have conducted high‐resolution, spatio‐temporal, lunar tidal cycle patterns and variability of discharged solute/nutrient assessment to get an overview of seasonal nutrient flux to the Bay of Bengal in eastern parts of the Indian subcontinent. Whereas the premonsoon season SGD was found to be dominant in the marine influence (M‐SGD), the postmonsoon season was found to be predominated by the terrestrial component of SGD (T‐SGD), extending from coast to near offshore. The solute fluxes and redox transformation were found to be extensively influenced by tidal and diurnal cycles, overlapping on seasonal patterns. We have assessed the possible role of SGD‐associated solute/nutrient fluxes and their discharge mechanisms, and their associated temporal distributions have severe implications on the biological productivity of the Bay of Bengal. The estimated annual solute fluxes, using the average end‐member concentration of the SGD‐associated nutrients, were found to be 240 and 224 mM·m?2·day?1 for NO3? and Fetot, respectively. Together with huge freshwater flux from the Himalayan and Peninsular Indian rivers, the SGD has considerable influence on the bay water circulation, stratification, and solute cycling. Thus, the observation from this study implies that SGD‐associated nutrient flux to the Bay of Bengal may function as a nutrient sink, which might influence the long‐term solute/nutrient flux along the eastern coast of India.  相似文献   

11.
This study investigates spatial patterns and temporal dynamics of aquifer–river exchange flow at a reach of the River Leith, UK. Observations of sub‐channel vertical hydraulic gradients at the field site indicate the dominance of groundwater up‐welling into the river and the absence of groundwater recharge from surface water. However, observed hydraulic heads do not provide information on potential surface water infiltration into the top 0–15 cm of the streambed as these depths are not covered by the existing experimental infrastructure. In order to evaluate whether surface water infiltration is likely to occur outside the ‘window of detection’, i.e. the shallow streambed, a numerical groundwater model is used to simulate hydrological exchanges between the aquifer and the river. Transient simulations of the successfully validated model (Nash and Sutcliff efficiency of 0·91) suggest that surface water infiltration is marginal and that the possibility of significant volumes of surface water infiltrating into non‐monitored shallow streambed sediments can be excluded for the simulation period. Furthermore, the simulation results show that with increasing head differences between river and aquifer towards the end of the simulation period, the impact of streambed topography and hydraulic conductivity on spatial patterns of exchange flow rates decreases. A set of peak flow scenarios with altered groundwater‐surface water head gradients is simulated in order to quantify the potential for surface water infiltration during characteristic winter flow conditions following the observation period. The results indicate that, particularly at the beginning of peak flow conditions, head gradients are likely to cause substantial increase in surface water infiltration into the streambed. The study highlights the potential for the improvement of process understanding of hyporheic exchange flow patterns at the stream reach scale by simulating aquifer‐river exchange fluxes with a standard numerical groundwater model and a simple but robust model structure and parameterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A comprehensive framework for the assessment of water and salt balance for large catchments affected by dryland salinity is applied to the Boorowa River catchment (1550 km2), located in south‐eastern Australia. The framework comprised two models, each focusing on a different aspect and operating on a different scale. A quasi‐physical semi‐distributed model CATSALT was used to estimate runoff and salt fluxes from different source areas within the catchment. The effects of land use, climate, topography, soils and geology are included. A groundwater model FLOWTUBE was used to estimate the long‐term effects of land‐use change on groundwater discharge. Unlike conventional salinity studies that focus on groundwater alone, this study makes use of a new approach to explore surface and groundwater interactions with salt stores and the stream. Land‐use change scenarios based on increased perennial pasture and tree‐cover content of the vegetation, aimed