首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The formation of baseflow and stormflow was examined in the 1.18 km2 part of the headwater catchment Uhlí?ská, Jizera Mountains, Czech Republic, over the period 2007–2011, by means of run‐off data and environmental tracers 18O and SiO2. The baseflow, computed using the digital filter approach BFLOW, contributes 67% to total streamflow and has a mean residence time of 12.3 months. It is formed by groundwater discharge from the valley deluviofluvial granitic sediments, in combination with soil water in weathered layers on hillslopes during rainfall and snowmelt periods. The prevailing source of the groundwater is the infiltration of snowmelt water. Analysis of 20 run‐off events and their hysteretic patterns demonstrated that the stormflow water has a residence time of about 4 months and is generated by preferential flow on hillslopes combined by soil matrix drainage. Because of slower flow in the soil matrix, the enrichment of pore water in SiO2 is more pronounced. The stormflow and snowmelt water flowing via preferential pathways of upslope minerals soils pushes the pre‐event groundwater through the pathways in wetlands to the stream, and the wetland can be therefore considered as groundwater supplied. This mechanism has been found to be typical for the groundwater‐supplied headwater catchments of the Jizera Mountains and can be also assumed in other mountainous headwaters of the granitic massif in Central Europe. The main methodological contribution of this study are the residence time calculations stratified by baseflow and event flow, identifying run‐off components of different travel times to streams and linking them with geochemical run‐off sources. This achievement was possible because of a comprehensive dataset on hydrology, stable isotopes and silica hydrochemistry in all relevant run‐off generation components. This concept indicates that a possible long‐term change in snowmelt may affect the run‐off regime of headwater catchments to climate or land‐use changes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   

3.
Glaciers are significant freshwater storage systems in western China and contribute substantially to the summertime run‐off of many large rivers in the Tibetan Plateau. Under the scenario of climate change, discussions of glacier variability and melting contributions in alpine basins are important for understanding the run‐off composition and ensuring that water resources are adequately managed and protected in the downstream areas. Based on the multisource spatial data and long‐term ground observation of climatic and hydrologic data, using the remote sensing interpretation, degree‐day model, and ice volume method, we presented a comprehensive study of the glacier changes in number, area, and termini and their impacts on summertime run‐off and water resource in the Tuotuo River basin, located in the source region of the Yangtze River. The results indicated that climate change, especially rising temperature, accelerated the glacier melting and consequently led to hydrological change. From 1969 to 2009, the glacier retreat showed an absolutely dominant tendency with 13 reduced glaciers and lost glacier area of 45.05 km2, accompanied by limited growing glaciers in the study area. Meanwhile, it indicated that annual glacial run‐off was averagely 0.38 × 108 m3, accounting for 4.96% of the total summertime run‐off, followed by the supply from precipitation and snowmelt. The reliability of this magnitude was assessed by the classic volume method, which also showed that the water resources from glacier melting in the Tuotuo River basin increased by approximate 17.11 × 108 m3, accounting for about 3.77% of the total run‐off over the whole period of 1969–2009. Findings from this study will serve as a reference for future research about glacier hydrology in regions where observational data are deficient. Also, it can help the planning of future water management strategies in the source region of the Yangtze River.  相似文献   

4.
Rain‐on‐snow events have generated major floods around the world, particularly in coastal, mountainous regions. Most previous studies focused on a limited number of major rain‐on‐snow events or were based primarily on model results, largely due to a lack of long‐term records from lysimeters or other instrumentation for quantifying event water balances. In this analysis, we used records from five automated snow pillow sites in south coastal British Columbia, Canada, to reconstruct event water balances for 286 rain‐on‐snow events over a 10‐year period. For large rain‐on‐snow events (event rainfall >40 mm), snowmelt enhanced the production of water available for run‐off (WAR) by approximately 25% over rainfall alone. For smaller events, a range of antecedent and meteorological factors influenced WAR generation, particularly the antecedent liquid water content of the snowpack. Most large events were associated with atmospheric rivers. Rainfall dominated WAR generation during autumn and winter events, whereas snowmelt dominated during spring and summer events. In the majority of events, the sensible heat of rain contributed less than 10% of the total energy consumed by snowmelt. This analysis illustrated the importance of understanding the amount of rainfall occurring at high elevations during rain‐on‐snow events in mountainous regions.  相似文献   

