首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study develops a novel approach for modelling and examining the impacts of time–space land‐use changes on hydrological components. The approach uses an empirical land‐use change allocation model (CLUE‐s) and a distributed hydrological model (DHSVM) to examine various land‐use change scenarios in the Wu‐Tu watershed in northern Taiwan. The study also uses a generalized likelihood uncertainty estimation approach to quantify the parameter uncertainty of the distributed hydrological model. The results indicate that various land‐use policies—such as no change, dynamic change and simultaneous change—have different levels of impact on simulating the spatial distributions of hydrological components in the watershed study. Peak flow rates under simultaneous and dynamic land‐use changes are 5·71% and 2·77%, respectively, greater than the rate under the no land‐use change scenario. Using dynamic land‐use changes to assess the effect of land‐use changes on hydrological components is more practical and feasible than using simultaneous land‐use change and no land‐use change scenarios. Furthermore, land‐use change is a spatial dynamic process that can lead to significant changes in the distributions of ground water and soil moisture. The spatial distributions of land‐use changes influence hydrological processes, such as the ground water level of whole areas, particularly in the downstream watershed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Depending on season, rainfall characteristics and tree species, interception amounts to 15–50% of total precipitation in a forest under temperate climates. Many studies have investigated the importance of interception of different tree species in all kinds of different climates. Often authors merely determine interception storage capacity of that specific species and the considered event, and only sometimes a distinction is made between foliated and non‐foliated trees. However, interception is highly variable in time and space. First, since potential evaporation is higher in summer, but secondly because the storage capacity has a seasonal pattern. Besides weather characteristics, such as wind and rain intensity, snow causes large variations in the maximum storage capacity. In an experimental beech plot in Luxembourg, we found storage capacity of canopy interception to show a clear seasonal pattern varying from 0·1 mm in winter to 1·2 mm in summer. The capacity of the forest floor appears to be rather constant over time at 1·8 mm. Both have a standard deviation as high as ± 100%. However, the process is not sensitive to this variability resulting only in 11% variation of evaporation estimates. Hence, the number of raindays and the potential evaporation are stronger driving factors on interception. Furthermore, the spatial correlation of the throughfall and infiltration has been investigated with semi‐variograms and time stability plots. Within 6–7 m distance, throughfall and infiltration are correlated and the general persistence is rather weak. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Many plot‐scale studies have shown that snow‐cover dynamics in forest gaps are distinctly different from those in open and continuously forested areas, and forest gaps have the potential to alter the magnitude and timing of snowmelt. However, the watershed‐level impacts of canopy gap treatment on streamflows are largely unknown. Here, we present the first research that explicitly assesses the impact of canopy gaps on seasonal streamflows and particularly late‐season low flows at the watershed scale. To explicitly model forest–snow interactions in canopy gaps, we made major enhancements to a widely used distributed hydrologic model, distributed hydrology soil vegetation model, with a canopy gap component that represents physical processes of snowpack evolution in the forest gap separately from the surrounding forest on the subgrid scale (within a grid typically 10–150 m). The model predicted snow water equivalent using the enhanced distributed hydrology soil vegetation model showed good agreement (R2 > 0.9) with subhourly snow water equivalent measurements collected from open, forested, and canopy gap sites in Idaho, USA. Compared with the original model that does not account for interactions between gaps and surrounding forest, the enhanced model predicted notably later melt in small‐ to medium‐size canopy gaps (the ratio of gap radius (r) to canopy height (h) ≤ 1.2), and snow melt rates exhibited great sensitivity to changing gap size in medium‐size gaps (0.5 ≤ r/h ≤ 1.2). We demonstrated the watershed‐scale implications of canopy gaps on streamflow in the snow‐dominated Chiwawa watershed, WA, USA. With 24% of the watershed drainage area (about 446 km2) converted to gaps of 60 m diameter, the mean annual 7‐day low flow was increased by 19.4% (i.e., 0.37 m3/s), and the mean monthly 7‐day low flows were increased by 13.5% (i.e., 0.26 m3/s) to 40% (i.e., 1.76 m3/s) from late summer through fall. Lastly, in practical implementation of canopy gaps with the same total gap areas, a greater number of distributed small gaps can have greater potential for longer snow retention than a smaller number of large gaps.  相似文献   