at high leakage and saline discharge areas, are investigated. Likely downstream impacts of the reduction in flow and salt export are estimated. The water balance model was able to simulate both the daily observed stream flow and salt load at the catchment outlet for high and low flow conditions satisfactorily. Mean leakage rate of about 23·2 mm year?1 under current land use for the Boorowa catchment was estimated. The corresponding mean runoff and salt export from the catchment were 89 382 ML year?1 and 38 938 t year?1, respectively. Investigation of various land‐use change scenarios indicates that changing annual pastures and cropping areas to perennial pastures is not likely to result in substantial improvement of water quality in the Boorowa River. A land‐use change of about 20% tree‐cover, specifically targeting high recharge and the saline discharge areas, would be needed to decrease stream salinity by 150 µS cm?1 from its current level. Stream salinity reductions of about 20 µS cm?1 in the main Lachlan River downstream of the confluence of the Boorowa River is predicted. The FLOWTUBE modelling within the Boorowa River catchment indicated that discharge areas under increased recharge conditions could re‐equilibrate in around 20 years for the catchment, and around 15 years for individual hillslopes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The rise in stream stage during high flow events (floods) can induce losing stream conditions, even along stream reaches that are gaining during baseflow conditions. The aquifer response to flood events can affect the geochemical composition of both near‐stream groundwater and post‐event streamflow, but the amount and persistence of recharged floodwater may differ as a function of local hydrogeologic forcings. As a result, this study focuses on how vertical flood recharge varies under different hydrogeologic forcings and the significance that recharge processes can have on groundwater and streamflow composition after floods. River and shallow groundwater samples were collected along three reaches of the Upper San Pedro River (Arizona, USA) before, during and after the 2009 and 2010 summer monsoon seasons. Tracer data from these samples indicate that subsurface floodwater propagation and residence times are strongly controlled by the direction and magnitude of the dominant stream–aquifer gradient. A reach that is typically strongly gaining shows minimal floodwater retention shortly after large events, whereas the moderately gaining and losing reaches can retain recharged floodwater from smaller events for longer periods. The moderately gaining reach likely returned flood recharge to the river as flow declined. These results indicate that reach‐scale differences in hydrogeologic forcing can control (i) the amount of local flood recharge during events and (ii) the duration of its subsurface retention and possible return to the stream during low‐flow periods. Our observations also suggest that the presence of floodwater in year‐round baseflow is not due to long‐term storage beneath the streambed along predominantly gaining reaches, so three alternative mechanisms are suggested: (i) repeated flooding that drives lateral redistribution of previously recharged floodwater, (ii) vertical recharge on the floodplain during overbank flow events and (iii) temporal variability in the stream–aquifer gradient due to seasonally varying water demands of riparian vegetation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Water resources are the most critical factors to ecology and society in arid basins, such as Kaidu River basin. Isotope technique was convenient to trace this process and reveal the influence from the environment. In this paper, we try to investigate the temporal and spatial characteristics in stable isotope (18O and 2H) of surface water and groundwater in Kaidu River. Through the water stable isotope composition measurement, spatial and temporal characteristics of deuterium (δ2H) and oxygen 18 (δ18O) were analysed. It is revealed that (1) comparing the stream water line with the groundwater line and local meteorological water line of Urumqi City, it is found that the contribution of precipitation to surface water in stream runoff is the main source, whereas the surface water is the main source of groundwater. Groundwater is mainly drainage of surface runoff in the river; (2) in the main stream of Kaidu River, the spatial variability of river water showed a ‘heavier‐lighter‐heavier’ change along with the main stream