首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The system MgO-CO2-H2O has been studied up to 1,400? C and 4,000bars pressure using the sealed-capsule quenching technique.No melting was observed. At 1,000 bars pressure magnesite dissociatesat 780? C, and brucite at 635? C, to periclase and vapor. Theunivariant reaction MgCO3?Mg(OH)2 MgO + V proceeds at 630?C, at 1,000 bars and at 700? C, at 4,000 bars. Solubility measurementsshow that, at 1,000 bars and temperatures up to 1,000? C, lessthan 1.5 weight per cent MgO is dissolved in the vapor phase.Brucite is unstable in the presence of vapors containing morethan a small amount of CO2. The maximum percentage of CO2 ina vapor that can coexist with brucite increases with decreasingpressure and with increasing temperature: 6 weight per centCO2 is the maximum at 630? C, 1,000 bars, and 4 weight per centat 700? C, 4,000 bars. The phase relations in the isobaric TXprism for 1,000 bars pressure are described. The results illustratetwo dissociation reactions, decarbonation and dehydration, occurringin the presence of a vapor phase containing two volatile components,H2O and CO2. Applications to metamorphism are briefly discussed.  相似文献   

2.
An equation of state of solute silica in NaCl brines at 500 to 900°C and 4 to 15 kbar is formulated by making use of two experimentally determined properties of quartz solubility: the silica molality decreases in direct proportion to the logarithm of the NaCl mole fraction (X(NaCl)) at pressures approaching 10 kbar, and the relative silica molality (molality at a given NaCl mole fraction, mx, divided by the molality in pure H2O at the same P and T, mo) is independent of temperature in the evaluated range. These two properties are expressed in the relation:

log(mx/mo)? = A + BX(NaCI),

where log(mx/mo)? denotes the logarithm of the ideal molality ratio, and A and B are functions of pressure, but not temperature or salinity, such that B = ?1.730 ? 1.431 × 10?3P + 5.923 × 10?4P2 ?9.243 × lO?5P3, and A = 0 at P>10 kbar, whereas A = 0.6131 ? 0.1256P + 6.431 × 10?3P2 at P≤10 kbar, as derived from fits to experimental data (Newton and Manning, 1999). The parameter A decreases from 0.214 to 0 from 4 to 9.5 kbar, and remains zero to 15 kbar; B decreases from ?1.373 to ?1.571 from 4 to 15 kbar. With the above relationship defining a variable X(NaCl)-T-P standard-state of solute silica, the activity of SiO2 can be replaced by its molality for calculations of mineral-fluid equilibria over most of the conditions for metasomatism in the deep crust and upper mantle. Significant departures from ideality occur only at the lowest pressures, and low salinities.

Calculations on peridotite mineral stability in the simple system CaO-MgO-SiO2-H2O-NaCl at high T and P show that antigorite, brucite, and diopside are stable at 500°C and pressures of 5 to 15 kbar in the presence of concentrated NaCl solutions at low SiO2 activities. At 700°C, anthophyllite is stable over a wide range of salinities at 5 kbar with tremolite but not with diopside. The presence of anthophyllite buffers silica solubility at a high, salinity-independent value close to quartz saturation. At 10 and 15 kbar and 700°C, talc replaces anthophyllite as the stable hydrate, and talc-trem-olite assemblages buffer SiO2 fluid concentrations at high values nearly independent of salinity. At 900°C hydrates are unstable and diopside again becomes stable and coexists with enstatite in peridotites. These stability calculations correspond well to the observed progressive metamorphic sequence in peridotite bodies in the Central Alps.