5.
Glacier meltwater change in the north‐eastern edge of the Tibetan Plateau is greatly important for the projection of the impact of future climate change on local water resource management. Although the glaciated area is only approximately 4% of the Upper Reach of the Shule River Basin (URSRB), the average glacier meltwater contribution to river run‐off was approximately 23.6% during the periods 1971/1972 to 2012/2013. A new glacier melting module coupled with the macroscale hydrologic Variable Infiltration Capacity model (VIC‐CAS) was adopted to simulate and project changes in the glacier meltwater and river run‐off of the URSRB forced by downscaled output of the BCC‐CSM1.1(m), CANESM2, GFDL‐CM3, and IPSL‐CM5A‐MR models. Comparisons between the observed and simulated river run‐offs and glacier area changes during the periods 2000/2001, 2004/2006, 2008/2009, and 2012/2013 suggest that the simulation is reasonable. Due to increases in precipitation, the annual total run‐off is projected to increase by approximately 2.58–2.73 × 108 m3 in the 2050s and 0.28–1.87 × 108 m3 in the 2100s compared with run‐off in the 2010s based on the RCP2.6 (low greenhouse gas emission) and RCP4.5 (moderate greenhouse gas emission) scenarios, respectively. The contribution of glacier meltwater to river run‐off will more likely decrease to approximately 10% and less than 5% during the 2050s and 2100s, respectively.  相似文献   

6.
Changes in hydrologic flowpaths have important impacts on the timing, magnitude and hydrochemistry of run‐off during snowmelt in forested catchments, but how flowpaths are affected by variation in winter climate and the irregular presence of soil frost remains poorly understood. The depth and extent of soil frost may be expected to increase as snowpack decreases or develops later because of climate change. In this study, we used end‐member mixing analysis to determine daily contributions of snow, forest floor soil water and groundwater to stream run‐off during snowmelt under different soil frost regimes resulting from interannual and elevational variation at the Hubbard Brook Experimental Forest in New Hampshire, USA. We observed greater routing of run‐off through forest floor flowpaths during early snowmelt in 2011, when the snowpack was deep and soil frost was minimal, compared with the early snowmelt in 2012 under conditions of deep and extensive soil frost. The results indicate that widespread soil frost that penetrated the depth of the forest floor decreased the flow signal through the shallowest subsurface flowpaths, but did not reduce overall infiltration of melt waters, as the contribution from the snow‐precipitation end‐member was similar under both conditions. These results are consistent with development of granular soil frost which permits vertical infiltration of melt waters, but either reduces lateral flow in the forest floor or prevents the solute exchange that would produce the typical chemical signature of shallow subsurface flowpaths in streamwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   

8.
Hydrological threshold behaviour has been observed across hillslopes and catchments with varying characteristics. Few studies, however, have evaluated rainfall–run‐off response in areas dominated by agricultural land use and artificial subsurface drainage. Hydrograph analysis was used to identify distinct hydrological events over a 9‐year period and examine rainfall characteristics, dynamic water storage, and surface and subsurface run‐off generation in a drained and farmed closed depression in north‐eastern Indiana, USA. Results showed that both surface flow and subsurface tile flow displayed a threshold relationship with the sum of rainfall amount and soil moisture deficit (SMD). Neither surface flow nor subsurface tile flow was observed unless rainfall amount exceeded the SMD. Timing of subsurface tile flow relative to soil moisture response on the shoulder slope of the depression indicated that the formation and drainage of perched water tables on depression hillslopes were likely the main mechanism that produced subsurface connectivity. Surface flow generation was delayed compared with subsurface tile flow during rainfall events due to differences in soil water storage along depression hillslopes and run‐off generation mechanisms. These findings highlight the substantial impact of subsurface tile drainage on the hydrology of closed depressions; the bottom of the depression, the wettest area prior to drainage installation, becomes the driest part of the depression after installation of subsurface drainage. Rapid connectivity of localized subsurface saturation zones during rainfall events is also greatly enhanced because of subsurface drainage. Thus, less fill is required to generate substantial spill. Understanding hydrologic processes in drained and farmed closed depressions is a critical first step in developing improved water and nutrient management strategies in this landscape.  相似文献   

