首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Permian aeolian sediments on the island of Arran are divisible into dune (including draa) and interdune deposits. Both types display a distinctive and unusually wide variation in grain size. The dominant features of the dune deposits are grainfall lamination, sandflow lamination, and inverse graded lamination associated with ripple-form lamination and normal graded lamination. The flat-lying aeolian interdune deposits are characterised by granule and sand ripples, horizontal lamination in coarse sand and granules, plane bed lamination and inverse graded lamination. Associated structures include ripple-form lamination and deflation lags. Three types of trace fossil associated with completely bioturbated horizons occur in some low-angle dune and interdune deposits.
The aeolian facies interfinger with alluvial fan deposits giving rise to three recognizable facies belts. Marginal aeolian deposits are associated with fluvial conglomerates and are dominated by interdune deposits and occasionally very thin barchan deposits (set height 3-37 cm). Intermediate aeolian deposits are characterized by interbedded crescentic dune, small draa (dune set height 5 cm-4.5 m) and interdune deposits, and rare fluvial and lake sediments. Basinal aeolian deposits are dominated by draa deposits (dune set height 0.2-28 m) associated with rare interdune sediments. Transverse dunes and draas were moved by north-eastern palaeowinds towards the foot of the alluvial fans. The aeolian sediments were deposited in a fault-bounded desert basin.  相似文献   

2.
Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada   总被引:6,自引:0,他引:6  
Grainfall deposition and associated grainflows in the lee of aeolian dunes are important in that they are preserved as cross‐beds in the geological record and provide a key to the interpretation of the aeolian rock record. Despite their recognized importance, there have been very few field, laboratory or numerical simulation studies of leeside depositional processes on aeolian dunes. As part of an ongoing study, the relationships among grainfall, wind (speed and direction), stoss sand transport rates and dune morphometry (height and aspect ratio) were investigated on four relatively small, straight‐crested transverse dunes at Silver Peak, Nevada. Between 55% and 95% of the total grainfall was found to be deposited within 1 m of the crest, and 84–99% within 2 m, depending primarily on dune size and shape. Grainfall decay rates on high dunes of large aspect ratio were observed to be very consistent, with a weak positive dependence on wind speed. For small dunes with low aspect ratios, grainfall deposition was more varied and decreased rapidly within 1 m of the dune crest, whereas at increased distance from the dune crest, it eventually approached the smaller decay rates observed on the large dunes. No dependence of grainfall on wind speed was observed for these small dunes. Comparison of field data with predictions from 1 ) saltation model of grainfall, based on the computation of saltation path lengths, indicates lack of agreement in the following areas: (1) deposition rate magnitude; (2) variation in decay rate with wind speed; and (3) the magnitude and location of the localized lee‐slope depositional maxima. The Silver Peak field results demonstrate the importance of dune aspect ratio and related wake effects in determining the rate and pattern of grainfall. This work confirms earlier speculation by 7 ) that temporary, turbulent suspension (or `modified saltation') of relatively large grains does occur within the dune wake, so that transport distances generally are larger than predicted by numerical simulations of `true' saltation.  相似文献   

3.
The pattern of grainfall deposition in the lee of aeolian dunes   总被引:1,自引:0,他引:1  
ABSTRACT
A simple model for the deposition pattern in the lee of aeolian dunes is presented that relies heavily upon a recently developed understanding of aeolian saltation. Grainfall deposition at any position on the lee face is the result of all saltation trajectories that leave any point on the surface of the dune upwind of the brink with sufficient initial velocity to travel the intervening distance. The deposition rate at any position on the lee slope is obtained by integrating over all combinations of initial position and required velocity, the velocity being weighted by its probability density.
The resulting calculated total deposition rate patterns show distinct maxima on the order of one to a few decimetres from the brink, beyond which deposition rates fall off roughly exponentially. An important length scale emerges that characterizes this decay with distance from the brink, the length increasing with wind velocity, and decreasing with grain diameter. It is shown that this length scale is on the order of one metre for typical grain size and wind conditions. That this is typically smaller than the length of the lee slope is what gives rise to the oversteepening and eventual avalanching of the lee sides of aeolian dunes. The position of a pivot point on the lee slope may be predicted, separating source regions from accumulation regions for grainflow avalanche deposits.
The calculated patterns provide not only a means for quantitative interpretation of active and fossil dune grainfall deposits, but they provide the initial geometry for grainflow avalanches. The initial failures should coincide with the steepest gradient in grainfall deposition, slightly downslope from the grainfall maximum.  相似文献   