This method of analysis may be useful in interpretation of metamorphosed ultramafic bodies in general, including the basal portions of obducted ophiolitic mantle lithosphere and the mantle wedge above subduction zones. More detailed calculations, including rocks containing feldspars, must take into account the more soluble major components of rocks, especially alkalis, as these will affect the activity coefficient of SiO2 in NaCl solutions. The solubility of silica in the presence of minerals containing these components must be determined by additional measurements.  相似文献   

3.
This work presents new experimental results on surface chemistry of reacting minerals and interface kinetics between mineral and aqueous solutions. These experiments were carried out using a flow reactor (packed bed reactor) of an open system as well as a continuous stirred tank reactor, CSTR. The authors measured reaction rates of such minerals as zeolite, albite and carbonate (rhodochrosite, dolomite) in various solutions, and tested corresponding mineral surface by using SEM, XPS, SIMS, etc. This paper mainly presents the experimental results of zeolite dissolution in water and in low pH solutions at room temperature, and dolomite dissolution at elevated temperatures. The results show that the release rates of Si, Al and Na of zeolite are different in most cases. The incongruent dissolution of zeolite is related to surface chemical modifications. The Na, Al and Si release rates for dissolution of albite and zeolite in water and various solutions were measured as a function of temperature, flow veloci  相似文献   

4.
地质流体状态方程   总被引:1,自引:0,他引:1  
几乎所有的地球化学过程都有地质流体参加, 定量地了解地质流体的物理化学性质是定量研究地球化学过程的基础.100多年以来, 广大化学和实验地球化学工作者做了大量的实验测定工作, 可是所有这些工作之和, 仅仅覆盖地球范围内一个不大的温压空间, 远远不能满足地球化学研究的需要.近年来, 我们试图通过分子水平上的研究, 结合热力学和统计力学方面的知识, 在重现前人实验结果的基础上, 研究实验工作者没有或不能研究的温压和成分空间, 得到了一系列能够精确预测地质流体在广阔的温压范围内的物理化学性质的状态方程.这些状态方程不仅能够重现实验数据, 而且具有良好的外延能力, 可以应用于地球化学领域诸多方面的研究.重点讨论了几个状态方程(包括纯流体状态方程含水溶液状态方程和含盐-水-气的状态方程) 在预测流体的溶解度、相平衡、化学位和PVT性质方面的应用.简要介绍了近年来笔者应用分子动力学和蒙特卡罗模拟在地质流体研究方面所取得的成果   相似文献   

5.
高温高压下水的剪切粘滞度的平衡分子动力学计算   总被引:3,自引:1,他引:2  
本项工作用TIP4P模型对水分子进行了平衡分子动力学模拟。根据Green-Kubo理论,计算了温度从652K到814K,密度从0.5360g/cm3到0.8638g/cm3六个不同温度和密度水的剪切粘滞度,并和实验值进行了对比。在所计算的温度和密度范围,平衡分子动力学计算结果与实验值的平均绝对值差别为15%,好于使用非平衡分子动力学方法获得的粘滞度值。平衡分子动力学的方法将是获得地学中高温高压下流体输运性质的重要途径。  相似文献   

6.
高温高压下闪长岩弹性纵波速度的实验研究   总被引:5,自引:0,他引:5  
刘巍  杜建国  白利平  郭捷 《地球学报》2004,25(6):683-687
利用YJ-3000吨压力机,在1.0 GPa、室温至1000℃条件下采用超声波脉冲透射-反射法就位测量了闪长岩的纵波速度(Vp),并在720℃、780℃、870℃和980℃获得了4个实验产物.在1.0 GPa恒定压力下,闪长岩的VP随温度升高呈线性缓慢降低;当温度大于750℃时,波速开始大幅度下降.显微镜观察和电子探针鉴定结果表明:在不同温度下闪长岩内部的矿物发生了不同程度的脱水和部分熔融等反应.波速随温度升高呈线性和非线性下降,主要是由于在高温高压条件下岩石内部矿物发生热膨胀、脱水和部分熔融等反应引起了岩石内部结构和成分的变化而造成的.  相似文献   