9.
The spatial and temporal characterization of geochemical tracers over Alpine glacierized catchments is particularly difficult, but fundamental to quantify groundwater, glacier melt, and rain water contribution to stream runoff. In this study, we analysed the spatial and temporal variability of δ2H and electrical conductivity (EC) in various water sources during three ablation seasons in an 8.4‐km2 glacierized catchment in the Italian Alps, in relation to snow cover and hydro‐meteorological conditions. Variations in the daily streamflow range due to melt‐induced runoff events were controlled by maximum daily air temperature and snow covered area in the catchment. Maximum daily streamflow decreased with increasing snow cover, and a threshold relation was found between maximum daily temperature and daily streamflow range. During melt‐induced runoff events, stream water EC decreased due to the contribution of glacier melt water to stream runoff. In this catchment, EC could be used to distinguish the contribution of subglacial flow (identified as an end member, enriched in EC) from glacier melt water to stream runoff, whereas spring water in the study area could not be considered as an end member. The isotopic composition of snow, glacier ice, and melt water was not significantly correlated with the sampling point elevation, and the spatial variability was more likely affected by postdepositional processes. The high spatial and temporal variability in the tracer signature of the end members (subglacial flow, rain water, glacier melt water, and residual winter snow), together with small daily variability in stream water δ2H dynamics, are problematic for the quantification of the contribution of the identified end members to stream runoff, and call for further research, possibly integrated with other natural or artificial tracers.  相似文献   

10.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A new parameter parsimonious rainfall–run‐off model, the Distance Distribution Dynamics (DDD) model, is used to simulate hydrological time series at ungauged sites in the Lygne basin in Norway. The model parameters were estimated as functions of catchment characteristics determined by geographical information system. The multiple regression equations relating catchment characteristics and model parameters were trained from 84 calibrated catchments located all over Norway, and all model parameters showed significant correlations with catchment characteristics. The significant correlation coefficients (with p‐value < 0.05) ranged from 0.22 to 0.55. The suitability of DDD for predictions in ungauged basins was tested for 17 catchments not used to estimate the multiple regression equations. For ten of the 17 catchments, deviations in Nash–Sutcliffe efficiency (NSE) criteria between the calibrated and regionalised model were less than 0.1, and for two calibrated catchments within the Lygne basin, the deviations were less than 0.08. The median NSE for the regionalized DDD for the 17 catchments for two time series was 0.66 and 0.72. Deviations in NSE between calibrated and regionalised models are well explained by the deviations between calibrated and regressed parameters describing spatial snow distribution and snowmelt respectively. The quality of the simulated run‐off series for the ungauged sites in the Lygne basin was assessed by comparing flow indices describing high, medium and low flow estimated from observed run‐off at the 17 catchments and for the simulated run‐off series. The indices estimated for the simulated series were generally well within the ranges defined by the 17 observed series. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, we investigated rainfall, run‐off, and sediment transport dynamics (414 run‐off events and 231 events with sediment information) of a humid mountain badland area—the Araguás catchment (Central Pyrenees, Spain)—from October 2005 to September 2016. Use of this long‐term database allows characterization of the hydrological response, which consist of low‐magnitude/high‐frequency events and high‐magnitude/low‐frequency events, and identification of seasonal dynamics and rainfall‐run‐off thresholds. Our results indicate that the Araguás catchment, similarly to other humid badlands, had high hydrological responsiveness (mean annual run‐off coefficient: 0.52), a non‐linear relationship of rainfall with run‐off (common in Mediterranean environments), and seasonal hydrological and sedimentological dynamics. We created and validated a multivariate regression model to characterize the hydrological variables (stormflow and peak discharge) and sedimentological variables (mean and maximum suspended sediment concentrations and total suspended sediment load). In summer and at the beginning of autumn, the response was mainly related to rainfall intensity, suggesting a predomination of Hortonian flows. In contrast, in spring and winter, the responses were mainly related to the antecedent conditions (previous rainfall and baseflow), suggesting the occurrence of saturated excess flow processes, and the contribution of neighbouring vegetated areas. The multivariate analysis also showed that total sediment load is better predicted by a multivariate regression model that integrates pre‐event, rainfall, and run‐off variables. In general, our models provided more accurate predictions of small‐magnitude/high‐frequency events than high‐magnitude/low‐frequency events. This study highlights the high inter‐ and intra‐annual variability response in humid badland areas and that long‐term records are needed to reduce the uncertainty of hydrological and sedimentological responses in Mediterranean badland areas.  相似文献   