4.
C. M. BELL 《Sedimentology》1991,38(2):289-300
Extensive occurrences of Upper Jurassic to Lower Cretaceous aeolian sandstones form part of a thick sequence of terrigenous red beds in northern Chile. These sediments accumulated in a N-S-elongated intermontane back-arc basin on the landward side of an active volcanic chain. This volcanic chain, which was produced by subduction beneath the continental margin, provided the source of almost all the clastic sediments. The aeolian sands formed isolated dune fields covering only part of the depositional basin at any one time. Cosets of cross-bedded sandstone up to 40 m thick represent the deposits of linear draas. Cross-bedded sets, which average between 0.5 and 1 m in thickness, were produced by the migration of small dunes down and along the gentle lee slopes of the draas. The majority of foreset laminations in the cross-bedded sets are thin, parallel and persistent. They are the product of the lateral migration of dunes which developed oblique to the prevailing winds. Foreset laminations dip at low angles (averaging 19°), well below the angle of repose of dry sand. Most of the laminations originated by tractional processes, rather than by grainflow (avalanching) or grainfall. This conclusion indicates that the dunes were gently undulating with no slip faces. The orientation of the direction of maximum dip of foreset laminations does not provide a reliable indicator of the palaeowind direction. Although individual sets or cosets commonly show a unidirectional pattern, significant variations have been recorded between sets of the same age at nearby locations and vertically between one coset and the next. Variations in vertical sections were produced by the superimposition of draas with different orientations.  相似文献   

5.
The stratigraphy and landscape evolution of the Lodbjerg coastal dune system record the interplay of environmental and cultural changes since the Late Neolithic. The modern dunefield forms part of a 40 km long belt of dunes and aeolian sand‐plains that stretches along the west coast of Thy, NW Jutland. The dunefield, which is now stabilized, forms the upper part of a 15–30 m thick aeolian succession. The aeolian deposits drape a glacial landscape or Middle Holocene lake sediments. The aeolian deposits were studied in coastal cliff exposures and their large‐scale stratigraphy was examined by ground‐penetrating radar mapping. The contact between the aeolian and underlying sediments is a well‐developed peaty palaeosol, the top of which yields dates between 2300 BC and 600 BC . Four main aeolian units are distinguished, but there is some lateral stratigraphic variation in relation to underlying topography. The three lower aeolian units are separated by peaty palaeosols and primarily developed as 1–4 m thick sand‐plain deposits; these are interpreted as trailing edge deposits of parabolic dunes that moved inland episodically. Local occurrence of large‐scale cross‐stratification may record the head section of a migrating parabolic dune. The upper unit is dominated by large‐scale cross‐stratification of various types and records cliff‐top dune deposition. The nature of the aeolian succession indicates that the aeolian landscape was characterized by alternating phases of activity and stabilization. Most sand transported inland was apparently preserved. Combined evidence from luminescence dating of aeolian sand and radiocarbon dating of palaeosols indicates that phases of aeolian sand movement were initiated at about 2200 BC , 700 BC and AD 1100. Episodes of inland sand movement were apparently initiated during marked climate shifts towards cooler, wetter and more stormy conditions; these episodes are thought to record increased coastal erosion and strong‐wind reworking of beach and foredune sediments. The intensity, duration and areal importance of these sand‐drift events increased with time, probably reflecting the increasing anthropogenic pressure on the landscape. The formation of the cliff‐top dunes after AD 1800 records the modern retreat of the coastal cliffs.  相似文献   

6.
Aeolian dune dimensions and migration rates are analysed along the Ceará coast, north-east Brazil. Dunes that are currently mobile along the Ceará coast are composed of barchans and sand sheets. The results show that barchans maintain an equilibrium form, which can be characterized by values of dimensionless shape parameters H/W and W/L , where H is the dune height, W is the wing-to-wing width and L is the dune length. Dunes are highly mobile, with average migration rates of 17·5 m year−1 for barchans and 10 m year−1 for sand sheets. The calculated migration rates were found to depend strongly on dune dimensions for both barchans and sand sheets, i.e. the larger the dune is, the lower the migration rate will be. This size dependence was associated with the existence of a representative common transport rate along the dune fields, which induces a different dune migration rate dependent on dune size. Finally, from the observed dune evolution, an aggregated scale aeolian sediment transport was inferred. This bulk transport rate, of the order of 90–100 m3 m−1 year−1, is only valid for a timescale of years to decades, which is the timescale used in dune evolution analysis.  相似文献   