4.
Detailed hydrologic models require high‐resolution spatial and temporal data. This study aims at improving the spatial interpolation of daily precipitation for hydrologic models. Different parameterizations of (1) inverse distance weighted (IDW) interpolation and (2) A local weighted regression (LWR) method in which elevation is the explanatory variable and distance, elevation difference and aspect difference are weighting factors, were tested at a hilly setting in the eastern Mediterranean, using 16 years of daily data. The preferred IDW interpolation was better than the preferred LWR scheme in 27 out of 31 validation gauges (VGs) according to a criteria aimed at minimizing the absolute bias and the mean absolute error (MAE) of estimations. The choice of the IDW exponent was found to be more important than the choice of whether or not to use elevation as explanatory data in most cases. The rank of preferred interpolators in a specific VG was found to be a stable local characteristic if a sufficient number of rainy days are averaged. A spatial pattern of the preferred IDW exponents was revealed. Large exponents (3) were more effective closer to the coast line whereas small exponents (1) were more effective closer to the mountain crest. This spatial variability is consistent with previous studies that showed smaller correlation distances of daily precipitation closer to the Mediterranean coast than at the hills, attributed mainly to relatively warm sea‐surface temperature resulting in more cellular convection coastward. These results suggest that spatially variable, physically based parameterization of the distance weighting function can improve the spatial interpolation of daily precipitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
太湖霍甫水丝蚓(Limnodrilus hoffmeisteri Claparède)的时空格局   总被引:1,自引:1,他引:0  
2005年1-12月对太湖霍甫水丝蚓进行了逐月调查.太湖霍甫水丝蚓年均密度和生物量分别为3273.75 ind./m2和4.697 g/m2,均在2月份达到最大值.根据体长频数分布的周年变化,推测太湖霍甫水丝蚓一年有三代.太湖霍甫水丝蚓密度和生物量在空间上表现出明显的差异性,且随季节变化较小,其高值区域均出现在太湖北部梅梁湾和竺山湾及西部河口湖区,而在其它区域的现存量均较低.分析表明太湖霍甫水丝蚓空间差异可能与营养水平、底质类型、可摄食的食物及生境的稳定性等因素有关.  相似文献   

6.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   

7.
Spatial patterns of rainfall are known to cause differences in observed flow. In this paper, the effects of perturbations in rainfall patterns on changes in parameter sets as well as model output are explored using the hydrological model Dynamic TOPMODEL for the Brue catchment (135 km2) in southwest England. Overall rainfall amount remains the same at each time step so the perturbations act as effectively treated errors in the spatial pattern. The errors were analysed with particular emphasis on when they could be detected under an uncertainty framework. Higher rainfall perturbations (multipliers of × 4 and greater) in the low lying and high areas of the catchment resulted in changes to event peaks and accompanying compensation in the baseflow. More significantly, changes in the effective model parameter values required by the best models to take account of the more extreme patterns were able to be detected by noting when distributions of parameters change under uncertainty. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Stable isotopes of water can give clues to the physical processes of forest canopy interception. We examined whether fine‐scale canopy structure is related to throughfall amount and isotopic variation by intensively quantifying both throughfall and canopy structure in a broadleaf, deciduous forest in Louisiana, USA. Local throughfall amount was correlated with canopy structure quantified as distance to the nearest tree, local crown coverage, and local crown length; isotopic composition was also correlated with the same variables but weakly. Spatial patterns of throughfall amount showed some consistency across storms, but spatial patterns of stable isotopes were much weaker and inconsistent. Spatial autocorrelation was consistent in throughfall amount across events, which suggests fixed controls over patterning of throughfall to the forest floor by the canopy. In contrast, lower spatial and temporal autocorrelation in isotopic composition suggested temporally varying controls over patterning, and that routing through the canopy, intra‐storm isotopic variation of rainfall, isotopic exchange, and evaporation interacted to affect the stable isotopic composition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Shang Gao  Zheng N. Fang 《水文研究》2019,33(21):2729-2744
A synthetic storm generator—Dynamic Moving Storm (DMS)—is developed in this study to represent spatio‐temporal variabilities of rainfall and storm movement in synthetic storms. Using an urban watershed as the testbed, the authors investigate the hydrologic responses to the DMS parameters and their interactions. In order to reveal the complex nature of rainfall–run‐off processes, previously simplified assumptions are relaxed in this study regarding (a) temporal variability of rainfall intensity and (b) time‐invariant flow velocity in channel routing. The results of this study demonstrate the significant contribution of storm moving velocity to the variation of peak discharge based on a global sensitivity analysis. Furthermore, a pairwise sensitivity analysis is conducted to elucidate not only the patterns in individual contributions from parameters to hydrologic responses but also their interactions with storm moving velocity. The intricacies of peak discharges resulting from sensitivity analyses are then dissected into independent hydrologic metrics, that is, run‐off volume and standard deviation of run‐off timings, for deeper insights. It is confirmed that peak discharge is increased when storms travel downstream along the main channel at the speed that corresponds to a temporal superposition of run‐off. Spatial concentration of catchment rainfall is found to be a critical linkage through which characteristics of moving storms affect peak discharges. In addition, altering peak timing of rainfall intensity in conjunction with storm movement results in varied storm core locations in the channel network, which further changes the flow attenuation effects from channel routing. For future directions, the DMS generator will be embedded in a stochastic modelling framework and applied in rainfall/flow frequency analysis.  相似文献   