13.
The understanding of the hydrology of plain basins may be improved by the combined analysis of rainfall–run‐off records and remote sensed surface moisture data. Our work evaluates the surface moisture area (SMA) produced during rainfall–run‐off events in a plain watershed of the Argentine Pampas Region, and studies which hydrological variables are related to the generated SMA. The study area is located in the upper and middle basins of the Del Azul stream, characterized by the presence of small gently hilly areas surrounded by flat landscapes. Data from 9 rainfall–run‐off events were analysed. MODIS surface reflectance data were processed to calculate SMA subsequent to the peak discharge (post‐SMA), and previous to the rainfall events (prev‐SMA), to consider the antecedent wetness. Rainfall–run‐off data included total precipitation depth (P), maximum intensity of rainfall over 6 hr (I6max), surface run‐off registered between the beginning of the event and the day previous to the analysed MODIS scene (R), peak flow (Qp), and flood intensity (IF). In contrast with other works, post‐SMA showed a negative relationship with the R. Three groups of cases were identified: (a) Events of low I6max, high prev‐SMA, and low R were associated with slow and weakly channelized flow over plain areas, leading to saturated overland flow (SOF), with large SMA; (b) events of high I6max, low prev‐SMA, and medium to high R were rapidly transported along the gentle slopes of the basin, related to Hortonian overland flow (HOF) and low post‐SMA; and (c) events of medium to high I6max and prev‐SMA with medium R were related to heterogeneous input‐antecedent‐run‐off conditions combined: Local spatial conditions may have produced HOF or SOF, leading to an averaged response with medium SMA. The interactions between the geomorphology of the basin, the characteristics of the events, and the antecedent conditions may explain the obtained results. This analysis is relevant for the general knowledge of the hydrology of large plains, whose functioning studies are still in their early stages.  相似文献   