for δ18O, and temporal variability showed higher in summer and lower in winter; (3) the δ18O and δ2H values of groundwater samples ranged from ?11.36 to ?7.97‰ and ?73.45 to ?60.05‰, respectively. There is an increasing trend of isotopic values along the groundwater flow path. The seasonal fluctuation of δ18O is not clear in most samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The need to identify groundwater seepage locations is of great importance for managing both stream water quality and groundwater sourced ecosystems due to their dependency on groundwater‐borne nutrients and temperatures. Although several reconnaissance methods using temperature as tracer exist, these are subjected to limitations related to mainly the spatial and temporal resolution and/or mixing of groundwater and surface water leading to dilution of the temperature differences. Further, some methods, for example, thermal imagery and fiber optic distributed temperature sensing, although relative efficient in detecting temperature differences over larger distances, these are labor‐intensive and costly. Therefore, there is a need for additional cost‐effective methods identifying substantial groundwater seepage locations. We present a method expanding the linear regression of air and stream temperatures by measuring the temperatures in dual‐depth; in the stream column and at the streambed‐water interface (SWI). By doing so, we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept, and coefficient of determination), and the daily water temperature cycle (daily mean temperatures, temperature variance, and the mean diel temperature fluctuation). We show that using metrics from only single‐depth stream temperature measurements are insufficient to identify substantial groundwater seepage locations in a head‐water stream. Conversely, comparing the metrics from dual‐depth temperatures show significant differences; at groundwater seepage locations, temperatures at the SWI merely explain 43–75% of the variation opposed to ? 91% at the corresponding stream column temperatures. In general, at these locations at the SWI, the slopes ( < 0.25) and intercepts ( > 6.5 °C) are substantially lower and higher, respectively, while the mean diel temperature fluctuations ( < 0.98 °C) are decreased compared to remaining locations. The dual‐depth approach was applied in a post‐glacial fluvial setting, where metrics analyses overall corroborated with field measurements of groundwater fluxes and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambeds in such settings.  相似文献   

16.
Gravel bars (GBs) contribute to carbon dioxide (CO2) emissions from stream corridors, with CO2 concentrations and emissions dependent on prevailing hydraulic, biochemical, and physicochemical conditions. We investigated CO2 concentrations and fluxes across a GB in a prealpine stream over three different discharge‐temperature conditions. By combining field data with a reactive transport groundwater model, we were able to differentiate the most relevant hydrological and biogeochemical processes contributing to CO2 dynamics. GB CO2 concentrations showed significant spatial and temporal variability and were highest under the lowest flow and highest temperature conditions. Further, observed GB surface CO2 evasion fluxes, measured CO2 concentrations, and modelled aerobic respiration were highest at the tail of the GB over all conditions. Modelled CO2 transport via streamwater downwelling contributed the largest fraction of the measured GB CO2 concentrations (31% to 48%). This contribution increased its relative share at higher discharges as a result of a decrease in other sources. Also, it decreased from the GB head to tail across all discharge‐temperature conditions. Aerobic respiration accounted for 17% to 36% of measured surface CO2 concentrations. Zoobenthic respiration was estimated to contribute between 4% and 8%, and direct groundwater CO2 inputs 1% to 23%. Unexplained residuals accounted for 6% to 37% of the observed CO2 concentrations at the GB surface. Overall, we highlight the dynamic role of subsurface aerobic respiration as a driver of spatial and temporal variability of CO2 concentrations and evasion fluxes from a GB. As hydrological regimes in prealpine streams are predicted to change following climatic change, we propose that warming temperatures combined with extended periods of low flow will lead to increased CO2 release via enhanced aerobic respiration in newly exposed GBs in prealpine stream corridors.  相似文献   

17.