7.
库布齐沙漠南缘抛物线形沙丘表面粒度特征   总被引:5,自引:0,他引:5  
对库布齐沙漠南缘抛物线形沙丘特征断面上下层(0~5cm、5~10cm)沉积物采样分析结果表明,沙丘粒径与分选参数及其分布随沙丘形态、发育程度和植被生长状况发生变化。抛物线形沙丘丘体迎风坡下凹背风坡上凸,丘顶始终处于侵蚀亚环境。在顺风向断面,平均粒径从迎风坡脚到丘顶变粗,从丘顶到背风坡脚又变细,且这种变化在高大沙丘上更为明显;分选性在迎风坡为中等和较好,丘顶较差,顺风向到背风坡脚逐渐由中等变为较好;粒径频率曲线在丘顶双峰正偏,除迎风坡脚单峰正偏外,其余部位均单峰近对称。在垂直于风向的两翼断面,平均粒径在成熟沙丘由翼顶向两侧坡脚趋于变细,而在欠成熟沙丘无明显的变化趋势。翼间平地沉积物受植被等影响,平均粒径偏细但分选性差,偏度为正偏和极正偏,峰度为尖锐和非常尖锐。受不同时期风况的影响,成熟抛物线形沙丘上下层粒度参数在沙丘断面的分布较欠成熟沙丘一致。  相似文献   

8.
Coarse-gravel bedforms which resulted from Pleistocene glacial outburst floods are identified as subaqueous dunes. Comparison of the morphology of these ‘fossil’ structures with modern dunes shows that the form of two-dimensional (2-D) transverse dunes and 3-D cuspate and lunate dunes developed in coarse gravels is comparable with sand-dune morphology within lesser-scale geophysical flows. The similarity of the steepest gravel dunes with equilibrium dunes in sand indicates that grain size is not a major factor in constraining primary duneform. Internal structure indicates that flow over 2-D dunes was relatively uniform but over 3-D bedforms flow was locally variable. Flow separation and complex streaming of flow occurred over the steepest 3-D dunes. Cross-beds are thin and few approach the angle of repose; consequently most dunes did not migrate primarily by avalanching but by stoss-entrained gravel transported over the crests rolling-down and depositing on the lee slopes. Lee-side sediments are often finer than the stoss-slope sediments, which indicates the lee formed when flood power was waning. Some dunes were slightly planed-down during falling stage because lee-side cross-beds tend to be steeper than the angle of the preserved lee slope. However, silt-rich caps indicate that any height reduction was contemporary with the final deposition of foresets. Post-flood modification has been negligible although the modern topography is subdued by loess deposits within the dune troughs.  相似文献   

9.
Coastal dune systems consisting of allochemical grains are important sedimentary archives of Pleistocene age in both of the hemispheres between the latitudes of 20° to 40°. The south Saurashtra coast in western India exhibits a large section of Middle Pleistocene aeolianites in the form of coastal cliffs, which is famous as ‘Miliolite’. Miliolites of Gopnath in south‐east Saurashtra are the oldest known coastal aeolianite deposits (age >156 ka which corresponds to Marine Isotope Stage 6) in western India. Aeolian deposits of similar ages have also been reported from the Thar Desert in north‐west India and from Southern Arabia which were largely controlled by the south‐west monsoon wind system that affects the entire belt corresponding to Sahara–Sahel, the Arabian Peninsula and north‐western India. Miliolite deposits in Gopnath are characterized by grainfall, grainflow and wind ripple laminations. At least three types of aeolian bounding surfaces have been identified. Five major facies have been identified which represent the dune and interdune relationship within the coastal aeolian system. The major dune bodies are identified as transverse dune types. The Gopnath aeolianites were deposited under dominantly dry aeolian conditions. Facies association reveals two different phases of aeolian accumulation, namely initiation of aeolian sedimentation after a prolonged hiatus and the establishment of a regularized aeolian sedimentation system. While initiation of aeolian sedimentation is marked by vast stretches of sheet sand with occasional dune bodies, the overlying thick, tabular, laterally extensive cross‐stratified units manifest regular aeolian sedimentation. However, the dune building events in Gopnath were interrupted by development of laterally extensive palaeosol horizons. Eustasy and climate exerted the major allogenic controls on the aeolian sedimentation by affecting the sediment budget as well as influencing the sedimentation pattern.  相似文献   