14.
In this study, summer rainfall contributions to streamflow were quantified in the sub‐arctic, 30% glacierized Tarfala (21.7 km2) catchment in northern Sweden for two non‐consecutive summer sampling seasons (2004 and 2011). We used two‐component hydrograph separation along with isotope ratios (δ18O and δD) of rainwater and daily streamwater samplings to estimate relative fraction and uncertainties (because of laboratory instrumentation, temporal variability and spatial gradients) of source water contributions. We hypothesized that the glacier influence on how rainfall becomes runoff is temporally variable and largely dependent on a combination of the timing of decreasing snow cover on glaciers and the relative moisture storage condition within the catchment. The results indicate that the majority of storm runoff was dominated by pre‐event water. However, the average event water contribution during storm events differed slightly between both years with 11% reached in 2004 and 22% in 2011. Event water contributions to runoff generally increased over 2011 the sampling season in both the main stream of Tarfala catchment and in the two pro‐glacial streams that drain Storglaciären (the largest glacier in Tarfala catchment covering 2.9 km2). We credit both the inter‐annual and intra‐annual differences in event water contributions to large rainfall events late in the summer melt season, low glacier snow cover and elevated soil moisture due to large antecedent precipitation. Together amplification of these two mechanisms under a warming climate might influence the timing and magnitude of floods, the sediment budget and nutrient cycling in glacierized catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Surface hydrological behaviour is important in drylands because it affects the distribution of soil moisture and vegetation and the hydrological functioning of slopes and catchments. Microplot scale run‐off can be relatively easily measured, i.e. by rainfall simulations. However, slope or catchment run‐off cannot be deduced from microplots, requiring long‐time monitoring, because run‐off coefficients decrease with increasing drainage area. Therefore, to determine the slope length covered by run‐off (run‐off length) is crucial to connect scales. Biological soil crusts (BSCs) are good model systems, and their hydrology at slope scale is insufficiently known. This study provides run‐off lengths from BSCs, by field factorial experiments using rainfall simulation, including two BSC types, three rain types, three antecedent soil moistures and four plot lengths. Data were analysed by generalized linear modelling, including vascular plant cover as covariates. Results were the following: (i) the real contributing area is almost always much smaller than the topographical contributing area; (ii) the BSC type is key to controlling run‐off; run‐off length reached 3 m on cyanobacterial crust, but hardly over 1 m on lichen crust; this pattern remained through rain type or soil moisture; (iii) run‐off decreased with BSC development because soil sealing disappears; porosity, biomass and roughness increase and some changes occur in the uppermost soil layer; and (iv) run‐off flow increased with both rain type and soil moisture but run‐off coefficient only with soil moisture (as larger rains increased both run‐off and infiltration); vascular plant cover had a slight effect on run‐off because it was low and random. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Gang Liu  Fuguo Tong  Bin Tian 《水文研究》2019,33(26):3378-3390
This work introduces water–air two‐phase flow into integrated surface–subsurface flow by simulating rainfall infiltration and run‐off production on a soil slope with the finite element method. The numerical model is formulated by partial differential equations for hydrostatic shallow flow and water–air two‐phase flow in the shallow subsurface. Finite element computing formats and solution strategies are presented to obtain a numerical solution for the coupled model. An unsaturated seepage flow process is first simulated by water–air two‐phase flow under the atmospheric pressure boundary condition to obtain the rainfall infiltration rate. Then, the rainfall infiltration rate is used as an input parameter to solve the surface run‐off equations and determine the value of the surface run‐off depth. In the next iteration, the pressure boundary condition of unsaturated seepage flow is adjusted by the surface run‐off depth. The coupling process is achieved by updating the rainfall infiltration rate and surface run‐off depth sequentially until the convergence criteria are reached in a time step. A well‐conducted surface run‐off experiment and traditional surface–subsurface model are used to validate the new model. Comparisons with the traditional surface–subsurface model show that the initiation time of surface run‐off calculated by the proposed model is earlier and that the water depth is larger, thus providing values that are closer to the experimental results.  相似文献   

17.
The level of complexity, and the number of parameters, to include in a hydrological model is a relatively contentious issue in hydrological modelling. However, it can be argued that explicitly representing important run‐off generation processes can improve the practical value of a model's outputs. This paper explores the benefits of including a new function into an existing semi‐distributed hydrological model (the Pitman model) that is widely used in the sub‐Saharan Africa region. The new function was designed to represent saturation‐excess surface run‐off processes at subcatchment scales and was motivated by the evidence of dambo (low topography riparian areas) type features in many sub‐Saharan river basins. The results for uncertainty versions of the model, with and without the new function, were compared for 25 catchments, which were divided up into those where evidence of dambos exists and those where there is no such evidence. The results suggest that the new function certainly improves the model results for the catchments where dambos exist, but not in situations where saturation‐excess surface run‐off is not expected to occur. The overall conclusion is therefore that the addition of the new function is justified.  相似文献   