7.
为了对深部煤层吸附特性进行分析,以鄂尔多斯盆地东部主要煤层为对象,展开 4 组不同温度条件下煤样的高压等 温吸附实验。从温度、压力、煤级等地质要素方面入手,研究较高温压条件下煤样的吸附特征。同时,通过对比分析各地 质因素对吸附行为的影响,比较深部煤层吸附行为与浅部煤层吸附行为的差异性。结果表明:深部煤层的吸附特性主要受 温度、压力的控制;高温条件下煤样对 CH4 的吸附量大大减少,且煤级、煤岩显微组分、灰分产率以及水分含量对吸附性 能的影响已明显小于浅部煤层,温度、压力成为控制吸附量的决定因素。在 100°C条件下,吸附量到达某一压力后随着压 力的增大煤样吸附量下降,分析认为由于在此温压下,随着压力的增加,吸附相与游离相气体的密度差逐渐减小,超临界 吸附已不再符合 Langmuir 等温吸附模型。  相似文献   

8.
The experimental study on the melting of potassic basalt and eclogite with about 2% waterat 800-1300℃ and 1.0-3.5 GPa shows that the solidi of both rocks are significantly lower thanthose obtained from the previous experiments of the same type of rocks under dry conditions,and the former which is enriched in potassium has a lower melting point than the latter. It is con-sistent with the previous study. The melting temperature of eclogite increases with pressure,whereas potassic basalt has similar properties only at 1.5—2.5 GPa and>3.0 GPa, and at 2.5—3.0 GPa the melting temperature decreases with pressure. This can be explained as follows: (1)eclogite only has one hydrous mineral amphibole and the dehydous temperature is lower than thewet solidus of the rock. (2) Amphibole exists in potassic basalt at the pressures lower than 2.5GPa and phlogopite exists at pressures higher than 2.5 GPa, and the special compositions of bothminerals determine that amphibole has a dehydration temperature higher than or close to that ofthe wet solidus of the rocks, while phlogopite has a dehydration temperature lower than that ofthe wet solidus. On the other hand the features of the continuous solidus in the experiment ofhydrous eclogite were produced by the fact that the dehydration temperature of its amphibolelower than or close to the melting temperature of the hydrous conditions. So the melting tempera-ture lowers at higher pressures. Therefore, the composition of the rocks in the lithosphere and thetypes of hydrous minerals and their stable P-T conditions are the important factors controllingthe solidi of rocks. It can quite well explain the partial melting of rocks and the origin of the lowvelocity zone in the deep lithosphere.  相似文献   

9.
Reversed Na-K exchange data between mica and a 2 molal aqueous(Na,K)Cl fluid (Flux & Chatterjee, 1986) have been employedto model the thermodynamic mixing behaviour of muscovite-paragonitecrystalline solutions on the basis of the Redlich-Kister equation.For these binary micas, Gexm may be expressed as where A=11222+1.389 T+0.2359 P, B=–1134+6.806 T–0.0840 P, and C=–7305+9.043 T, with T in K, P in b, Gexm, A, B, and C in joules/mol. Gmex is well constrained between 450 and 620?C, and may be extrapolatedbeyond that range with caution. The calculated solvi are skewedtoward the paragonite end member. In the range up to 15 kb,the critical temperature, Tc and the critical composition, Xcmay be expressed as a function of P by the relations: and with P indicated in bars. Calculated phase relations of muscovite-paragonite crystallinesolutions have been depicted in terms of the system KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O.These data may be applied to appropriate assemblages involvingmica, alkali feldspar, an Al2 polymorph, and quartz to estimateP, T and aH2O conditions of their equilibration. In principle,the muscovite limb of the solvus may be used to obtain geothermometricdata for coexisting muscovite-paragonite pairs, provided theequilibrium pressure is independently known. However, such applicationmust be restricted for the present to micas on the ideal muscovite-paragonitejoin. Mica-alkali feldspar-Al2SiO5-quartz or mica-plagioclase-Al2SiO5-quartzassemblages may be used to deduce aH2O in the coexisting fluid,if P, and T of equilibrium are independently known. Examplesof such geological applications are given.  相似文献   

