首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
River water temperature is an important water quality parameter that also influences most aquatic life. Physical processes influencing water temperature in rivers are highly complex. This is especially true for the estimation of river heat exchange processes that are highly dependent on good estimates of radiation fluxes. Furthermore, very few studies were found within the stream temperature dynamic literature where the different radiation components have been measured and compared at the stream level (at microclimate conditions). Therefore, this study presents results on hydrometeorological conditions for a small tributary within Catamaran Brook (part of the Miramichi River system, New Brunswick, Canada) with the following specific objectives: (1) to compare between stream microclimate and remote meteorological conditions, (2) to compare measured long‐wave radiation data with those calculated from an analytical model, and (3), to calculate the corresponding river heat fluxes. The most salient findings of this study are (1) solar radiation and wind speed are parameters that are highly site specific within the river environment and play an important role in the estimation of river heat fluxes; (2) the incoming, outgoing, and net long‐wave radiation within the stream environment (under the forest canopy) can be effectively calculated using empirical formula; (3) at the study site more than 80% of the incoming long‐wave radiation was coming from the forest; (4) total energy gains were dominated by solar radiation flux (for all the study periods) followed by the net long‐wave radiation (during some periods) whereas energy losses were coming from both the net long‐wave radiation and evaporation. Conductive heat fluxes have a minor contribution from the overall heat budget (<3·5%); (5) the reflected short‐wave radiation at the water surface was calculated on average as 3·2%, which is consistent with literature values. Results of this study contribute towards a better understanding of river heat fluxes and water temperature models as well as for more effective aquatic resources and fisheries management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
River water temperature is a very important variable in ecological studies, especially for the management of fisheries and aquatic resources. Temperature can impact on fish distribution, growth, mortality and community dynamics. River evaporation has been identified as an important heat loss and a key process in the thermal regime of rivers. However, its quantification remains a challenge, mainly because of the difficulty of making direct measurements. The objectives of this study were to characterize the evaporative heat flux at different scales (brook vs river) and to improve the estimation of the evaporative heat flux in a stream temperature model at the hourly timescale. Using a mass balance approach with floating minipans, we measured river evaporation at an hourly timescale in a medium‐sized river (Little Southwest Miramichi) and a small brook (Catamaran Brook) in New Brunswick, Canada. With these direct measurements of evaporation, we developed mass transfer equations to estimate hourly evaporation rates from microclimate conditions measured 2 m above the stream. During the summer 2012, river evaporation was more important for the medium‐sized river with a mean daily evaporation rate of 3.0 mm day?1 in the Little Southwest Miramichi River compared with that of 1.0 mm day?1 in Catamaran Brook. Evaporation was the main heat loss mechanism in the two studied streams and was responsible for 42% of heat losses in the Little Southwest Miramichi River and 34% of heat losses in Catamaran Brook during the summer. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Water temperature is a key physical habitat determinant in lotic ecosystems as it influences many physical, chemical, and biological properties of rivers. Hence, a good understanding of the thermal regime of rivers and river heat fluxes is essential for effective management of water and fisheries resources. This study dealt with the modelling of river water temperature using a deterministic model. This model calculated the different heat fluxes at the water surface and from the streambed using different hydrometeorological conditions. The water temperature model was applied on two watercourses of different sizes and thermal characteristics, but within a similar meteorological region, namely, the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). The model was also applied using microclimate data, i.e. meteorological conditions within the river environment (1–2 m above the water surface), for a better estimation of river heat fluxes. Water temperatures at different depths within the riverbed were also used to estimate the streambed heat fluxes. Results showed that microclimate data were essential to get accurate estimates of the surface heat fluxes. Results also showed that for larger river systems, the surface heat fluxes were generally the dominant component of the heat budget with a correspondingly smaller contribution from the streambed. As watercourses became smaller and groundwater contribution more significant, the streambed contribution became important. For instance, approximately 80% of the heat fluxes occurred at the surface for Catamaran Brook (20% from the streambed) whereas the Little Southwest Miramichi River showed values closer to 90% (10% from the streambed). As was reported in previous studies, the solar radiation input dominated the contribution to the heat gain at 63% for Catamaran Brook and 89% for Little Southwest Miramichi River. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Water temperature influences most of the physical, chemical and biological properties of rivers. It plays an important role in the distribution of fish and the growth rates of many aquatic organisms. Therefore, a better understanding of the thermal regime of rivers is essential for the management of important fisheries resources. This study deals with the modelling of river water temperature using a new and simplified model based on the equilibrium temperature concept. The equilibrium temperature concept is an approach where the net heat flux at the water surface can be expressed by a simple equation with fewer meteorological parameters than required with traditional models. This new water temperature model was applied on two watercourses of different size and thermal characteristics, but within a similar meteorological region, i.e., the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). A study of the long‐term thermal characteristics of these two rivers revealed that the greatest differences in water temperatures occurred during mid‐summer peak temperatures. Data from 1992 to 1994 were used for the model calibration, while data from 1995 to 1999 were used for the model validation. Results showed a slightly better agreement between observed and predicted water temperatures for Catamaran Brook during the calibration period, with a root‐mean‐square error (RMSE) of 1·10 °C (Nash coefficient, NTD = 0·95) compared to 1·45 °C for the Little Southwest Miramichi River (NTD = 0·94). During the validation period, RMSEs were calculated at 1·31 °C for Catamaran Brook and 1·55 °C for the Little Southwest Miramichi River. Poorer model performances were generally observed early in the season (e.g., spring) for both rivers due to the influence of snowmelt conditions, while late summer to autumn modelling performances showed better results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Ground water discharge is often a significant factor in the quality of fish spawning and rearing habitat and for highly biologically productive streams. In the present study, water temperatures (stream and hyporheic) and seepage fluxes were used to characterize shallow ground water discharge and recharge within thestreambed of Catamaran Brook, a small Atlantic salmon (Salmo salar) stream in central New Brunswick, Canada. Three study sites were instrumented using a total of 10 temperature sensors and 18 seepage meters. Highly variable mean seepage fluxes, ranging from 1.7 x 10(-4) to 2.5 cm3 m(-2) sec(-1), and mean hyporheic water temperatures, ranging from 10.5 degrees to 18.0 degrees C, at depths of 20 to 30 cm in the streambed were dependent on streambed location (left versus right stream bank and site location) and time during the summer sampling season. Temperature data were usefulfor determining if an area of the streambed was under discharge (positive flux), recharge (negative flux), or parallel flow (no flux) conditions and seepage meters were used to directly measure the quantity of water flux. Hyporheic water temperature measurements and specific conductance measurements of the seepage meter sample water, mean values ranging from 68.8 to 157.9 microS/cm, provided additional data for determining flux sources. Three stream banks were consistently under discharge conditions, while the other three stream banks showed reversal from discharge to recharge conditions over the sampling season. Results indicate that the majority of the water collected in the seepage meters was composed of surface water. The data obtained suggests that even though a positive seepage flux is often interpreted as ground water discharge, this discharging water may be of stream water origin that has recently entered the hyporheic zone.The measurement of seepage flux in conjunction with hyporheic water temperature or other indicators of water origin should be considered when attempting to quantify the magnitude of exchange and the source of hyporheic water.  相似文献   

6.
Fish habitat and aquatic life in rivers are highly dependent on water temperature. Therefore, it is important to understand andto be able to predict river water temperatures using models. Such models can increase our knowledge of river thermal regimes as well as provide tools for environmental impact assessments. In this study, artificial neural networks (ANNs) will be used to develop models for predicting both the mean and maximum daily water temperature. The study was conducted within Catamaran Brook, a small drainage basin tributary to the Miramichi River (New Brunswick, Canada). In total, eight ANN models were investigated using a variety of input parameters. Of these models, four predicted mean daily water temperature and four predicted maximum daily water temperature. The best model for mean daily temperature had eight input parameters: minimum, maximum and mean air temperatures of the current day and those of the preceding day, the day of year and the water level. This model had an overall root‐mean‐square error (RMSE) of 0·96 °C, a bias of 0·26 °C and a coefficient of determination R2 = 0·971. The model that best predicted maximum daily water temperature was similar to the first model but excluded mean daily air temperature. Good results were obtained for maximum water temperatures with an overall RMSE of 1·18 °C, a bias of 0·15 °C and R2 = 0·961. The results of ANN models were similar to and/or better than those observed from the literature. The advantages of artificial neural networks models in modelling river water temperature lie in their simplicity of use, their low data requirement and their good performance, as well as their flexibility in allowing many input and output parameters. Copyright © 2008 Crown in the right of Canada and John Wiley & Sons, Ltd.  相似文献   

7.