10.
The large and extensive transverse and barchane dunes of coastal South West Africa are strongly oriented under the influence of predominantly southerly winds. During periods of strong winds (40–50 miles/h) deposition occurs on the lee slope in three ways: (1) sand is blown over the crest of the dune and falls on the lee slope; (2) rapid deposition near the dune crest results in periodic slumps and slides down the lee slope; (3) eddy currents developed to the lee of the dune pick up sand from the surface downwind from the dune and transport it to the lee slope. The size and strength of the lee eddy is surprising. With winds in the 40–50 miles/h range frequent gusts lift fine sand from the downwind surface to a height of several feet. Less frequently sand is picked up from a low position on the lee slope and redeposited higher on the slope. The addition of material to the lee slope by the eddy is much less volumetrically than the contribution directly over the dune crest from the windward direction; however, with strong winds the removal and transportation of sand from the area downwind of the lee slope back to the lee slope appears to be important in the deflation of this surface. The width of the area influenced by the lee eddy during strong winds is about equal to the height of the dune. Observations in low dunes from 1 to 20 ft. high at Sapelo Island, Ga., U.S.A., confirm the presence of a well developed eddy to the lee of these dunes during strong and moderate winds (20–50 miles/h).  相似文献   

11.
《Sedimentary Geology》2006,183(3-4):217-242
Geochemical and textural variations in frontal dune sediments along the western coast of Jutland, Denmark, have been investigated in order to identify possible sediment ‘provinces’ and transport pathways. An understanding of sediment sources and sinks is important for both for an understanding of the nature of sedimentary environments and for applied coastal engineering and management purposes. Four coastal sectors were identified on the basis of geochemical composition. One sector is compositionally different from the other three units, having higher concentrations of the trace elements Ni, Cr, V, Sc, Zn, Pb, Ba, Zr and many rare earth elements. Dune sediments on this section of coast also have higher Al2O3 to K2O ratios and lower Al2O3 to Fe2O3 ratios, reflecting a lower content of feldspar and higher content of heavy minerals. It is inferred that different, or additional, sediment source(s) have supplied sediment to this section of coast. Beach nourishment has contributed to the observed compositional differences, but previous data obtained from the Lodbjerg area indicate that aeolian sands on this section of coast naturally have a relatively high Si, Fe and Ti content, reflecting high quartz / feldspar ratio and relatively high content of heavy minerals, compared with those on other sections of the coast. Frontal dunes along the most northern section show high abundances of K2O, Rb and Ba, reflecting a relatively high K-feldspar content derived from local sources. Alongshore trends were also identified in the mean particle size and sorting of the frontal dunes, although there is no direct correspondence with the observed geochemical differences. Three coastal units can be identified on the basis of particle size. Frontal dune sediments in the middle section are relatively coarser and less well-sorted than those to the north and south, probably reflecting both the addition of beach nourishment material and greater exposure to strong westerly winds, which are a capable of transporting a wide range of particle sizes. The three units defined on this basis do not correlate directly with the units defined on the basis of geochemical composition.  相似文献   

12.
昌黎海岸风成沙丘砂组构特征及其与海滩砂的比较   总被引:11,自引:0,他引:11       下载免费PDF全文
对昌黎海岸沙丘砂进行薄片统计,重砂矿物分析,电镜扫描,粒度分析及与海滩砂的对比研究发现,沙丘砂在物质组成、颗粒形态、石英砂表面结构特征和粒度特征方面均继承了海滩砂特征,不过,海滩砂中也有沙丘砂的某些特征,反映了两者沉积的混合。这是由于向岸风和离岸风共同作用的结果。  相似文献   

