首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two‐dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two‐dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one‐dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two‐dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
A mathematical model that describes the drawdown due to constant pumpage from a finite radius well in a two‐zone leaky confined aquifer system is presented. The aquifer system is overlain by an aquitard and underlain by an impermeable formation. A skin zone of constant thickness exists around the wellbore. A general solution to a two‐zone leaky confined aquifer system in Laplace domain is developed and inverted numerically to the time‐domain solution using the modified Crump (1976) algorithm. The results show that the drawdown distribution is significantly influenced by the properties and thickness of the skin zone and aquitard. The sensitivity analyses of parameters of the aquifer and aquitard are performed to illustrate their effects on drawdowns in a two‐zone leaky confined aquifer system. For the negative‐skin case, the drawdown is very sensitive to the relative change in the formation transmissivity. For the positive‐skin case, the drawdown is also sensitive to the relative changes in the skin thickness, and both the skin and formation transmissivities over the entire pumping period and the well radius and formation storage coefficient at early pumping time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents an analytical solution to tide‐induced head fluctuations in a two‐dimensional estuarine‐coastal aquifer system that consists of an unconfined aquifer and a heterogeneous confined aquifer extending under a tidal river with a semipermeable layer between them. This study considers the joint effects of tidal‐river leakage, inland leakage, dimensionless transmissivity between the tidal‐river and inland confined aquifer, and transmissivity anisotropic ratios. The analytical solution for this model is obtained via the separation of variables method. Three existing solutions related to head fluctuation in one‐ or two‐dimensional leaky confined aquifers are considered as special cases in the present solution. This study shows that there is a threshold of tidal‐river confined aquifer length. When the tidal‐river length is greater than the threshold length, the inland head fluctuations remain sensitive to the leakage effect but become insensitive to the tidal‐river width and dimensionless transmissivity. Considering leakage and transmissivity anisotropy, this study also demonstrates that at a location farther from the river–inland boundary, head fluctuations increase with increasing leakage and transmissivity anisotropy; the maximum head fluctuation occurs when leakage and transmissivity anisotropy are both at their maximum values. The combined action of the 3 effects of loading, tidal‐river aquifer leakage, and inland aquifer leakage differs significantly according to various aquifer parameters. The analytical solution in this paper can be applied to demonstrate the behaviours of the head fluctuations of an estuarine‐coastal aquifer system, and the head fluctuations can be clearly described when the tidal and hydrogeological parameters are derived from field measurement data or hypothetical cases.  相似文献   

4.
The study on the hydraulic properties of coastal aquifers has significant implications both in hydrological sciences and environmental engineering. Although many analytical solutions are available, most of them are based on the same basic assumption that assumes aquifers extend landward semi‐infinitely, which does not necessarily reflect the reality. In this study, the general solutions for a leaky confined coastal aquifer have been developed that consider both finitely landward constant‐head and no‐flow boundaries. The newly developed solutions were then used to examine theoretically the joint effects of leakage and aquifer length on hydraulic head fluctuations within the leaky confined aquifer, and the validity of using the simplified solution, which assumes the aquifer is semi‐infinite. The results illustrated that the use of the simplified solution may cause significant errors, depending on joint effects of leakage and aquifer length. A dimensionless characteristic parameter was then proposed as an index for judging the applicability of the simplified solution. In addition, practical application of the general solution for the constant‐head inland boundary was used to characterize the hydraulic properties of a leaky confined aquifer using the data collected from a field site at the Seine River estuary, France, and the versatility of the general solution was further justified.  相似文献   

5.
A mathematical model is developed to investigate the effects of tidal fluctuations and leakage on the groundwater head of leaky confined aquifer extending an infinite distance under the sea. The leakages of the offshore and inland aquitards are two dominant factors controlling the groundwater fluctuation. The tidal influence distance from the coast decreases significantly with the dimensionless leakage of the inland aquitard (ui). The fluctuation of groundwater level in the inland part of the leaky confined aquifer increases significantly with the dimensionless leakage of the offshore aquitard (uo). The influence of the tidal propagation parameter of an unconfined aquifer on the head fluctuation of the leaky confined aquifer is comparatively conspicuous when ui is large and uo is small. In other words, ignoring water table fluctuation of the unconfined aquifer will give large errors in predicting the fluctuation, time lag, and tidal influence distance of the leaky confined aquifer for large ui and small uo. On the contrary, the influence of the tidal propagation parameter of a leaky confined aquifer on the head fluctuation of the leaky confined aquifer is large for large uo and small ui.  相似文献   