Confluences are important locations for river mixing within drainage networks, yet few studies have examined in detail the dynamics of mixing within confluences. This study examines the influence of momentum flux ratio, the scale of the flow (cross‐sectional area) and the density differences between incoming flows on thermal mixing at a small stream confluence. Results reveal that rates and patterns of thermal mixing depend on event‐specific combinations of the three factors. The mixing interface at this confluence is generally distorted towards the mouth of the lateral tributary by strong helical motion associated with curvature of flow from the lateral tributary as it aligns with the downstream channel. As the momentum flux from the lateral tributary increases, mixing is enhanced because helical motion from the curving tributary flow expands over the width of the downstream channel. The cross‐sectional area of the flow is negatively correlated with mixing rates, suggesting that the amount of mixing over a fixed distance downstream of the confluence is inversely related to the scale of the flow. Density differences are not strongly related to rates of mixing. Results confirm that mixing rates within the region of confluent flow interaction can be highly variable among flow events with different incoming flow conditions, but that, in general, length scales of mixing are short, and rates of mixing are high at this small confluence compared with those typically documented at large‐river confluences. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The snowcover energy balance is typically dominated by net radiation and sensible and latent heat fluxes. Validation of the two latter components is rare and often difficult to undertake at complex mountain sites. Latent heat flux, the focus of this paper, is the primary coupling mechanism between the snow surface and the atmosphere. It accounts for the critical exchange of mass (sublimation or condensation), along with the associated snowcover energy loss or gain. Measured and modelled latent heat fluxes at a wind‐exposed and wind‐sheltered site were compared to evaluate variability in model parameters. A well‐tested and well‐validated snowcover energy balance model, Snobal, was selected for this comparison because of previously successful applications of the model at these sites and because of the adjustability of the parameters specific to latent heat transfer within the model. Simulated latent heat flux and snow water equivalent (SWE) were not sensitive to different formulations of the stability profile functions associated with heat transfer calculations. The model parameters of snow surface roughness length and active snow layer thickness were used to improve latent heat flux simulations while retaining accuracy in the simulation of the SWE at an exposed and sheltered study site. Optimal parameters for simulated latent heat flux and SWE were found at the exposed site with a shorter roughness length and thicker active layer, and at the sheltered site with a longer roughness length and thinner active layer. These findings were linked to physical characteristics of the study sites and will allow for adoption into other snow models that use similar parameters. Physical characteristics of wind exposure and cover could also be used to distribute critical parameters in a spatially distributed modelling domain and aid in parameter selection for application to other watersheds where detailed information is not available. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The influence of riparian woodland on stream temperature, micro‐climate and energy exchange was investigated over seven calendar years. Continuous data were collected from two reaches of the Girnock Burn (a tributary of the Aberdeenshire Dee, Scotland) with contrasting land use characteristics: (1) semi‐natural riparian forest and (2) open moorland. In the moorland reach, wind speed and energy fluxes (especially net radiation, latent heat and sensible heat) varied considerably between years because of variable riparian micro‐climate coupled strongly to prevailing meteorological conditions. In the forested reach, riparian vegetation sheltered the stream from meteorological conditions that produced a moderated micro‐climate and thus energy exchange conditions, which were relatively stable between years. Net energy gains (losses) in spring and summer (autumn and winter) were typically greater in the moorland than the forest. However, when particularly high latent heat loss or low net radiation gain occurred in the moorland, net energy gain (loss) was less than that in the forest during the spring and summer (autumn and winter) months. Spring and summer water temperature was typically cooler in the forest and characterised by less inter‐annual variability due to reduced, more inter‐annually stable energy gain in the forested reach. The effect of riparian vegetation on autumn and winter water temperature dynamics was less clear because of the confounding effects of reach‐scale inflows of thermally stable groundwater in the moorland reach, which strongly influenced the local heat budget. These findings provide new insights as to the hydrometeorological conditions under which semi‐natural riparian forest may be effective in mitigating river thermal variability, notably peaks, under present and future climates. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

10.