10.
Spinel granulites, with or without sapphirine, occur as lensesin garnetiferous quartzofeldspathic gneisses (leptynites) nearGokavaram in the Eastern Ghats Belt, India. Spinel granulitesare mineralogically heterogeneous and six mineral associationsoccur in closely spaced domains. These are (I) spinel–quartz–cordierite,(II) spinel–quartz–cordierite–garnet–orthopyroxene–sillimanite,(III) spinel–cordierite–orthopyroxene–sillimanite,(IV) spinel–quartz–sapphirine–sillimanite–garnet,(V) spinel–quartz-sapphirine–garnet and (IV) rhombohedral(Fe–Ti) oxide–cordierite–orthopyroxene–sillimanite.Common to all the associations are a porphyroblastic garnet(containing an internal schistosify defined by biotite, sillimaniteand quartz), perthite and plagioclase. Spinel contains variableamounts of exsolved magnetite and is distinctly Zn rich in thesapphirine-absent associations. XMg in the coexisting phasesdecreases in the order cordierite–biotite–sapphirine–orthopyroxene–spinel–garnet–(Fe–Ti)oxides. Textural criteria and compositional characteristicsof the phases document several retrograde mineral reactionswhich occurred subsequent to prograde dehydration melting reactionsinvolving biotite, sillimanite, quartz, plagioclase and spinel.The following retrograde mineral reactions are deduced: (1)spinel + quartz cordierite, (2) spinel + quartz garnet + sillimanite,(3) garnet + quartz cordierite + orthopyroxene, (4) garnet+ quartz + sillimanite cordierite, (5) spinel + cordierite orthopyroxene + sillimanite, (6) spinel + sillimanite + quartz sapphirine, (7) spinel + sapphirine + quartz garnet + sillimanite,and (8) spinel + quartz sapphirine + garnet. A partial petrogeneticgrid for the system FeO–MgO–Al2O3–SiO2–K2O–H2Oat high fo2, has been constructed and the effects of ZnO andFe2O3 on this grid have been explored Combining available experimentaland natural occurrence data, the high fo2 invariant points inthe partial grid have been located in P–T space. Geothermobarometricdata and consideration of the deduced mineral reactions in thepetrogenetic grid show that the spinel granulites evolved throughan anticlockwise P–T trajectory reaching peak metamorphicconditions >9 kbar and 950C, followed by near-isobaric cooling(dT/dP = 150C/kbar). This was superimposed by an event of near-isothermaldecompression (dT/dP = 15C/kbar). The studied spinel granulites,therefore, preserve relic prograde mineral associations andreaction textures despite being metamorphosed at very high temperatures,and bear evidence of polymetamorphism. KEY WORDS: spinel granulite; Eastern Ghats; India; polymetamorphism; geothermometry; geobarometry Corresponding author  相似文献   

11.
INTRODUCTIONAs early as 1644 , Ren啨Descartes proposed thatsilver-,gold-,and lead-bearing veins were producedby the condensation of vapors emanating from theearth' s interior ( Williams-Jones et al ., 2002) . Butthe solubility of many metals is higher in liquid thanin vapor andtherefore the focus of research on hydro-thermal ore deposits was placed on hydrothermal sys-tems (Barnes ,1997) ,considering the fact that ore-forming elements may exist as complexes in hydro-thermal solutions . T…  相似文献   

12.
Anhydrite solubility in H2O–NaCl solutions was measuredat 6–14 kbar, 600–800°C and NaCl mole fractions(XNaCl) of 0–0·3 in piston–cylinder apparatus.Solubilities were determined by weight changes of natural anhydritein perforated Pt envelopes confined with fluid in larger Ptcapsules. In initially pure H2O at 10 kbar and 800°C, CaSO4concentration is low (0·03 molal), though much largerthan at the same temperature and 1 kbar. Hematite-buffered experimentsshowed slightly lower solubilities than unbuffered runs. CaSO4solubility increases enormously with NaCl activity: at 800°Cand 10 kbar and XNaCl of 0·3, CaSO4 molality is 200 timeshigher than with pure H2O. Whereas CaSO4 solubility in pureH2O decreases with rising T at low T and P, the high-P resultsshow that anhydrite solubility increases with T at constantP at all XNaCl investigated. The effects of salinity and temperatureare so great at 10 kbar that critical mixing between sulfate-richhydrosaline melts and aqueous salt solutions is probable at900°C at XNaCl 0·3. Recent experimental evidencethat volatile-laden magmas crystallizing in the deep crust mayevolve concentrated salt solutions could, in light of the presentwork, have important implications regarding such diverse processesas Mount Pinatubo-type S-rich volcanism, high-f O2 regionalmetamorphism, and emplacement of porphyry Cu–Mo ore bodies,where anhydrite–hematite alteration and fluid inclusionsreveal the action of very oxidized saline solutions rich insulfur. KEY WORDS: anhydrite; sulfur; solubility; metamorphic brines; granulites  相似文献   