6.
We present an analytical solution of groundwater head response to tidal fluctuation in a coastal multilayered aquifer system consisting of an unconfined aquifer, a leaky confined aquifer and a semi‐permeable layer between them. The submarine outcrop of the confined aquifer is covered by a thin silt layer. A mathematical model and the analytical solution of this model are given. The silt layer reduces the amplitude of the hydraulic head fluctuation by a constant factor, and shifts the phase by a positive constant (time lag), both of which depend on the leakances of the silt layer and the semi‐permeable layer. The time lag is less than 1·5 h and 3·0 h for semi‐diurnal and diurnal sea tides respectively. When the leakance of the semi‐permeable layer or the silt layer assumes certain special values, the solution becomes the existing solutions derived by previous researchers. The amplitude of the hydraulic head fluctuation in the confined aquifer increases with the leakance of the silt layer and decreases with the leakance of the semi‐permeable layer, whereas the phase shift of the fluctuation decreases with both of them. A hypothetical example shows that neglecting the silt layer may result in significant parameter estimation discrepancy between the amplitude attenuation and the time‐lag fittings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A two‐dimensional semi‐analytical solution to analyse stream–aquifer interactions in a coastal aquifer where groundwater level responds to tidal effects is presented. The conceptual model considered is a two‐dimensional subsurface system with stream and coastline boundaries at right angles. The dimensional and non‐dimensional boundary value problems were solved for water level in the aquifer by successive application of Laplace and Fourier transform techniques, and the results were obtained by numerical inversion of the transformed solution. The solution was then verified by reducing the solutions to one‐dimensional known problems and comparing the results with those from previous studies. Hypothetical examples were used to examine the characteristics of water‐level variations due to the variations in stream stage and the fluctuations in tide level. Sensitivity analysis indicated that streambed leakance has no influence over the amplitude of groundwater fluctuations, but that the effect of stream stage increases with increasing leakance. Little difference was observed in the water level for different aquifer penetration ratios with narrow stream width. Increases in streambed leakance caused increases in the effect of aquifer penetration by the stream on the water level. An increased specific yield value resulted in decreased amplitude of water fluctuations and mean water level, and showed that water‐level variations due to stream and tidal boundaries are sensitive to specific yield. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
ABSTRACT

The point dilution test is a single-well technique for estimating horizontal flow velocity in the aquifer surrounding a well. The test is conducted by introducing a tracer into a well section and monitoring its decreasing concentration over time. When using a salt tracer, the method is easy and inexpensive. Traditionally, the horizontal Darcy velocity is calculated as a function of the rate of dilution and is based on the simple assumption that the decreasing tracer concentration is proportional both to the apparent velocity into the test section and to the Darcy velocity in the aquifer. In this article, an alternative approach to analyse the results of point dilution tests is proposed and verified using data acquired at a test site in the middle Venetian plain, northeast Italy. In this approach, the one-dimensional equilibrium advection–dispersion equation is inverted using the CXTFIT model to estimate the apparent velocity inside the test section. Analysis of the field data obtained by the two approaches shows good agreement between the methods and suggests that it is possible to use the equilibrium advection–dispersion equation to estimate apparent velocity over a wide range of velocities.
Editor D. Koutsoyiannis; Associate editor K. Heal  相似文献   