To evaluate the interactive effects of snow and forest on turbulent fluxes between the forest surface and the atmosphere, the surface energy balance above a forest was measured by the eddy correlation method during the winter of 1995–1996. The forest was a young coniferous plantation comprised of spruce and fir. The study site, in Sapporo, northern Japan, had heavy and frequent snowfalls and the canopy was frequently covered with snow during the study period. A comparison of the observed energy balance above the forest for periods with and without a snow‐covered canopy and an analysis using a single‐source model gave the following results: during daytime when the canopy was covered with snow, the upward latent heat flux was large, about 80% of the net radiation, and the sensible heat flux was positive but small. On the other hand, during daytime when the canopy was dry and free from snow, the sensible heat flux was dominant and the latent heat flux was minor, about 10% of the net radiation. To explain this difference of energy partition between snow‐covered and snow‐free conditions, not only differences in temperature but also differences in the bulk transfer coefficients for latent heat flux were necessary in the model. Therefore, the high evaporation rate from the snow‐covered canopy can be attributed largely to the high moisture availability of the canopy surface. Evaporation from the forest during a 60‐day period in midwinter was estimated on a daily basis as net radiation minus sensible heat flux. The overall average evaporation during the 60‐day period was 0·6 mm day−1, which is larger than that from open snow fields. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Many studies have investigated the exchange processes that occur between rivers and groundwater systems and have successfully quantified the water fluxes involved. Specifically, these exchange processes include hyporheic exchange, river–aquifer exchange (groundwater discharge and river loss) and bank storage exchange. Remarkably, there are relatively few examples of field studies where more than one exchange process is quantified, and as a consequence, the relationships between them are not well understood. To compare the relative magnitudes of these common exchange processes, we have collected data from 54 studies that have quantified one or more of these exchange flux types. Each flux value is plotted against river discharge at the time of measurement to allow the different exchange flux types to be compared. We show that there are positive relationships between the magnitude of each exchange flux type and increasing river discharge across the different studies. For every one order of magnitude increase in river discharge, the hyporheic, river–aquifer and bank storage exchange fluxes increase by factors of 2.7, 2.9 and 2.5, respectively. On average, hyporheic exchange fluxes are almost an order of magnitude greater than river–aquifer exchange fluxes, which are, in turn, approximately four times greater than bank storage exchange fluxes for the same river discharge. Unless measurement approaches that can distinguish between different types of exchange flux are used, there is potential for hyporheic exchange fluxes to be misinterpreted as river–aquifer exchange fluxes, with possible implications for water resource management decisions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
气候变化加速了全球水文循环过程,然而,气候变化如何影响水体蒸发及其水热通量交换仍然不清楚.基于涡度相关系统观测鄱阳湖水体水热通量过程,在小时和日尺度分析了水热通量的变化规律及其主要影响因子.研究表明,潜热通量日变化波动剧烈,大部分为正值,变化范围在-50~580 W/m2之间.而感热通量数值较小,变化范围在-50~50 W/m2之间.8月份潜热通量和感热通量均呈波动下降趋势,均值分别为167.4和15.9 W/m2.8月份日平均潜热通量和感热通量之和大于净辐射,这是由于这一时段储存在水体中的热量释放并补充潜热通量和感热通量.小时尺度上潜热通量日变化在相位上与净辐射无显著相关性,而与风速显著相关.在日尺度变化趋势上,8月份日平均潜热通量仍主要受到风速和水温的影响,感热通量则主要受到风速和饱和水汽压差的影响.  相似文献   

13.