13.
A garnet websterite nodule from the Honolulu volcanic series,Oahu, Hawaii, has been melted in the presence of nearly pureH2O. The solidus is intermediate between that of peridotiteand gabbro. The curve displays a temperature minimum around20 kb reflecting the breakdown of plagioclase. The Iiquidusis between 1130 ?C and 1150 ?C between 10 and 20 kb vapor pressure.Amphibole (pargasitic hornblende) has an extensive stabilityfield, reaching a maximum temperature about 20 ?C below thegarnet websterite liquidus at 15 kb and a maximum pressure of27.5 kb at 950 ?C. The amphibole-out curve intersects the soliduswith a positive slope. Liquids formed by partial melting of garnet websterite are quartz-normativewithin the stability field of amphibole, but become olivine-normative(tholeiitic) with increasing temperature. Amphibole and clinopyroxeneare enriched in Tschermak's molecule at higher temperatures,pargasite content of amphibole increases with increasing pressure. A garnet websterite-rich upper mantle containing modal olivineyields quartz-normative (13–16 per cent), aluminous (21–4wt. per cent A12O3) melts at 17 P 10 kb and in the presenceof nearly pure H2O. However, the presence of amphibole controlsthe liquid composition, a situation not found for liquids formedfrom wet peridotite. In contrast to many basalt liquids, liquidof garnet websterite composition cannot fractionate to andesiteby precipitation of amphibole, as amphibole is not a liquidusphase.  相似文献   

14.
The majority of coalbed methane(CBM) in coal reservoirs is in adsorption states in coal matrix pores. To reveal the adsorption behavior of bituminous coal under high-temperature and high-pressure conditions and to discuss the microscopic control mechanism affecting the adsorption characteristics, isothermal adsorption experiments under hightemperature and high-pressure conditions, low-temperature liquid nitrogen adsorption-desorption experiments and CO2 adsorption experiments were performed on coal samples. Results show that the adsorption capacity of coal is comprehensively controlled by the maximum vitrinite reflectance(Ro, max), as well as temperature and pressure conditions. As the vitrinite reflectance increases, the adsorption capacity of coal increases. At low pressures, the pressure has a significant effect on the positive effect of adsorption, but the effect of temperature is relatively weak. As the pressure increases, the effect of temperature on the negative effect of adsorption gradually becomes apparent, and the influence of pressure gradually decreases. Considering pore volumes of pores with diameters of 1.7-100 nm, the peak volume of pores with diameters 10-100 nm is higher than that from pores with diameters 1.7-10 nm, especially for pores with diameters of 40-60 nm, indicating that pores with diameters of 10-100 nm are the main contributors to the pore volume. The pore specific surface area shows multiple peaks, and the peak value appears for pore diameters of 2-3 nm, indicating that this pore diameter is the main contributor to the specific surface area. For pore diameters of 0.489-1.083 nm, the pore size distribution is bimodal, with peak values at 0.56-0.62 nm and 0.82-0.88 nm. The adsorption capability of the coal reservoir depends on the development degree of the supermicroporous specific surface area, because the supermicroporous pores are the main contributors to the specific pore area. Additionally, the adsorption space increases as the adsorption equilibrium pressure increases. Under the same pressure, as the maximum vitrinite reflectance increases, the adsorption space increases. In addition, the cumulative reduction in the surface free energy increases as the maximum vitrinite reflectance increases. Furthermore, as the pressure increases, the surface free energy of each pressure point gradually decreases, indicating that as the pressure increases, it is increasingly difficult to adsorb methane molecules.  相似文献   