Characterizing the spatio-temporal distribution of groundwater–surface water (GW–SW) exchange fluxes is of paramount importance in understanding catchment behavior. A wide range of field-based techniques are available for such characterization. The objective of this study is to quantify the spatio-temporal distribution of the exchange fluxes along the Çakıt stream (Niğde, Turkey) through coupling a set of geophysical techniques and in-stream measurements in a hierarchical manner. First, geological and water quality information were combined at the catchment scale to determine key areas for reach-scale focus. Second, electromagnetic induction (EMI) surveys were conducted along the reach to pinpoint potential groundwater upwelling locations. EMI anomalies guided our focus to a 665 m-long reach of the stream. Along this selected reach, a fibre-optic distributed temperature sensing (FO-DTS) system was utilized to investigate streambed temperature profiles at fine spatial and temporal scales. Furthermore, vertical hydraulic gradients and exchange fluxes were investigated using nested piezometers and vertical temperature profiles, respectively, at two potential upwelling locations and a potential downwelling location identified by previous surveys. The results of the study reveal heterogeneity of vertical water-flow components with seasonal variability. The EMI survey was successful in identifying a localized groundwater upwelling location. FO-DTS measurements revealed a warm temperature anomaly during cold air temperature and low streamflow conditions at the same upwelling site. Our point-based methods, namely vertical temperature profiles and vertical hydraulic gradient estimates, however, did not always provide consistent results with each other and with EMI and FO-DTS measurements. This study, therefore, highlights the opportunities and challenges in incorporating multi-scale observations in a hierarchical manner in characterization of the GW–SW exchange processes that are known to be highly heterogeneous in time and space. Overall, a combination of different methods helps to overcome the limitations of each single method and increases confidence in the obtained results.  相似文献   

18.
Management of water resources in alluvial aquifers relies mainly on understanding interactions between hydraulically connected streams and aquifers. Numerical models that simulate this interaction often are used as decision support tools for water resource management. However, the accuracy of numerical predictions relies heavily on unknown system parameters (e.g., streambed conductivity and aquifer hydraulic conductivity), which are spatially heterogeneous and difficult to measure directly. This paper employs an ensemble smoother to invert groundwater level measurements to jointly estimate spatially varying streambed and alluvial aquifer hydraulic conductivity along a 35.6‐km segment of the South Platte River in Northeastern Colorado. The accuracy of the inversion procedure is evaluated using a synthetic experiment and historical groundwater level measurements, with the latter constituting the novelty of this study in the inversion and validation of high‐resolution fields of streambed and aquifer conductivities. Results show that the estimated streambed conductivity field and aquifer conductivity field produce an acceptable agreement between observed and simulated groundwater levels and stream flow rates. The estimated parameter fields are also used to simulate the spatially varying flow exchange between the alluvial aquifer and the stream, which exhibits high spatial variability along the river reach with a maximum average monthly aquifer gain of about 2.3 m3/day and a maximum average monthly aquifer loss of 2.8 m3/day, per unit area of streambed (m2). These results demonstrate that data assimilation inversion provides a reliable and computationally affordable tool to estimate the spatial variability of streambed and aquifer conductivities at high resolution in real‐world systems.  相似文献   

19.
Subsurface flow and heat transport near Freienbrink, NE Germany, was simulated in order to study groundwater–surface water exchange between a floodplains aquifer and a section of the lowland River Spree and an adjacent oxbow. Groundwater exfiltration was the dominant process, and only fast surface water level rises resulted in temporary infiltration into the aquifer. The main groundwater flow paths are identified based on a 3D groundwater flow model. To estimate mass fluxes across the aquifer–surface water interfaces, a 2D flow and heat transport modelling approach along a transect of 12 piezometers was performed. Results of steady‐state and transient water level simulations show an overall high accuracy with a Spearman coefficient ρ = 0.9996 and root mean square error (RMSE) = 0.008 m. Based on small groundwater flow velocities of about 10?7 to 10?6 ms?1, mean groundwater exfiltration rates of 233 l m?2 d?1 are calculated. Short periods of surface water infiltration into the aquifer do not exceed 10 days, and the infiltration rates are in the same range. The heat transport was modelled with slightly less accuracy (ρ = 0.8359 and RMSE = 0.34 °C). In contrast to the predominant groundwater exfiltration, surface water temperatures determine the calculated temperatures in the upper aquifer below both surface water bodies down to 10 m during the whole simulation period. These findings emphasize prevailing of heat conduction over advection in the upper aquifer zones, which seems to be typical for lowland streams with sandy aquifer materials and low hydraulic gradients. Moreover, this study shows the potential of coupled numerical flow and heat transport modelling to understand groundwater–surface water exchange processes in detail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号