13.
An empirical model of aeolian dune lee-face airflow   总被引:12,自引:0,他引:12  
Airflow data, gathered over dunes ranging from 60-m tall complex-crescentic dunes to 2-m tall simplecrescentic dunes, were used to develop an empirical model of dune lee-face airflow for straight-crested dunes. The nature of lee-face flow varies and was found to be controlled by the interaction of at least three factors (dune shape, the incidence angle between the primary wind direction and the dune brinkline and atmospheric thermal stability). Three types of lee-face flow (separated, attached and deflected along slope, or attached and undeflected) were found to occur. Separated flows, characterized by a zone of low-speed (0–3O% of crestal speed) back-eddy flow, typically occur leeward of steep-sided dunes in transverse flow conditions. Unstable atmospheric thermal stability also favours flow separation. Attached flows, characterized by higher flow speeds (up to 84% of crestal speed) that are a cosine function of the incidence angle, typically occur leeward of dunes that have a lower average lee slope and are subject to oblique flow conditions. Depending on the slope of the lee face, attached flow may be either deflected along slope (lee slopes greater than about 20°), or have the same direction as the primary flow (lee slopes less than about 20°). Neutral atmospheric thermal stability also favours flow attachment. As each of the three types of lee-face flow is defined by a range of wind speeds and directions, the nature of lee-face flow is intimately tied to the type of aeolian depositional process (i.e. wind ripple or superimposed dune migration, grainflow, or grainfall) that occurs on the lee slope and the resulting pattern of dune deposits. Therefore, the model presented in this paper can be used to enhance the interpretation of palaeowind regime and dune type from aeolian cross-strata.  相似文献   

14.
Basic types of stratification in small eolian dunes   总被引:5,自引:0,他引:5  
The thinnest recognizable strata in modern eolian dune sands can be grouped into six classes. They are herein named planebed laminae, rippleform laminae, ripple-foreset crosslaminae, climbing translatent strata, grainfall laminae, and sandflow cross-strata. Planebed laminae are formed by tractional deposition on smooth surfaces at high wind velocities. They are very rare in the deposits studied. Grainfall laminae are also formed on smooth surfaces, largely by grainfall deposition in zones of flow separation. They are much more common than planebed laminae, which they closely resemble. Eolian climbing-ripple structures are composed primarily of climbing trans-latent strata, each of which is the depositional product of a single climbing ripple. Climbing translatent strata that formed at relatively high or supercritical angles of ripple climb are typically accompanied by rippleform laminae, which are wavy layers parallel to the rippled depositional surfaces. Ripple-foreset crosslaminae, which are incomplete rippleform laminae produced when the angle of ripple climb is relatively low or subcritical, are rarely visible in eolian sands. Sandflow cross-strata are formed by the avalanching of noncohesive sand on dune slipfaces. Their form varies with slipface height and with other factors.  相似文献   

15.
Rippled flanks of longitudinal dunes and the slip faces of various dune types can be distinguished granulometrically by comparing the top to bottom trend of changes of sorting in the sand population of each individual slope. Flank sands, which are prone to sorting processes through migration of ripples alongslope, are always better sorted upslope whereas slipface sands, which are controlled by avalanche and grainfall of sands, become better sorted downslope. Considering the absolute values of the bottom samples, the sands of the slip faces are both better sorted and the size distribution more symmetrical than those of the rippled flanks. Applying this approach in investigating ancient sediments could improve palaeogeographical interpretations.  相似文献   

16.
Sand was marked by fluorescent dye in order to trace sand movement and deposition on a longitudinal (seif) sand dune in the Sinai desert. The wind regime was monitored simultaneously. Tracing the dyed sand was possible after light to moderate sand storms and was graphically represented on maps.The dune was subjected to a seasonally bidirectional wind regime, with the wind hitting the dune obliquely on either side. On the windward flank the sand was transported parallel to the wind direction. On the lee flank sand movement was deflected towards parallelism with the crest line. Sand movement was deflected if the dune had a sharp profile which favored separation of wind flow on the lee flank. The deflection depended on the angle of incidence between the wind and the crest line: when the angle of incidence was < 40°, sand on the lee flank was transported parallel to the crest line; when the angle of incidence was nearly perpendicular to the crest, movement along the lee flank abated and deposition occurred. Where the dune was low, flat and blunt, as in a zibar dune, there was no boundary-layer separation and no deflection of sand movement on the lee flank. The deflected movement along the lee flank resulted in elongation of the longitudinal (seif) dune.  相似文献   