9.
Peiyue Li  Hui Qian  Jianhua Wu 《水文研究》2014,28(4):2293-2301
Accurate knowledge of hydrogeological parameters is essential for groundwater modeling, protection and remediation. Three methods (type curve fitting method, inflection point method and global curve‐fitting method (GCFM)) which are frequently applied in the estimation of leaky aquifer parameters were compared using synthetic pumping tests. The results revealed GCFM could provide best parameter estimation among the three methods with fewer uncertainties associated with the processes of parameter estimation. GCFM was also found to be both time saving and of low cost and is thus more preferable for hydrogeological parameter estimation than the other two methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This article investigates the quantity of submarine groundwater discharge (SGD) from a coastal multi‐layered aquifer system in response to constant rainfall infiltration. The system comprises an unconfined aquifer, a leaky confined aquifer and an aquitard between them and terminates at the coastline. An approximate analytical solution is derived based on the following assumptions: (i) flow is horizontal in the aquifers and vertical in the aquitard, and (ii) flow in the unconfined aquifer is described by nonlinear Boussinesq equation. The analytical solution is compared with numerical solutions of the strictly two‐dimensional nonlinear model to validate the model assumptions used for the analytical solution. The SGD from the leaky confined aquifer increases with the inland rainfall infiltration recharge and the specific leakage of aquitard. The maximum SGD ranges from 1·87 to 10·37 m3 per day per meter of shoreline when rainfall infiltration ranges from 18·2 to 182 mm/year and the specific leakage of aquitard varies from 10?9 to 10?1 l/day. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A large quantity of submarine groundwater discharge (SGD) of about 1000 m3 day?1 m?1 of the 600‐km‐long shoreline of South Atlantic Bight has been estimated by Moore (Global Biogeochemical Cycles, 2010b, 24, GB4005, doi: 10.1029/2009GB003747 ). However, there is great uncertainty in estimating the percentage of net, land‐originated groundwater recharge of SGD. Moreover, most previous studies considered the homogeneous case for the coastal superficial aquifers. Here, we investigated the terrestrial‐originated SGD through a multilayered submarine aquifer system, which comprises two confined aquifers and two semi‐permeable layers. The inland recharge includes a constant part representing the annual average and a periodical part representing its seasonal variation. An analytical solution was derived and used to analyse the distributions of the terrestrial‐originated SGD from the multilayered aquifers along the Winyah Bay transect, South Atlantic Bight. It is found that the width of the zone of SGD from the upper aquifer ranges from ~0.8 to ~8.0 km depending on the leakance of the seabed semi‐permeable layer. A head of the upper aquifer at a coastline 1.0 m higher than the mean sea level will cause a SGD of 1.82– 18.3 m3 day?1 m?1 from that aquifer as the seabed semi‐permeable layer's leakance varies from 0.001 to 0.1 day?1, providing considerable possibility for considerable land‐originated SGD. Seasonal terrestrial‐originated SGD variations predicted by the analytical model provide consistent explanation of the seasonal variation of 226Ra observed by Moore (Journal of Geophysics, 2007, 112, C10013, doi: 10.1029/2007JC004199 ). The contribution of the lower aquifer to SGD is only 1.2–12% of that of the upper aquifer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, we use a transfer function‐noise (TFN) modelling strategy with single output and multiple/single inputs to study the relationships among a large unconfined aquifer in the upper Venetian plain (Northeast Italy), its recharge components (rainfalls and losing river) and a multi‐layered confined system located in the middle Venetian plain. Model identification from the data raises a range of difficulties when seeking models with consistent physical behaviour, but no information related to the transfer function order and the lags with no zero weights is available. Therefore we use an automatic identification procedure for TFN models. The obtained results suggest that the rainfall component is more important than the river discharge in the unconfined aquifer, and the behaviours of the deep‐confined aquifers are synchronous with that observed in the Badoere area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Land reclamation may have a significant influence on groundwater regimes. Analytical solutions have been developed in the past to study the impact of land reclamation on a steady‐state groundwater flow and transient flow in fill materials, assuming that the reclamation site consists of a single zone of uniform hydraulic parameters. In this paper, we derive analytical solutions to describe the transient water table change in response to multi‐stage land reclamation where the fill material is uniform in each stage but the hydraulic conductivity of the fill material varies from stage to stage. By introducing the method of separation of variables, we develop a transient analytical solution to study the impact of land reclamation consisting of fill material with different hydraulic properties on groundwater dynamics. The results show that the water table first increases significantly into the reclaimed zone following the fill material deposition, and then the increase gradually propagates into the original aquifer. The change of water table in the original aquifer mainly depends on the value of hydraulic conductivity of the fill materials. Examples in this paper illustrate how the aquifer system experiences a long time unsteady‐state flow as a result of the reclamation, and it takes at least tens of years for the system to approach a new equilibrium. It is suggested that for a large‐scale reclamation project, the response of the groundwater regime to reclamation should be carefully studied. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary’s entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429–35) for two-dimensional non-interacting tidal waves.  相似文献   