This paper uses detailed hydrometeorological data to evaluate the influence of channel bed processes on the river energy budget at an experimental site on the regulated River Blithe, Staffordshire, UK. Results from a pilot study are presented for eight days during July, September, October and November 1994. Total energy gains were dominated by net short-wave radiation (97·60%) with significant contributions from sensible heat exchange and friction (1·17 and 1·06%, respectively) and minor additions from condensation and bed conduction (0·16 and 0·01%, respectively). Net long-wave radiation, evaporation, conduction into the river bed, sensible heat transfer and the energy advected during evaporation accounted for 53·98, 23·56, 16·27, 5·25 and 0·94% of the total heat losses. On average, over 82% of the total energy transfers occurred at the air–water interface. Approximately 15% of the total energy exchanges occurred at the channel bed, but maximum daily heat exchanges accounted for up to 24% of the daily total energy transfer. The amount of short-wave radiation attenuated in the water column, and values measured at the channel bed varied considerably from those calculated using a standard coefficient. Values of bed conduction varied in response to different vertical thermal profiles in the channel bed, reflecting the variable influence of sedimentology and groundwater flux. Fluctuations in levels of periphyton and macrophyte cover were also shown to have a significant effect on energy fluxes at the channel bed. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
N. C. Wells 《Annales Geophysicae》1995,13(10):1047-1053
Estimates of the components of the surface heat flux in the Western Equatorial Pacific Ocean are presented for a 22-day period, together with a critical analysis of the errors. It is shown that the errors in latent heat, and solar and longwave radiation fluxes, dominate the net heat flux for this period. It is found that the net heat flux into the ocean over the 22-day period is not significantly different from zero. It is also demonstrated that because of the variability in daily averaged values of solar radiation and the latent heat of evaporation, a large number of independent flux measurements will be required to determine with confidence the climatological net heat flux in this region. The variability of latent fluxes over the 22-day period suggest that climatological estimates based on monthly mean observations may lead to a significant underestimate of the latent heat flux.  相似文献   

15.
In order to discuss the values and daily variation characteristics of heat storage fluxes in a tropical seasonal rain forest in Xishuangbanna, the sensible and latent heat storage flux within air column, canopy heat storage flux, energy storage by photosynthesis and ground heat storage above the soil heat flux plate, as well as the ratios of these heat storage fluxes to the net radiation in the cool-dry, hot-dry and rainy season were compared and analyzed based on the observation data of carbon fluxes, meteorological factors and biomass within this tropical seasonal rain forest from January 2003 to December 2004. The findings showed that heat storage terms ranged significantly in the daytime and weakly in the nighttime, and the absolute values of sensible and latent heat storage fluxes were obviously greater than other heat storage terms in all seasons. In addition, the absolute values of total heat storage fluxes reached the peak in the hot-dry season, then were higher in the rainy season, and reached the minimum in the cool-dry season. The ratios of heat storage fluxes to net radiation generally decreased with time in the daytime, moreover, the sensible and latent heat storage dominated a considerable fraction of net radiation, while other heat storage contents occupied a smaller fraction of the net radiation and the peak value was not above 3.5%. In the daytime, the ratios of the total heat storage to net radiation were greater and differences in these ratios were distinct among seasons before 12:00, and then they became lower and differences were small among seasons after 12:00. The energy closure was improved when the storage terms were considered in the energy balance, which indicated that heat storage terms should not been neglected. The energy closure of tropical seasonal rain forest was not very well due to effects of many factors. The results would help us to further understand energy transfer and mass exchange between tropical forest and atmosphere. Moreover, they would supply a research basis for studying energy closure at other places.  相似文献   

16.