17.
Reappraisal of the Late Proterozoic Venkatpur Sandstone indicates that the bulk of the sandstone is aeolian in origin. Aeolian stratification types, namely (i) inverse graded translatent strata, (ii) adhesion laminae, (iii) grainflow strata and (iv) grainfall strata, are present throughout the outcrop belt. Nine facies have been identified that represent both aeolian and related aqueous environments within a well-developed erg. Cosets of large cross-beds at the Bellampalli section in the NW of the study area record dune fields in the interior of the sand sea. To the SE, at the Godavari River and Ramgundam sections, a progressive increase in the relative proportion of the flat-bedded to cross-bedded facies and intercalated non-aeolian facies delineates the transition from the dune-field to sand-sheet environment. An alternating sequence of aeolian and marine sediments at Laknavaram, in the extreme SE, marks the termination of the sand sea. Palaeocurrent data suggest that the NW-SE trend of the sections represents a transect across the sand sea in a direction normal to the resultant primary palaeowind direction. Abundant horizontally stratified units in the Vankatpur Sandstone do not always represent the interdune sediments. On the basis of the thickness and geometry of the units, nature of bounding surfaces and associated facies sequence, the facies is variously interpreted to represent interdune, inland sabkha, sand sheet and coastal sand flat deposits.  相似文献   

18.
The Hornby Bay Group is a Middle Proterozoic 2.5 km-thick succession of terrestrial siliciclastics overlain by marine siliciclastics and carbonates. A sequence of conglomeratic and arenaceous rocks at the base of the group contains more than 500 m of mature hematitic quartz arenite interpreted to have been deposited by migrating aeolian bedforms. Bedforms and facies patterns of modern aeolian deposits provided a basis for recognizing two sequences of aeolian arenite. Both sequences interfinger with alluvial—wadi fan conglomerates and arenites deposited by braided streams. Depositional processes, facies patterns and paleotopographic position of the arenites are consistent with modern sand sea dynamics.Distal aeolian facies in both sequences are composed of trough crossbed megasets deposited by climbing, sinuous-crested, transverse dunes. Megasets comprise a gradational assemblage of tabular to wedge-planar cosets formed by deflation/reactivation of dune lee slopes and migration of smaller superposed aeolian bedforms (small dunes and wind ripples). Megasets in the proximal facies are thinner, display composite internal stratification and have a tabular-planar geometry which suggests that they were formed by smaller, straight-crested transverse dunes. Most stratification within the crossbeds is inferred to have formed by the downwind climbing of aeolian ripples across the lee slopes of dunes.Remarkably few Precambrian aeolian deposits have been reported previously. This seems anomalous, because most Precambrian fluvial sediments appear to have been deposited by low sinuosity (braided) streams, the emergent parts of which are prime areas for aeolian deflation. Frequent floods and rapid lateral migration of Precambrian humid climate fluvial systems probably restricted aeolianite deposition to arid paleoclimates. Thus the apparent anomaly may reflect non-recognition and/or non-preservation of aeolianites and/or variations in some aspect of sand sea formation and migration unique to the Precambrian. Reconstruction of the Hornby Bay Group aeolianites using recently developed criteria for their recognition suggests that the latter reason did not exert a strong influence.  相似文献   

19.
海南岛东南部海岸砂丘风暴冲越沉积记录   总被引:1,自引:0,他引:1  
通过海南岛东南部海岸详细的古风暴学考察,在尖岭海岸发现了含有风暴冲越沉积物的海岸沙丘剖面,分别命名为JL-1和JL-2剖面,试图从海岸沙丘沉积记录中提取历史上的风暴事件信息。沉积物粒度、磁化率等参数的指标分析表明,这两个剖面含有典型的风暴冲越沉积物,利用放射性核素AMS14C测年、OSL测年分析,并结合历史文献记载,确定这些风暴沉积层是多次台风作用的产物,其形成机制与风暴浪越过海岸沙丘的堆积有关,风暴流越过沙丘顶部后不能回流,导致风暴流携带的沉积物迅速沉积。此外,依据Stockdon经验公式计算结果,该地点沉积记录所代表的最大风暴事件相当于100到200年一遇的重现期。研究表明,该处海岸沙丘冲越沉积含有南海台风强度与重现期的重要信息。  相似文献   

20.
The tsunami of 11th March 2011 was originated at the east coast of Japan and deposited ca.1 cm thick sediment layer along the coast of southwestern Mexico up to a maximum distance of 320 m from the beach. The sedimentological, mineralogical and geochemical characteristics of the sediments deposited during the tsunami (JT) are compared with the pre-tsunami sediments (PRT). JT sediments consist of dominant coarser fractions (>54% of medium to coarse sand), whereas PRT deposits comprise abundant finer fractions (>58% of fine sand). Assemblage of mafic and heavy minerals suggests similar provenance for both. The higher abundance and variation of heavy minerals along with higher concentrations of bromine (Br) and sodium (Na) in the JT deposits reveal the influence of high energy sea waves in transportation of heavy mineral rich coarse sediments onto the coastal lowlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号