10.
Spatial variability of throughfall (TF) isotopic composition, used as tracer input, influences isotope hydrological applications in forested watersheds. Notwithstanding, identification of the dominant canopy factors and processes that affect the patterns of TF isotopic variability remains ambiguous. Here, we examined the spatio‐temporal variability of TF isotopic composition in a Japanese cypress plantation, in which intensive strip thinning was performed and investigated whether canopy structure at a fine resolution of canopy effect analysis is related to TF isotopic composition and how this is affected by meteorological factors. Canopy openness, as an index of canopy structure, was calculated from hemispherical photographs at different zenith angles. TF samples were collected in a 10 × 10 m experimental plot in both pre‐thinning (from July to November 2010) and post‐thinning (from May 2012 to March 2013) periods. Our results show that thinning resulted in a smaller alteration of input δ18O of gross precipitation, whereas the changes in deuterium excess varied in both directions. Despite the temporal stability of spatial patterns in TF amount, the spatial variability of TF isotopic composition was not temporally stable in both pre‐ and post‐thinning periods. Additionally, after thinning, the isotopic composition of TF was best related to canopy openness calculated at the zenith angle of 7°, exhibiting three different relationships, that is, significantly negative, significantly positive, and nonsignificant. Changes in meteorological factors (wind speed, rainfall intensity, and temperature) were found to affect the relationships between TF δ18O and canopy openness. The observed shifts in the relationships reveal different dominant factors (partial evaporation and the selection), and canopy water flowpaths control such differences. This study provides useful insights into the spatial variability of TF isotopic composition and improves our understanding of the physical processes of interception through canopy passage.  相似文献   