15.
Analytical solutions for the water table and lateral discharge in a heterogeneous unconfined aquifer with time-dependent source and fluctuating river stage were derived and compared with those in an equivalent homogeneous aquifer. The heterogeneous aquifer considered consists of a number of sections of different hydraulic conductivity values. The source term and river stage were assumed to be time-dependent but spatially uniform. The solutions derived is useful in studying various groundwater flow problems in a horizontally heterogeneous aquifer since the spatially piecewise-constant hydraulic conductivity and temporally piecewise-constant recharge and lateral discharge can be used to quantify variations in these processes commonly observed in reality. Applying the solutions derived to an aquifer of three sections of different hydraulic conductivity values shown that (1) the aquifer heterogeneity significantly increases the spatial variation of the water table and thus its gradient but it has little effect on lateral discharge in the case of temporally and spatially uniform recharge, (2) the time-dependent but spatially uniform recharge increases the temporal variation of groundwater table over the entire aquifer but its effect on lateral discharge is limited in the zone near the river, and (3) the effect of river stage fluctuation on the water table and lateral discharge is limited in the zone near the river and the effect of the heterogeneity is to increase lateral discharge to or recharge from the river.  相似文献   

16.
This paper considered the tide-induced head fluctuations in two coastal multi-layered aquifer systems. Model I comprises two semi-permeable layers and a confined aquifer between them. Model II is a four-layered aquifer system including an unconfined aquifer, an upper semi-permeable layer, a confined aquifer and a lower semi-permeable layer. In each model, the submarine outlet of the confined aquifer is covered with a skin layer (“outlet-capping”). Analytical solutions of the two models are derived. In both models, leakages of the semi-permeable layers decrease the tidal head fluctuations. The outlet-capping reduces the aquifer’s head fluctuation by a constant factor and shifts the phase by a positive constant. The solution to Model II explains the inconsistency between the relatively small lag time and the strong amplitude damping effect of the tidal head fluctuations reported by Trefry and Johnston [Ground Water 1998;36:427–33] near the Port Adelaide River, Australia.  相似文献   

17.
18.
The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei, Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.  相似文献   

19.
The standard practice for assessing aquifer parameters is to match groundwater drawdown data obtained during pumping tests against theoretical well function curves specific to the aquifer system being tested. The shape of the curve derived from the logarithmic time derivative of the drawdown data is also very frequently used as a diagnostic tool to identify the aquifer system in which the pumping test is being conducted. The present study investigates the incremental area method (IAM) to serve as an alternative diagnostic tool for the aquifer system identification as well as a supplement to the aquifer parameter estimation procedure. The IAM based diagnostic curves for ideal confined, leaky, bounded and unconfined aquifers have been derived as part of this study, and individual features of the plots have been identified. These features were noted to be unique to each aquifer setting, which could be used for rapid evaluation of the aquifer system. The effectiveness of the IAM methodology was investigated by analyzing field data for various aquifer settings including leaky, unconfined, bounded and heterogeneous conditions. The results showed that the proposed approach is a viable method for use as a diagnostic tool to identify the aquifer system characteristics as well as to support the estimation of the hydraulic parameters obtained from standard curve matching procedures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi‐steady‐state rise in the mean water‐table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial consequences for the local velocity field in the vicinity of the exit face, which affects the nearshore migration of contaminant in coastal aquifers. An overheight in the water table as a result of the tidal fluctuation is observed and this has a significant effect on groundwater discharge to the sea when the landward boundary condition is a constant water level. The effect of beach slope is very significant and simplifying the problem by considering a vertical beach face causes serious errors in predicting the water‐table position and the groundwater flux. For media with a high effective capillary fringe, the moisture retained above the water table is important in determining the effects of the tidal fluctuations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号