15.
Mineralogical assemblages developed in the non-calcareous manganiferoussediments in India and subjected to regional metamorphism underchlorite to sillimanite grade conditions have been studied indetail. Based on a series of idealized reactions compatiblewith the recorded assemblages in the system Mn-Fe-Si-O, formany of which there is unambiguous textural evidence in therocks, a combined schematic petrogenetic grid consistent withtopological and thermodynamic considerations has been constructed. The inferred petrogenetic grid, coupled with the mineralogicaland textural evidence present in the manganiferous assemblagesand the enclosing rock formations, can be reconciled with thefollowing: (1) The mineralogical reactions attending regionalmetamorphism of the manganiferous sediments buffered the compositionof the coexisting fluid phase. (2) Due to the closed natureof the system as a whole and also due to lack of communicationbetween the different parts thereof, local variations in theinitial proportions of the non-volatile to volatile phases andtheir compositions led to the development of contrasting sequencesof mineralogical reactions and, therefore, fo2-T gradients evenwithin the same metamorphic grade. (3) Rhodonite, developedas a prograde reaction product in the garnet to sillimanitegrade conditions, was converted to rhodonite-pyroxmangite mixture/intergrowthduring cooling. Compositional variance, resulting from the substitution of Mnby Fe and incorporation of components such as Mg, Ca in thephases, would tend to shift the univariant reaction curves inthe grid towards opposite directions and/or split them intomultivariant intervals in fo2-T space without altering the generalstyle of the topology or the principal deductions made therefrom.  相似文献   

16.
陈瑶  王勤 《高校地质学报》2022,28(4):457-472
加拿大Slave克拉通Jericho金伯利岩筒携带的橄榄岩包体提供了研究大陆岩石圈地幔物质组成和热结构的窗口。文章总结了地幔岩矿物温压计的研究进展,测量了Jericho金伯利岩携带的9个新鲜橄榄岩包体的矿物主量元素和微量元素,并使用不同的矿物温压计估算了平衡温度和压力。结果表明Nickel 和 Green(1985)的石榴子石—斜方辉石压力计可以较好地估算含石榴子石橄榄岩形成时的压力,Taylor(1998)二辉石温度计和Nimis 和 Taylor(2000)单斜辉石温度计的计算结果一致。具有粗粒变晶结构的尖晶石—石榴子石橄榄岩和石榴子石橄榄岩样品的平衡温度为575~843℃,压力为2.4~3.6 GPa,表明Slave克拉通岩石圈地幔温度较低。而残斑结构尖晶石—石榴子石二辉橄榄岩的平衡温度1109℃,压力为5.0 GPa,来源深度为~156 km,可能被早期金伯利岩浆携带到岩石圈地幔中部冷却,然后再被侏罗纪喷发的Jericho金伯利岩筒带到地表。使用石榴子石—单斜辉石稀土元素温压计获得的平衡温度高于主量元素温度计的结果,表明Slave克拉通岩石圈地幔经历了逐渐冷却的过程。此外,Slave克拉通浅部的尖晶石橄榄岩保留了强烈亏损的早期岩石圈地幔特征,而下部的岩石圈地幔经历了金伯利岩熔体和硅酸盐熔体的交代作用。  相似文献   

17.
We conducted experiments to simulate sulfide remobilisation from sulfide ore. The starting material was from the Hongtoushan massive sulfide deposit, NE China, and is composed of pyrite, pyrrhotite, chalcopyrite, sphalerite, quartz, and silicate minerals. The ore was immersed in a solution of 20 wt.% NaCl for 260 h, and then was mounted in a Changjiang 500 triaxial rock stress machine. After the experiments were performed for 13 h at temperatures of 362, 464, 556 and 682°C, with corresponding confining and axial pressures, the samples were cooled at room temperatures. Our results from all the runs indicate that sulfides can be remobilised both mechanically and chemically, and that remobilisation is enhanced at higher temperatures. Mechanical remobilisation can only take place over limited distances and results in minor differentiation between various sulfide minerals. Distant external remobilisation to form new orebodies is most likely caused by chemical remobilisation. In contrast to plastically deformed areas, space resulting from cataclastic deformation could provide conduits for fluid transport and space for metal precipitation. Remobilised iron sulfides will precipitate as pyrrhotite at high temperatures, but as pyrite when temperature decreases. Furthermore, chalcopyrite is more easily remobilised than sphalerite under the conditions of the present experiments. Remobilisation accompanying deformation and metamorphism may add epigenetic features to syngenetic deposits.  相似文献   