J. A. Leach  R. D. Moore 《水文研究》2010,24(17):2369-2381
Stream temperature and riparian microclimate were characterized for a 1·5 km wildfire‐disturbed reach of Fishtrap Creek, located north of Kamloops, British Columbia. A deterministic net radiation model was developed using hemispherical canopy images coupled with on‐site microclimate measurements. Modelled net radiation agreed reasonably with measured net radiation. Air temperature and humidity measured at two locations above the stream, separated by 900 m, were generally similar, whereas wind speed was poorly correlated between the two sites. Modelled net radiation varied considerably along the reach, and measurements at a single location did not provide a reliable estimate of the modelled reach average. During summer, net radiation dominated the surface heat exchanges, particularly because the sensible and latent heat fluxes were normally of opposite sign and thus tended to cancel each other. All surface heat fluxes shifted to negative values in autumn and were of similar magnitude through winter. In March, net radiation became positive, but heat gains were cancelled by sensible and latent heat fluxes, which remained negative. A modelling exercise using three canopy cover scenarios (current, simulated pre‐wildfire and simulated complete vegetation removal) showed that net radiation under the standing dead trees was double that modelled for the pre‐fire canopy cover. However, post‐disturbance standing dead trees reduce daytime net radiation reaching the stream surface by one‐third compared with complete vegetation removal. The results of this study have highlighted the need to account for reach‐scale spatial variability of energy exchange processes, especially net radiation, when modelling stream energy budgets. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Atmospheric stability conditions over the water surface can affect the evaporative and convective heat fluxes from the water surface. Atmospheric instability occurred 72.5% of the time and resulted in 44.7 and 89.2% increases in the average and maximum estimated evaporation, respectively, when compared to the neutral condition for a small shallow lake (Binaba) in Ghana. The proposed approach is based on the bulk-aerodynamic transfer method and the Monin-Obukhov similarity theory (MOST) using standard meteorological parameters measured over the surrounding land. For water surface temperature, a crucial parameter in heat flux estimation from water surfaces, an applicable method is proposed. This method was used to compute heat fluxes and compare them with observed heat fluxes. The heat flux model was validated using sensible heat fluxes measured with a 3-D sonic anemometer. The results show that an unstable atmospheric condition has a significant effect in enhancing evaporation alongside the sensible heat flux from water surfaces.  相似文献   

18.
It is of major scientific interests to determine the parameters of momentum, heat and vapor exchange in the planetary boundary layer in order to study the effects of ocean-ice-atmosphere interactions and their feedback mechanisms on global climate[1]. Lin…  相似文献   

19.
The effects of small water bodies or lakes on the surface sensible and latent heat fluxes and the transport of heat and water vapour in the atmospheric boundary layer (ABL) over the Mackenzie River Basin (MRB) are studied from two cases, which occurred on 2 and 8 June 1999 during the warm season. The synoptic condition for the cases is representative of about 33% of the synoptic situation over the MRB. The two events are simulated using the Canadian mesoscale compressible community (MC2) model. A one‐way nesting grid approach is employed with the highest resolution of 100 m over a domain of 100 km2. Experiments were conducted with (LAKE) and without (NOLAKE) the presence of small water bodies, whose size distribution is obtained through an inversion algorithm using information of their linear dimension determined from aircraft measurement of surface temperature during MAGS (the Mackenzie GEWEX (Global Energy and Water Cycle Experiment) Study) in 1999. The water bodies are assumed to be distributed randomly in space with a fractional area coverage of 10% over the MRB. The results show that, in the presence of lakes, the domain‐averaged surface sensible heat flux on 2 June 1999 (8 June 1999) decreases by 9·3% (6·6%). The surface latent heat flux is enhanced by 18·2% (81·5%). Low‐level temperature advection and the lake surface temperature affect the air–land/lake temperature contrast, which in turn controls the sensible heat flux. In the absence of lakes the surface wind speed impacts the latent heat flux, but in the presence of lakes the moisture availability and the atmospheric surface layer stability control the latent heat flux. The enhancement is smaller on 2 June 1999 as a result of a stable surface layer caused by the presence of colder lake temperatures. The domain‐averaged apparent heat source and moisture sink due to turbulent transports were also computed. The results show that, when lakes are present, heating and drying occur in the lowest 100 m from the surface. Above 100 m and within the ABL, there was apparent cooling. However, the apparent moistening profiles reveal that lakes tend to moisten the ABL through transfer of moisture from the lowest 50–100 m layer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote‐sensing‐based surface energy flux‐mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two‐source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root‐mean‐square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m−2 and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean R2 = 0·67 and 0·70 respectively, average residual means of −4·2 bushels/acre and 0·11 bushels/acre respectively, and average residual standard deviations of 16·2 bushels/acre and 16·6 bushels/acre respectively (1 bushel/acre ≈ 0·087 m3 ha−1). The flux estimation procedure from the SEBAL‐TSEB model was useful and applicable to agricultural fields. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号