11.
Understanding the dynamics of spatial and temporal variability of soil moisture at the regional scale and daily interval, respectively, has important implications for remote sensing calibration and validation missions as well as environmental modelling applications. The spatial and temporal variability of soil moisture was investigated in an agriculturally dominated region using an in‐situ soil moisture network located in central Saskatchewan, Canada. The study site evaluated three depths (5, 20, 50 cm) through 139 days producing a high spatial and temporal resolution data set, which were analysed using statistical and geostatistical means. Processes affecting standard deviation at the 5‐cm depth were different from the 20‐cm and 50‐cm depths. Deeper soil measurements were well correlated through the field season. Further analysis demonstrated that lag time to maximum correlation between soil depths increased through the field season. Temporal autocorrelation was approximately twice as long at depth compared to surface soil moisture as measured by the e‐folding frequency. Spatial correlation was highest under wet conditions caused by uniform rainfall events with low coefficient of variation. Overall soil moisture spatial and temporal variability was explained well by rainfall events and antecedent soil moisture conditions throughout the Kenaston soil moisture network. It is expected that the results of this study will support future remote sensing calibration and validation missions, data assimilation, as well as hydrologic model parameterization for use in agricultural regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
通过分析某一区域地震事件的时空演化过程可以了解该区域地震的演化特征,为评估该地区地震的危险性提供依据。基于中国地震科学实验场2000年至2019年3.0级以上的地震事件数据,利用加权平均中心、标准差椭圆和全局空间自相关等空间统计学方法探索该地区地震事件的时空演变规律。结果表明:(1)汶川地震之后该地区地震的发生频次总体呈现出下降趋势,地震的活动性逐渐减弱。(2)地震加权平均中心呈现出"折返"型的移动规律,在东北-西南方向上来回震荡。(3)地震事件的空间分布呈现"东北-西南"格局走向,与映秀-北川断裂带的方向基本一致。(4)该地区地震事件的空间分布模式以聚集模式为主,且正处于上升阶段,但上升速度较为缓慢。  相似文献   

13.
Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil–water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996–2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5‐year period. Intra‐annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
利用2000-2010年每年5-9月MODIS数据根据比值算法提取乌梁素海湖区黄苔的面积和空间分布信息并进行统计分析,探求乌梁素海黄苔产生的时空分布规律及特征,从而为黄苔的预防和治理提供支持.结果表明:(1)黄苔面积变化的年际和月际特征方面,2000、2001、2005、2006、2008、2010年黄苔面积超过了多年平均值(24 km2).5—7月份黄苔面积较小,保持在20 km2左右;8月黄苔面积迅速增长(约28 km2),9月黄苔面积最大,达到40 km2左右.(2)黄苔发生频率方面,2001年黄苔的规模和频率最高,发生频率达到0.58;2005、2006、2010年次之,发生频率在0.25附近波动(多年年均黄苔暴发频率为0.19);其他年份黄苔的发生频率处于低于0.10的水平.黄苔发生规模较大、次数较多的月份集中在8、9月,发生频率分别达到0.27、0.52,超过多年月均黄苔暴发频率0.19;其他月份黄苔的发生频率处于低于0.10的水平.(3)黄苔出现的空间分布方面,西大滩为东大滩的北部至中部,以及乌梁素海南部明水区排干口附近的西部沿岸是黄苔出现频率较高的区域.(4)2个月前的日均温度、降雨和营养盐浓度及当月风速与黄苔的产生具有极显著相关性;营养盐含量(TN、TP)的空间分布与黄苔的空间分布表现出较好的相关性.乌梁素海黄苔面积的年际变化受人类活动特别是生态补水的影响明显.  相似文献   

15.
利用Arc GIS空间插值的方法,通过2013年逐月监测(12个月)36个站点水量及不同形态磷浓度,揭示滇池水体磷浓度和磷负荷的时空变化,并探讨不同形态磷负荷的组成贡献,旨在为进一步实施滇池水污染治理及污染负荷控制提供依据.结果表明:滇池水体总磷(TP)浓度在0.13~0.46 mg/L之间,其中颗粒态磷(PP)浓度占TP浓度的72.6%,溶解性活性磷(SRP)浓度占TP浓度的12.8%,溶解性有机磷(DOP)浓度占TP浓度的14%;2013年水体TP负荷为251 t/a,其中PP负荷为190 t/a,SRP负荷为26 t/a,DOP负荷为34 t/a;滇池水体PP负荷对TP负荷的贡献最大,为76%,其次为DOP和SRP,贡献分别为13%和10%;TP及不同形态磷浓度与其负荷在季节分布上差异显著,负荷随季节变化呈现秋、冬季较高,春、夏季较低,而浓度呈现夏、秋季较高,冬、春季相对较低的趋势.定量评估滇池水体不同形态磷负荷及其组成贡献,对进一步揭示滇池藻源和泥源内负荷对水污染的贡献具有重要意义.  相似文献   