18.
Effect of Water on the Composition of Magmas Formed at High Pressures   总被引:4,自引:3,他引:4  
KUSHIRO  IKUO 《Journal of Petrology》1972,13(2):311-334
Portions of the system MgO-CaO-Na2O-Al2O3-SiO2-H2O have beenstudied in the pressure range 13–35 kb at near-liquidustemperatures. The liquidus field of forsterite relative to thatof orthopyroxene is considerably wider under anhydrous thanunder anhydrous conditions and it covers part of the plane ofsilica-saturation in a wide pressure range. Partial meltingof simple garnet lherzolite (= forsterite+orthopyroxene+clinopyroxene+garnet)with water produces quartz-normative liquids at pressures upto at least 25 kb regardless of water content. Hydrous mineralsare not encountered at or near the solidus temperatures exceptin a Na-rich part of the system. Microprobe analysis of therun products in this synthetic system shows that the liquid(glass) in equilibrium with the lherzolite mineral assemblageis silica and alumina-rich at 20 kb under vapor-present conditions.With increasing degree of partial melting, the liquid changesits composition, passing into a ‘vapour-absent region’and becoming less silicic. Fractional crystallization of olivinetholeiitic magma under hydrous conditions also produces silica-richmagmas at high pressures. If the system is open to water, andwater pressure is less than total pressure, the compositionof the liquid varies from quartz-normative to olivine (±nepheline)-normativedepending on water pressure. It is suggested that in the presenceof water, silica-rich magmas such as those of calc-alkalic andesiteor dacite may be formed by direct partial melting of the peridotiticupper mantle at depths down to about 80 km. A large degree ofpartial melting of lherzolite under hydrous conditions wouldproduce SiO2 and MgO-rich magmas. The clinoenstatite rock fromCape Vogel, Papua, may have been formed by such a process. Peridotiteswith low CaAl2SiO5/jadeite ratios in the clinopyroxene couldproduce nepheline-normative magma by small degree of partialmelting and tholeiitic magma by large degree of partial meltingunder hydrous conditions.  相似文献   

19.
云英岩主要是由白云母、石英、黄玉、电气石、萤石以及锡石、黑钨矿等矿物组成的浅色蚀变岩石。本文只讨论主要由白云母、石英、黄玉、锂电气石和萤石所组成的云英岩的蚀变类型、蚀变带序、蚀变带和成岩格子。  相似文献   

20.
BROWN  E. H. 《Journal of Petrology》1975,16(2):258-271
This report presents an analysis of phase relations among biotite,muscovite, chlorite, stilpnomelane, actinolite and K-feldsparin a ten component system within the greenschist facies. Itis based on study of the chemical composition of these minerals,on calculations to balance chemical equationsamong them, andon their field distribution. A petrogenetic grid resulting fromthis treatment consists of a single invariant point and multipleunivariant lines, the number depending on what part of the assemblageset is held constant. The reactions which involve biotite aresimilar to previously proposed reactions for the biotite isograd.At high pressure, biotite is produced from muscovite+stilpnomelane+actinolite±K-feldspar.At low pressure, chlorite+K-feldspar±stilpnomelane±actinolitereact to form biotite. A biotite-free reaction, not previouslyidentified, divides the chlorite zone into high pressure andlow pressure fields, characterized by the assemblages muscovite+stilpnomelane+actinoliteand chlorite+K-feldspar, respectively. In the blueschist facies,muscovite plus stilpnomelane and/or actinolite are stable insteadof biotite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号