18.
The Loess Plateau has been experiencing large‐scale land use and cover changes (LUCCs) over the past 50 years. It is well known about the significant decreasing trend of annual streamflow and sediment load in the catchments in this area. However, how surface run‐off and sediment load behaved in response to LUCC at flood events remained a research question. We investigated 371 flood events from 1963 to 2011 in a typical medium‐sized catchment within the Plateau in order to understand how LUCC affected the surface run‐off generation and sediment load and their behaviours based on the analysis of return periods. The results showed that the mean annual surface run‐off and sediment load from flood events accounted for 49.6% and 91.8% of their mean annual totals. The reduction of surface run‐off and associated sediment yield in floods explained about 85.0% and 89.2% of declines in the total annual streamflow and sediment load, respectively. The occurrences of flood events and peak sediment concentrations greater than 500 kg/m3 showed a significantly downward trend, yet the counterclockwise loop events still dominated the flood event processes in the catchment. The results suggest that LUCC over the past 50 years resulted in significant changes in the water balance components and associated soil erosion and sediment transportation in the catchment. This was achieved mainly by reducing surface run‐off and sediment yield during floods with return period of less than 5 years. Run‐off–sediment load behaviour during the extreme events with greater than 10‐year return periods has not changed. Outcomes from this study are useful in understanding the eco‐hydrological processes and assisting the sustainable catchment management and land use planning on the Loess Plateau, and the methodologies are general and applicable to similar areas worldwide.  相似文献   

19.
Sediment transport during flood events often reveals hysteretic patterns because flow discharge can peak before (counterclockwise hysteresis) or after (clockwise hysteresis) the peak of bedload. Hysteresis in sediment transport has been used in the literature to infer the degree of sediment availability. Counterclockwise and clockwise hysteresis have been in fact interpreted as limited and unlimited sediment supply conditions, respectively. Hysteresis has been mainly explored for the case of suspended sediment transport, but it was rarely reported for bedload transport in mountain streams. This work focuses on the temporal variability of bedload transport in an alpine catchment (Saldur basin, 18.6 km2, Italian Alps) where bedload transport was monitored by means of an acoustic pipe sensor which detects the acoustic vibrations induced by particles hitting a 0.5m‐long steel pipe. Runoff dynamics are dominated by snowmelt in late spring/early summer, mostly by glacier melt in late summer/early autumn, and by a combination of the snow and glacier melt in mid‐summer. The results indicate that hysteretic patterns during daily discharge fluctuations are predominantly clockwise during the snowmelt period, likely due to the ready availability of unpacked sediments within the channel or through bank erosion in the lower part of the basin. On the contrary, counterclockwise hysteresis tend to be more frequent during late glacier melting period, possibly due to the time lag needed for sediment provided by the glacial and peri‐glacial area to be transported to the monitoring section. However, intense rainfall events occurring during the glacier melt period generated predominantly clockwise hysteresis, thus indicating the activation of different sediment sources. These results indicate that runoff generation processes play a crucial role on sediment supply and temporal availability in mountain streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The Kidd Creek Cu---Zn sulphide mine is located near Timmins, Ontario. Mill tailings are thickened and deposited as a thickened slurry in a circular, conical-shaped pile with an area of approximately 1200 ha. Deposition of tailings as a thickened slurry results in a relatively uniform grain-size distribution and hydraulic conductivity, and a thick tension-saturated zone above the water table. The tailings are drained by numerous small, ephemeral stream channels, which have developed in a radial pattern. During storms, water from these streams collects in catchment ponds where it is held before treatment. The contribution of tailings pore water to the run off is of interest because of the potential for discharge of pore water containing high concentrations of Fe(II)-acidity, metals and SO4 to the stream. Hydraulic head measurements, measurements of water-table elevation and groundwater flow modelling were conducted to determine the mechanisms responsible for tailings pore water entering the surface streams. Chemical hydrograph separation of storm run off in one of these streams, during three rainfall events, using Na and Cl as conservative tracers, indicates that the integrated tailings pore water fraction makes up between less than 1 % and 20% of the total hydrograph. This range is less than the maximum fraction of tailings pore water of 22–65% reported for run off from a conventional tailings deposit. At this site, preferential flow through permeable fractures may be the dominant mechanism causing discharge of tailings pore water to storm run off. Estimates of the mass of Fe(II) that discharges to the surface run off from the pore water range up to 2800 mg s−1 during a moderate intensity, long duration rainfall event. The greatest potential for discharge of significant masses of solutes derived from the pore water exists during long duration rainfall events, when the water table rises to the surface over large areas of the tailings impoundment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号