16.
Introduction In recent years the study of the digital seismology has made great progress due to the wide use of the broadband digital records. And many fine results of the focal theory have obtained. The focal theory mainly studies the physical process of the seismic fracture and production of the seismic wave, as well as its traveling process. One of the great progresses is to simulate the fracture process in the active fault. Especially a new concept of the fracture mechanics has been intro…  相似文献   

17.
千岛湖叶绿素a的时空分布及其与影响因子的相关分析   总被引:5,自引:6,他引:5  
为了解千岛湖在大量放养鲢鳙鱼后叶绿素a的时空分布格局及其与主要环境因子的相关性,本文于2007年1月至2009年12月对千岛湖叶绿素a及其他10个水质理化指标进行了每月定期采样及监测.结果表明:上游河流区和过渡区叶绿素a含量存在明显的季节变化,其共同特点是每年会形成春季和夏末秋初的双高峰.叶绿素a含量在空间分布上具有一...  相似文献   

18.
巢湖富营养化的历程、空间分布与治理策略(1984-2013年)   总被引:7,自引:13,他引:7  
张民  孔繁翔 《湖泊科学》2015,27(5):791-798
通过文献调研,分析巢湖富营养化的历程及其与合肥市社会、经济与人口发展的关系,同时利用遥感解译和野外调查监测方法分析2012和2013年巢湖主要富营养化指标及蓝藻水华的空间分布特征,并进一步探讨各个阶段湖泊治理措施对巢湖富营养化过程的影响.研究发现:近30年间,1984-1994年是巢湖水质的主要恶化阶段,在1990s中期巢湖的富营养化达到了近30年的峰值,这主要是经济快速发展、污染治理投入有限所致;1995-2007年,巢湖的水质逐步改善,恢复到1980s中期略高的水平,这得益于"九五"和"十五"期间的大量投入,对污、废水进行处理,限制了污染物直接入湖;但是2008年以来,巢湖的水质改善效果并不明显,富营养化维持在较高水平波动,这可能是因为合肥市经济快速发展背景下,原有的污、废水处理后入湖的减排方式已经不能进一步有效削减巢湖的污染负荷.巢湖富营养化在空间分布上呈现西高东低的渐变趋势,这主要是由西部主要入湖河流污染所致.通过对比2012和2013年的空间分布数据发现,2013年主要入湖污染河流河口水质相对2012年均有所好转,其中十五里河河口的好转比南淝河河口明显.综合长期及全湖富营养化水平的变化分析,现阶段巢湖富营养化的治理亟需改变经济发展模式,调整产业结构,实施污废水尾水提标改造、畜禽养殖污染控制和面源污染控制等控源工程,以进一步降低巢湖的富营养化程度.  相似文献   

19.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The Puget Sound basin in northwestern Washington, USA has experienced substantial land cover and climate change over the last century. Using a spatially distributed hydrology model (the Distributed Hydrology‐Soil‐Vegetation Model, DHSVM) the concurrent effects of changing climate (primarily temperature) and land cover in the basin are deconvolved, based on land cover maps for 1883 and 2002, and gridded climate data for 1915–2006. It is found that land cover and temperature change effects on streamflow have occurred differently at high and low elevations. In the lowlands, land cover has occurred primarily as conversion of forest to urban or partially urban land use, and here the land cover signal dominates temperature change. In the uplands, both land cover and temperature change have played important roles. Temperature change is especially important at intermediate elevations (so‐called transient snow zone), where the winter snow line is most sensitive to temperature change—notwithstanding the effects of forest harvest over the same part of the basin. Model simulations show that current land cover results in higher fall, winter and early spring streamflow but lower summer flow; higher annual maximum flow and higher annual mean streamflow compared with pre‐development conditions, which is largely consistent with a trend analysis of model residuals. Land cover change effects in urban and partially urban basins have resulted in changes in annual flow, annual maximum flows, fall and summer flows. For the upland portion of the basin, shifts in the seasonal distribution of streamflows (higher spring flow and lower summer flow) are clearly related to rising temperatures, but annual streamflow has not changed much. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号